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Abstract. In this paper we consider the Zakharov system with periodic boundary con-

ditions in dimension one. In the first part of the paper, it is shown that for fixed initial

data in a Sobolev space, the difference of the nonlinear and the linear evolution is in

a smoother space for all times the solution exists. The smoothing index depends on a

parameter distinguishing the resonant and nonresonant cases. As a corollary, we obtain

polynomial-in-time bounds for the Sobolev norms with regularity above the energy level.

In the second part of the paper, we consider the forced and damped Zakharov system

and obtain analogous smoothing estimates. As a corollary we prove the existence and

smoothness of global attractors in the energy space.

1. Introduction

The Zakharov system is a system of non-linear partial differential equations, introduced

by Zakharov in 1972, [21]. It describes the propagation of Langmuir waves in an ion-

ized plasma. The system with periodic boundary conditions consists of a complex field u

(Schrödinger part) and a real field n (wave part) satisfying the equation:

(1)



iut + αuxx = nu, x ∈ T, t ∈ [−T, T ],

ntt − nxx = (|u|2)xx,

u(x, 0) = u0(x) ∈ Hs0(T),

n(x, 0) = n0(x) ∈ Hs1(T), nt(x, 0) = n1(x) ∈ Hs1−1(T),

where α > 0 and T is the time of existence of the solutions. The function u(x, t) denotes the

slowly varying envelope of the electric field with a prescribed frequency and the function

n(x, t) denotes the deviation of the ion density from the equilibrium. Here α is the dispersion

coefficient. In the literature (see, e.g., [19]) it is standard to include the speed of an ion
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acoustic wave in a plasma as a coefficient β−2 in front of ntt where β > 0. One can scale

away this parameter using time and amplitude coefficients of the form t → βt, u →
√
βu,

and n→ βn and reduce the system to (1). Smooth solutions of the Zakharov system obey

the following conservation laws:

‖u(t)‖L2(T) = ‖u0‖L2(T)

and

E(u, n, ν)(t) = α

∫
T
|∂xu|2dx+

1
2

∫
T
n2dx+

1
2

∫
T
ν2dx+

∫
T
n|u|2dx = E(u0, n0, n1)

where ν is such that nt = νx and νt = (n + |u|2)x. These conservation laws identify

H1 × L2 ×H−1 as the energy space for the system.

For α = 1, Bourgain, in [6], proved that the problem is locally well-posed in the energy

space using the restricted norm method (see, e.g., [7]). The solutions are well-posed in the

sense of the following definition

Definition 1.1. Let X,Y, Z be Banach spaces. We say that the system of equations (1) is

locally well-posed in Hs0(T)×Hs1(T)×Hs1−1(T), if for a given initial data (u0, n0, n1) ∈

Hs0(T) ×Hs1(T) ×Hs1−1(T), there exists T = T (‖u0‖Hs0 , ‖n0‖Hs1 , ‖n1‖Hs1−1) > 0 and a

unique solution

(u, n, nt) ∈
(
X ∩ C0

tH
s0
x ([−T, T ]× T), Y ∩ C0

tH
s1
x ([−T, T ]× T), Z ∩ C0

tH
s1−1
x ([−T, T ]× T)

)
.

We also demand that there is continuity with respect to the initial data in the appropriate

topology. If T can be taken to be arbitrarily large then we say that the problem is globally

well-posed.

Thus, the energy solutions exist for all times due to the a priori bounds on the local theory

norms. We should note that although the quantity
∫

T n|u|
2dx has no definite sign it can be

controlled using Sobolev inequalities by the H1 norm of u and the L2 norm of n, [16]. In [19],

Takaoka extended the local-in-time theory of Bourgain and proved that when 1
α ∈ N we have

local well-posedness in Hs0 ×Hs1 ×Hs1−1 for s1 ≥ 0 and max(s1,
s1
2 + 1

2) ≤ s0 ≤ s1 + 1. In

the case that 1
α 6∈ N one has local well-posedness for s1 ≥ −1

2 , max(s1,
s1
2 + 1

4) ≤ s0 ≤ s1 +1.

A recent result, [15], establishes well-posedness in the case of the higher dimensional torus.
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The corresponding Cauchy problem on Rd has a long history. In this case it is somehow

easier to establish the well-posedness of the system due to the dispersive effects of the

solution waves. We cite the following papers [1, 2, 3, 5, 8, 12, 14, 18] as a historical

summary of the results. It is expected that (see, e.g., [15]) the optimal regularity range for

local well-posedness is on the line s1 = s0 − 1
2 because the two equations in the Zakharov

system equally share the loss of derivative. The Zakharov system is not scale invariant

but it can be reduced to a simplified system like in [12], and one can then define a critical

regularity. This is given by the pair (s0, s1) = (d−3
2 , d−4

2 ), which is also on the line. In

dimensions 1 and 2, the lowest regularity for the system to have local solutions has been

found to be (s0, s1) = (0,−1
2), [12]. It is harder to establish the global solutions at this level

since there is no conservation law controling the wave part. This has been done only in 1d,

[8].

In the first part of this paper we study the dynamics of the solutions in more detail.

We prove that the difference between the nonlinear and the linear evolution for both the

Schrödinder and the wave part is in a smoother space than the corresponding initial data,

see Theorem 2.3 and Theorem 2.4 below. This smoothing property is not apparent if one

views the nonlinear evolution as a perturbation of the linear flow and apply standard Picard

iteration techniques to absorb the nonlinear terms. The result will follow from a combination

of the method of normal forms (through differentiation by parts) inspired by the result in

[4], and the restricted norm method of Bourgain, [7]. Here the method is applied to a

dispersive system of equations where the resonances are harder to control and the coupling

nonlinear terms introduce additional difficulties in estimating the first order corrections.

As a corollary, in the case α > 0, we obtain polynomial-in-time bounds for Sobolev norms

above the energy level (s0, s1) = (1, 0) by a bootstrapping argument utilizing the a priori

bounds and the smoothing estimates, see Corollary 2.5 below. We have recently applied this

method to obtain similar results for the periodic KdV with a smooth space-time potential,

[9]. For the details of the method the reader can consult [9].

In the second part we study the existence of a global attractor (see the next section for a

definition of global attractors and the statement of our result) for the dissipative Zakharov

system in the energy space. Our motivation comes from the smoothing estimates that we
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obtained in the first part of the paper and our work in [10]. More precisely we consider

(2)



iut + αuxx + iγu = nu+ f, x ∈ T, t ∈ [−T, T ],

ntt − nxx + δnt = (|u|2)xx + g,

u(x, 0) = u0(x) ∈ H1(T),

n(x, 0) = n0(x) ∈ L2(T), nt(x, 0) = n1(x) ∈ H−1(T), f ∈ H1(T), g ∈ L2(T)

where f, g are time-independent, g is mean-zero,
∫

T g(x)dx = 0, and the damping coeffi-

cients δ, γ > 0. For simplicity we set γ = δ, and g = 0. Our calculations apply equally well

to the full system and all proofs go through with minor modifications (in particular, one

does not need any other a priori estimates).

The problem with Dirichlet boundary conditions has been considered in [11] and [13] in

more regular spaces than the energy space. The regularity of the attractor in Gevrey spaces

with peridic boundary problem was considered in [17].

1.1. Notation. To avoid the use of multiple constants, we write A . B to denote that

there is an absolute constant C such that A ≤ CB. We also write A ∼ B to denote both

A . B and B . A. We also define 〈·〉 = 1 + | · |.

We define the Fourier sequence of a 2π-periodic L2 function u as

uk =
1

2π

∫ 2π

0
u(x)e−ikxdx, k ∈ Z.

With this normalization we have

u(x) =
∑
k

eikxuk, and (uv)k = uk ∗ vk =
∑

m+n=k

unvm.

As usual, for s < 0, Hs is the completion of L2 under the norm

‖u‖Hs = ‖û(k)〈k〉s‖`2 .

Note that for a mean-zero L2 function u, ‖u‖Hs ∼ ‖û(k)|k|s‖`2 . For a sequence uk, with

u0 = 0, we will use ‖u‖Hs notation to denote ‖uk|k|s‖`2 . We also define Ḣs = {u ∈ Hs :

u is mean-zero}.
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The following function will appear many times in the proofs below.

φβ(k) :=
∑
|n|≤|k|

1
|n|β

∼


1, β > 1,

log(1 + 〈k〉), β = 1,

〈k〉1−β, β < 1.

2. Statement of Results

2.1. Smoothing Estimates for the Zakharov System. First note that if n0 and n1

are mean-zero then n, nt remain mean-zero during the evolution since by integrating the

wave part of the system we obtain ∂2
t

∫
T n(x, t)dx = 0. We will work with this mean-

zero assumption in this paper. This is no loss of generality since if
∫
T n0(x)dx = A and∫

T n1(x)dx = B, then one can consider the new variables n → n − A − Bt and u →

ei(B
t2

2
+At)u, and obtain the same system with mean-zero data.

By considering the operator d = (−∂xx)1/2, and writing n± = n± id−1nt, the system can

be rewritten as

(3)


iut + αuxx = 1

2(n+ + n−)u, x ∈ T, t ∈ [−T, T ],

(i∂t ∓ d)n± = ±d(|u|2),

u(x, 0) = u0(x) ∈ Hs0(T), n±(x, 0) = n0(x)± id−1n1(x) ∈ Hs1(T).

Note that d−1n1(x) is well-defined because of the mean-zero assumption, and that n+ = n−.

The local well posedness of the system was established in the framework of Xs,b spaces

introduced by Bourgain in [7]. Let

‖u‖Xs,b =
∥∥〈k〉s〈τ − αk2〉bû(k, τ)

∥∥
`2kL

2
τ
,

‖n‖
Y s,b±

=
∥∥〈k〉s〈τ ∓ |k|〉bn̂(k, τ)

∥∥
`2kL

2
τ
.

Here ‘±’ corresponds to the norm of n± in the system (3). As usual we also define the

restricted norm

‖u‖
Xs,b
T

= infeu=u, t∈[−T,T ]
‖ũ‖Xs,b .

The norms Y s,b
±,T are defined accordingly. We also abbreviate n±(x, 0) = n±,0.

Definition 2.1. We say (s0, s1) is α-admissable if s1 ≥ −1
2 and max(s1,

s1
2 +1

4) ≤ s0 ≤ s1+1

for 1
α 6∈ N, or if s1 ≥ 0 and max(s1,

s1
2 + 1

2) ≤ s0 ≤ s1 + 1 for 1
α ∈ N.
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Takoaka’s theorem on local well-posedness can be stated as

Theorem 2.2. [19] Suppose α 6= 0 and (s0, s1) is α-admissable. Then given initial data

(u0, n+,0, n−,0) ∈ Hs0 ×Hs1 ×Hs1 there exists

T &
(
‖u0‖Hs0 + ‖n+,0‖Hs1 + ‖n−,0‖Hs1

)− 1
12

+
,

and a unique solution (u, n+, n−) ∈ C
(
[−T, T ] : Hs0 ×Hs1 ×Hs1

)
. Moreover, we have

‖u‖
X
s, 12
T

+ ‖n+,0‖
Y
s1,

1
2

+,T

+ ‖n−,0‖
Y
s1,

1
2

−,T

≤ 2
(
‖u0‖Hs0 + ‖n+,0‖Hs1 + ‖n−,0‖Hs1

)
.

Now, we can state our results on the smoothing estimates:

Theorem 2.3. Suppose 1
α 6∈ N, and (s0, s1) is α-admissable. Consider the solution of (3)

with initial data (u0, n+,0, n−,0) ∈ Hs0 ×Hs1 ×Hs1. Assume that we have a growth bound

‖u(t)‖Hs0 +‖n+(t)‖Hs1 +‖n−(t)‖Hs1 ≤ C
(
‖u0‖Hs0 +‖n+,0‖Hs1 +‖n−,0‖Hs1

)
(1+ |t|)γ(s0,s1).

Then, for any a0 ≤ min(1, 2s0, 1 + 2s1) (the inequality has to be strict if s0 − s1 = 1) and

for any a1 ≤ min(1, 2s0, 2s0 − s1), we have

u(t)− eiαt∂2
xu0 ∈ C0

tH
s0+a0
x (R× T),(4)

n±(t)− e∓itdn±,0 ∈ C0
tH

s1+a1
x (R× T).(5)

Moreover, for β > 1 + 15γ(s0, s1), we have

‖u(t)− eiαt∂2
xu0‖Hs0+a0 + ‖n±(t)− e∓itdn±,0‖Hs1+a1 ≤ C(1 + |t|)β,(6)

where C = C
(
s0, s1, a0, a1, ‖u0‖Hs0 , ‖n+,0‖Hs1 , ‖n−,0‖Hs1

)
.

Theorem 2.4. Suppose 1
α ∈ N, and (s0, s1) is α-admissable. Assume that we have a growth

bound

‖u(t)‖Hs0 +‖n+(t)‖Hs1 +‖n−(t)‖Hs1 ≤ C
(
‖u0‖Hs0 +‖n+,0‖Hs1 +‖n−,0‖Hs1

)
(1+ |t|)α(s0,s1).

Then, for any a0 ≤ min(1, s1) (the inequality has to be strict if s0− s1 = 1 and s1 ≥ 1) and

for any a1 ≤ min(1, 2s0 − s1 − 1), we have (4), (5) and (6).

As an application of these theorems we obtain the following corollary regarding the growth

of higher order Sobolev norms.
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Corollary 2.5. For any α > 0, and for any α-admissable (s0, s1) with s0 ≥ 1, s1 ≥ 0, the

global solution of (3) with Hs0 ×Hs1 ×Hs1 data satisfies the growth bound

‖u(t)‖Hs0 + ‖n+(t)‖Hs1 + ‖n−(t)‖Hs1 ≤ C1(1 + |t|)C2 ,

where C1 depends on s0, s1, and ‖u0‖Hs0 +‖n+,0‖Hs1 +‖n−,0‖Hs1 , and C2 depends on s0, s1.

Proof. We drop ‘±’ signs and work with u and n. First note that because of the energy

conservation, ‖u‖H1 and ‖n‖L2 are bounded for all times. Assume that the claim holds for

regularity levels (s0, s1). Let (a0, a1) be given by Theeorem 2.3 or Theorem 2.4. Note that

for initial data in Hs0+a0×Hs1+a1 , applying the theorem with (s0, s1) and (a0, a1), we have

‖u(t)− eiαt∂2
xu0‖Hs0+a0 + ‖n±(t)− e∓itdn±,0‖Hs1+a1 ≤ C(1 + |t|)β.

Therefore, since the linear groups are unitary, we have

‖u(t)‖Hs0+a0 + ‖n(t)‖Hs1+a1 ≤ C(1 + |t|)β + ‖u0‖Hs0+a0 + ‖n0‖Hs1+a0 .

The statement follows by induction on the regularity.

We note that in the case 1
α ∈ N, s0 = 1, s1 = 0, we have a0 = 0. However, since

a1 ∈ [0, 1], we obtain the statement for α-admissable (1, s1), 0 ≤ s1 ≤ 1. From then on we

can take both a0 > 0 and a1 > 0. �

2.2. Existence of a Global Attractor for the Dissipative Zakharov System. The

problem of global attractors for nonlinear PDEs is concerned with the description of the

nonlinear dynamics for a given problem as t → ∞. In particular assuming that one has a

well-posed problem for all times we can define the semigroup operator U(t) : u0 ∈ H →

u(t) ∈ H where H is the phase space. We want to describe the long time asymptotics of

the solution by an invariant set X ⊂ H (a global attractor) to which the orbit converges as

t→∞:

U(t)X = X, t ∈ R+, d(u(t), X)→ 0.

For dissipative systems there are many results (see, e.g., [20]) establishing the existence

of a compact set that satisfies the above properties. Dissipativity is characterized by the
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existence of a bounded absorbing set into which all solutions enter eventually. The candidate

for the attractor set is the omega limit set of an absorbing set, B, defined by

ω(B) =
⋂
s≥0

⋃
t≥s

U(t)B

where the closure is taken on H. To state our result we need some definitions from [20]

(also see [10] for more discussion).

Definition 2.6. We say that a compact subset A of H is a global attractor for the semigroup

{U(t)}t≥0 if A is invariant under the flow and if for every u0 ∈ H, d(U(t)u0,A) → 0 as

t→∞.

The distance is understood to be the distance of a point to the set d(x, Y ) = infy∈Y d(x, y).

To state a general theorem for the existence of a global attractor we need one more

definition:

Definition 2.7. We say a bounded subset B0 of H is absorbing if for any bounded B ⊂ H

there exists T = T (B) such that for all t ≥ T , U(t)B ⊂ B0.

It is not hard to see that the existence of a global attractor A for a semigroup U(t)

implies the existence of an absorbing set. For the converse we cite the following theorem

from [20] which gives a general criterion for the existence of a global attractor.

Theorem A. We assume that H is a metric space and that the operator U(t) is a continuous

semigroup from H to itself for all t ≥ 0. We also assume that there exists an absorbing set

B0. If the semigroup {U(t)}t≥0 is asymptotically compact, i.e. for every bounded sequence

xk in H and every sequence tk →∞, {U(tk)xk}k is relatively compact in H, then ω(B0) is

a global attractor.

Using Theorem A and a smoothing estimate as above, we will prove the following

Theorem 2.8. Fix α > 0. Consider the dissipative Zakharov system (2) on T × [0,∞)

with u0 ∈ H1 and with mean-zero n0 ∈ L2, n1 ∈ H−1. Then the equation possesses a global

attractor in H1 × L̇2 × Ḣ−1. Moreover, for any a ∈ (0, 1), the global attractor is a compact

subset of H1+a × Ha × H−1+a, and it is bounded in H1+a × Ha × H−1+a by a constant

depending only on a, α, γ, and ‖f‖H1.
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To prove Theorem 2.8 in the case 1
α 6∈ N we will demonstrate that the solution decomposes

into two parts; a linear one which decays to zero as time goes to infinity and a nonlinear

one which always belongs to a smoother space. As a corollary we prove that all solutions

are attracted by a ball in H1+a ×Ha ×H−1+a, a ∈ (0, 1), whose radius depends only on a,

the H1 norm of the forcing term and the damping parameter. This implies the existence of

a smooth global attractor and provides quantitative information on the size of the attractor

set in H1+a × Ha × H−1+a. In addition it implies that higher order Sobolev norms are

bounded for all positive times, see [10]. In the case 1
α ∈ N the proof is slightly different

because of a resonant term.

We close this section with a discussion of the well-posedness of (2) in H1 × L2 × H−1.

We first rewrite the system (when γ = δ, g = 0) by passing to n± variables as above:

(7)


(i∂t + α∂2

x + iγ)u = n++n−
2 u+ f, x ∈ T, t ∈ [−T, T ],

(i∂t ∓ d+ iγ)n± = ±d(|u|2),

u(x, 0) = u0(x) ∈ H1(T), n±(x, 0) = n±,0(x) = n0(x)± id−1n1(x) ∈ L2(T).

Theorem 2.9. Given initial data (u0, n+,0, n−,0) ∈ H1 × L2 × L2 there exists

T = T
(
‖u0‖H1 , ‖n+,0‖L2 , ‖n−,0‖L2 , ‖f‖H1 , γ

)
,

and a unique solution (u, n+, n−) ∈ C
(
[−T, T ] : H1 × L2 × L2

)
of (7). Moreover, we have

‖u‖
X

1, 12
T

+ ‖n+,0‖
Y

0, 12
+,T

+ ‖n−,0‖
Y

0, 12
−,T

≤ 2
(
‖u0‖H1 + ‖n+,0‖L2 + ‖n−,0‖L2

)
.

This theorem follows by using the a priori estimates of Takaoka in [19]. In the case of

forced and damped KdV, this was done in [10, Theorem 2.1, Lemma 2.2].

The global well-posedness follows from the following a priori estimate for the system (7)

which was obtained in [11] (recall that n± = n± id−1nt):

(8) ‖u‖H1 + ‖n+‖L2 + ‖n−‖L2 ≤ C1 + C2e
−C3t, t > 0,

where C1 = C1(α, γ, ‖f‖H1), C2 = C2(α, γ, ‖f‖H1 , ‖u0‖H1 , ‖n±,0‖L2), and C3 = C3(α, γ).

In fact this was proved in [11] for Dirichlet boundary conditions. In the case of periodic

boundary conditions, the proof remains valid. Note that (8) also implies the existence of

an absorbing set B0 in H1 × L2 × L2 of radius C1(α, γ, ‖f‖H1).
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3. Proof of Theorem 2.3 and Theorem 2.4

In this section we drop the ‘±’ signs and work with one n. We also set Y = Y+.

(9)


iut + αuxx = nu, x ∈ T, t ∈ [−T, T ],

(i∂t − d)n = d(|u|2),

u(x, 0) = u0(x) ∈ Hs0(T), n(x, 0) = n0(x) + id−1n1(x) ∈ Hs1(T).

Remark 3.1. We note that since n+ = n− all of our claims about (9) is also valid for (3).

The difference in the proof will arise in the differentiation by parts process and the Xs,b

estimates. Because of (14), in the formulas (15), (16), (17), there will additional sums in

which every term, in the phase and in the multiplier with an | · | sign, will have a ‘±’ sign

in front. This change won’t alter the proofs for the Xs,b estimates, in fact, all the cases

we considered will work exactly the same way. Also it won’t change the structure of the

resonant sets in the case 1
α ∈ N.

We will prove Theorem 2.4 only for α = 1. Therefore, below we either have 1
α 6∈ N or

α = 1. The case α 6= 1, 1
α ∈ N can be handled by only cosmetic changes in the proof.

Writing

u(x, t) =
∑
k

uk(t)eikx, n(x, t) =
∑
j 6=0

nj(t)eijx,

we obtain the following system for the Fourier coefficients:

(10)


i∂tuk − αk2uk =

∑
k1+k2=k, k1 6=0 nk1uk2 ,

i∂tnj − |j|nj = |j|
∑

j1+j2=j uj1u−j2 , j 6= 0

uk(0) = (u0)k, nj(0) = (n0)j + i|j|−1(n1)j , j 6= 0.

We start with the following proposition which follows from differention by parts.

Proposition 3.2. The system (10) can be written in the following form:

i∂t
[
eitαk

2
uk + eitαk

2
B1(n, u)k

]
= eitαk

2[
ρ1(k) +R1(u)(k̂, t) +R2(u, n)(k̂, t)

]
,(11)

i∂t
[
eit|j|nj + eit|j|B2(u)j

]
= eit|j|

[
ρ2(j) +R3(u, n)(ĵ, t) +R4(u, n)(ĵ, t)

]
,(12)

where

B1(n, u)k =
∗∑

k1+k2=k,k1 6=0

nk1uk2
αk2 − αk2

2 − |k1|
, B2(u)j = |j|

∗∑
j1+j2=j

uj1u−j2
|j| − αj2

1 + αj2
2

.



DYNAMICS OF THE ZAKHAROV SYSTEM 11

R1(u)(k̂, t) =
∗∑

k1,k2

|k1 + k2|uk1u−k2 uk−k1−k2
αk2 − α(k − k1 − k2)2 − |k1 + k2|

.

R2(u, n)(k̂, t) =
∗∑

k1,k2 6=0

nk1nk2uk−k1−k2
αk2 − α(k − k1)2 − |k1|

.

R3(u, n)(ĵ, t) = |j|
∗∑

j1 6=0,j2

nj1uj2uj1+j2−j
|j| − α(j1 + j2)2 + α(j − j1 − j2)2

.

R4(u, n)(ĵ, t) = |j|
∗∑

j1 6=0,j2

n−j1uj2 uj1+j2−j
|j| − αj2

2 + α(j − j2)2
.

Here,
∑∗ means that the sum is over all nonresonant terms, i.e., over all indices for which

the denominator is not zero. Moreover, the resonant terms ρ1 and ρ2 are zero if 1
α 6∈ N.

For α = 1,

ρ1(k) = n2k−sign(k)usign(k)−k, k 6= 0, ρ2(j) = |j|u j+sign(j)
2

u j−sign(j)
2

, j odd.

Proof of Proposition 3.2. Changing the variables mj = nje
i|j|t and vk = uke

iαk2t in (10),

we obtain

(13)


i∂tvk =

∑
k1+k2=k, k1 6=0 e

it(αk2−αk2
2−|k1|)mk1vk2 ,

i∂tmj = |j|
∑

j1+j2=j e
it(|j|−αj21+αj22)vj1v−j2 , j 6= 0

vk(0) = (u0)k, mj(0) = (n0)j + i|j|−1(n1)j , j 6= 0.

It is easy to check that if we define m+
j and m−j accordingly, then

(14) ∂tm
−
j = ∂tm

+
−j .

Note that the exponents do not vanish if 1/α is not an integer. On the other hand if

α = 1, then the resonant set is:

(k1, k2) =
(
2k − sign(k), sign(k)− k

)
, k 6= 0.

(j1, j2) =
(j + sign(j)

2
,
j − sign(j)

2

)
, j odd.

The contribution of the corresponding terms give ρ1 and ρ2 in the case α = 1. Below, we

assume that 1
α 6∈ N.
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Differentiating by parts in the v equation we obtain

i∂tvk =
∑

k1+k2=k, k1 6=0

eit(αk
2−αk2

2−|k1|)mk1vk2 =
∑

k1+k2=k, k1 6=0

∂t
(
eit(αk

2−αk2
2−|k1|)mk1vk2

)
i(αk2 − αk2

2 − |k1|)

+ i
∑

k1+k2=k, k1 6=0

eit(αk
2−αk2

2−|k1|)∂t
(
mk1vk2

)
αk2 − αk2

2 − |k1|
.

The second sum can be rewritten using the equation as follows:∑
k1+k2+k3=k, k1+k2 6=0

eitα(k2−k2
1+k2

2−k2
3)|k1 + k2|vk1v−k2vk3

αk2 − αk2
3 − |k1 + k2|

+
∑

k1+k2+k3=k, k1,k2 6=0

eit(αk
2−αk2

3−|k1|−|k2|)mk1mk2vk3
αk2 − α(k2 + k3)2 − |k1|

.(15)

Now, we differentiate by parts in the m equation:

i∂tmj = |j|
∑

j1+j2=j

eit(|j|−αj
2
1+αj22)vj1v−j2 = |j|

∑
j1+j2=j

∂t
(
eit(|j|−αj

2
1+αj22)vj1v−j2

)
i(|j| − αj2

1 + αj2
2)

+ i|j|
∑

j1+j2=j

eit(|j|−αj
2
1+αj22)∂t

(
vj1v−j2

)
|j| − αj2

1 + αj2
2

.

The second sum can be rewritten using the equation as follows:

|j|
∑

j1+j2+j3=j,j1 6=0

eit(|j|+αj
2
3−αj22−|j1|)mj1vj2v−j3

|j| − α(j1 + j2)2 + αj2
3

(16)

+ |j|
∑

j1+j2+j3=j,j2 6=0

eit(|j|−αj
2
1+αj23+|j2|)vj1m−j2 v−j3

|j| − αj2
1 + α(j2 + j3)2

.(17)

The statement follows by going back to u and n variables.

�

Integrating (11) and (12) from 0 to t, we obtain

(18) uk(t)− e−itαk
2
uk(0) = e−itαk

2
B1(n, u)k(0)−B1(n, u)k(t)

− i
∫ t

0
e−iαk

2(t−s)[ρ1(k) +R1(u)(k̂, s) +R2(u, n)(k̂, s)
]
ds.

(19) nj(t)− e−it|j|nj(0) = e−it|j|B2(u)j(0)−B2(u)j(t)

− i
∫ t

0
e−i|j|(t−s)

[
ρ2(j) +R3(u, n)(ĵ, s) +R4(u, n)(ĵ, s)

]
ds.
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Below we obtain a priori estimates for ρ1, ρ2, B1, and B2. Before that we state a technical

lemma that will be used many times in the proofs.

Lemma 3.3. a) If β ≥ γ ≥ 0 and β + γ > 1, then∑
n

1
〈n− k1〉β〈n− k2〉γ

. 〈k1 − k2〉−γφβ(k1 − k2).

b) For β ∈ (0, 1], we have ∫
R

dτ

〈τ + ρ1〉β〈τ + ρ2〉
.

1
〈ρ1 − ρ2〉β−

.

c) If β > 1/2, then ∑
n

1
〈n2 + c1n+ c2〉β

. 1,

where the implicit constant is independent of c1 and c2.

We will prove this lemma in a appendix.

Lemma 3.4. Under the conditions of Theorem 2.3 and Theorem 2.4, we have

‖ρ1‖Hs . ‖n‖Hs1‖u‖Hs0 , if s ≤ s0 + s1,

‖ρ2‖Hs . ‖u‖2Hs0 , if s ≤ 2s0 − 1,

‖B1(n, u)‖Hs . ‖n‖Hs1‖u‖Hs0 , if s ≤ 1 + s0 + min(s1, 0),

‖B2(u)‖Hs . ‖u‖2Hs0 , if s ≤ min(2s0, 1 + s0).

Proof. The proof for ρ1 and ρ2 is immediate from their definition.

To estimate B1, first note that∣∣αk2 − αk2
2 − |k1|

∣∣ = |α||k1||2k − k1 −
1
α

sign(k1)| ∼ 〈k1〉〈2k − k1〉.

The last equality is immediate in the case 1
α 6∈ N, when α = 1, it follows from the nonreso-

nant condition. Therefore we have

|B1(n, u)k| .
∑
k1 6=0

|nk1 ||uk−k1 |
〈k1〉〈2k − k1〉

.

We estimate the Hs norm as follows:

‖B1‖2Hs .
∥∥∥ ∑
k1 6=0

〈k1〉2s1 |nk1 |2〈k − k1〉2s0 |uk−k1 |2
∥∥∥
`1k

∥∥∥∑
k1

〈k〉2s

〈k1〉2+2s1〈k − k1〉2s0〈2k − k1〉2
∥∥∥
`∞k
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The first sum is bounded by ‖n‖2Hs1‖u‖2Hs0 since it is a convolution of two `1 sequences. To

estimate the second sum we distinguish the cases |k1| < |k|/2, |k1| > 4|k|, and |k1| ∼ |k|.

In the first case, we bound the sum by∑
k1

〈k〉2s−2−2s0

〈k1〉2+2s1
. 〈k〉2s−2−2s0 ,

since 2 + 2s1 > 1. In the second case, we bound the sum by∑
|k1|>4|k|

〈k〉2s

〈k1〉4+2s1+2s0
. 〈k〉2s−3−2s1−2s0 ≤ 〈k〉2s−2−2s0 .

In the final case, we have∑
|k1|∼|k|

〈k〉2s−2−2s1

〈k − k1〉2s0〈2k − k1〉2
. 〈k〉2s−2−2s1−2 min(s0,1).

In the last inequality we used part a) of Lemma 3.3.

Combining these cases we see that B1 ∈ Hs for s ≤ 1 + min(s0, s1 + min(s0, 1)). In

particular, B1 ∈ Hs if s ≤ 1 + s0 + min(s1, 0) which can be seen by distinguishing the cases

s0 ≥ 1 and s0 < 1 and using the condition 1 + s1 ≥ s0.

Similarly, we estimate

|B2(u)j | .
∑
j1

|uj1 ||uj1−j |
〈j − 2j1〉

.

As in the case of B1, we see that B2 ∈ Hs if

sup
j

∑
j1

〈j〉2s

〈j − 2j1〉2〈j1〉2s0〈j − j1〉2s0
<∞.

We distinguish the cases |j1| < |j|/4, |j1| > 2|j|, and |j1| ∼ |j|. In the first case, we bound

the sum by ∑
|j1|<|j|/4

〈j〉2s−2−2s0

〈j1〉2s0
. 〈j〉2s−2−2s0φ2s0(j).

In the second case, we bound the sum by∑
|j1|>2|j|

〈j〉2s

〈j1〉2+4s0
. 〈j〉2s−1−4s0 .

In the final case, we have∑
|j1|∼|j|

〈j〉2s−2s0

〈j − 2j1〉2〈j − j1〉2s0
. 〈j〉2s−2s0−2 min(s0,1).
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Combining this cases, we see that B2 is in Hs if s ≤ min(2s0, 1 + s0). �

Using the estimates in Lemma 3.4 in the equations (18) and (19) after writing the equa-

tions in the space side, we obtain

(20) ‖u(t)− eitα∂2
xu0‖Hs0+a0 . ‖n0‖Hs1‖u0‖Hs0 + ‖n(t)‖Hs1‖u(t)‖Hs0

+
∫ t

0
‖n(s)‖Hs1‖u(s)‖Hs0ds+

∥∥∥∫ t

0
eiα(t−s)∂2

x
[
R1(u)(s) +R2(u, n)(s)

]
ds
∥∥∥
Hs0+a0

,

(21) ‖n(t)− e−itdn0‖Hs1+a1 . ‖u0‖2Hs0 + ‖u(t)‖2Hs0

+
∫ t

0
‖u(s)‖2Hs0ds+

∥∥∥∫ t

0
e−id(t−s)[R3(u, n)(s) +R4(u, n)(s)

]
ds
∥∥∥
Hs1+a1

,

where

R`(s) =
∑
k

R`(k̂, s)eikx, ` = 1, 2, 3, 4.

Above, the smoothing indexes a0 and a1 depend on α as stated in Theorem 2.3 and The-

orem 2.4. The dependence arise only from the contribution of the resonant terms ρ1 and

ρ2.

Note that, with δ as in Theorem 2.2,

(22)
∥∥∥∫ t

0
eiα(t−s)∂2

x
[
R1(u)(s) +R2(u, n)(s)

]
ds
∥∥∥
L∞
t∈[−δ,δ]H

s0+a0
x

.
∥∥∥ψδ(t) ∫ t

0
eiα(t−s)∂2

x
[
R1(u)(s)+R2(u, n)(s)

]
ds
∥∥∥
Xs0+a0,b

. ‖R1(u)+R2(u, n)‖
X
s0+a0,b−1
δ

,

for b > 1/2. Here we used the imbedding Xs0+a0,b ⊂ L∞t Hs0+a0
x . Similarly,

(23)
∥∥∥∫ t

0
e−id(t−s)[R3(u, n)(s) +R4(u, n)(s)

]
ds
∥∥∥
L∞
t∈[−δ,δ]H

s1+a1
x

. ‖R3(u, n) +R4(u, n)‖
X
s1+a1,b−1
δ

.

Proposition 3.5. Given s1 > −1
2 , max(s1,

s1
2 + 1

4) ≤ s0 ≤ s1+1, and 1
2 < b < min(3

4 ,
s0+1

2 ),

we have

‖R1(u)‖Xs,b−1 . ‖u‖3
Xs0,

1
2
, provided s ≤ s0 + min(1, 2s0).

We also have

‖R2(u, n)‖Xs,b−1 . ‖n‖2
Y s1,

1
2
‖u‖

Xs0,
1
2
,
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provided s ≤ min(s0 + 1 + 2s1, s0 + 1, 3 + 2s1 − 2b, 3 + s1 − 2b).

Proposition 3.6. Given s1 > −1
2 , max(s1,

s1
2 + 1

4) ≤ s0 ≤ s1 + 1, and 1
2 < b < 3

4 +

min(0, s0+s1
2 ), we have

‖R3(u, n)‖Xs,b−1 + ‖R4(u, n)‖Xs,b−1 . ‖n‖
Y s1,

1
2
‖u‖2

Xs0,
1
2
,

provided s ≤ s1 + min(1, 2s0, 2s0 − s1).

We will prove these propositions later on. Using (22), (23) and the propositions above

(with b− 1/2 sufficiently small depending on a0, a1, s0, s1) in (20) and (21), we see that for

t ∈ [−δ, δ], we have

‖u(t)− eitα∂2
xu0‖Hs0+a0 + ‖n(t)− e−itdn0‖Hs1+a1 .

[
‖n0‖Hs1 + ‖u0‖Hs0

]2+[
‖n(t)‖Hs1 + ‖u(t)‖Hs0

]2 +
∫ t

0

[
‖n(s)‖Hs1 + ‖u(s)‖Hs0

]2
ds+

[
‖n‖

Y s1,
1
2

+ ‖u‖
Xs0,

1
2

]3
.

In the rest of the proof the implicit constants depend on ‖n0‖Hs1 , ‖u0‖Hs0 . Fix T large.

For t ≤ T , we have the bound (with γ = γ(s0, s1))

‖u(t)‖Hs0 + ‖n(t)‖Hs1 . (1 + |t|)γ . T γ .

Thus, with δ ∼ T−12γ−, we have

‖u(jδ)− eiδα∂2
xu((j − 1)δ)‖Hs0+a0 + ‖n(jδ)− e−iδdn((j − 1)δ)‖Hs1+a1 . T

3γ ,

for any j ≤ T/δ ∼ T 1+12γ+. Here we used the local theory bound

‖u‖
X
s0,1/2

[(j−1)δ, jδ]

. ‖u((j − 1)δ)‖Hs0 . T γ ,

and similarly for n. Using this we obtain (with J = T/δ ∼ T 1+12γ+)

‖u(Jδ)− eiαJδ∂2
xu(0)‖Hs0+a0 ≤

J∑
j=1

‖ei(J−j)δα∂2
xu(jδ)− ei(J−j+1)δα∂2

xu((j − 1)δ)‖Hs0+a0

=
J∑
j=1

‖u(jδ)− eiδα∂2
xu((j − 1)δ)‖Hs0+a0

. JT 3γ ∼ T 1+15γ+.

The analogous bound follows similarly for the wave part n.



DYNAMICS OF THE ZAKHAROV SYSTEM 17

The continuity in Hs0+a0 × Hs1+a1 follows from dominated convergence theorem, the

continuity of u and n in Hs0 , Hs1 , respectively, and from the embedding Xs,b ⊂ C0
tH

s
x (for

b > 1/2). For details, see [9].

4. Proof of Proposition 3.5

First note that the denominator in the definition of R1 satisfy

(24) |αk2 − α(k − k1 − k2)2 − |k1 + k2|| = |α||k1 + k2||2k − k − k1 −
1
α

sign(k1 + k2)|

∼ 〈k1 + k2〉〈2k − k1 − k2〉.

The last equality holds trivially in the case 1/α is not an integer. In the case 1
α is an integer

it holds since the sum is over the nonresonant terms. Similarly, the denominators of R2,

R3, R4 are comparable to

(25) 〈k1〉〈2k − k1〉, 〈j〉〈j − 2j1 − 2j2〉, 〈j〉〈j − 2j2〉,

respectively.

We start with the proof for R2. We have

‖R2(u, n)‖2Xs,b−1 =
∥∥∥∫

τ1,τ2

∗∑
k1,k2 6=0

〈k〉sn̂(k1, τ1)n̂(k2, τ2)û(k − k1 − k2, τ − τ1 − τ2)
(αk2 − α(k − k1)2 − |k1|)〈τ − k2〉1−b

∥∥∥2

`2kL
2
τ

.

Let

f(k, τ) = |n̂(k, τ)|〈k〉s1〈τ − |k|〉
1
2 , g(k, τ) = |û(k, τ)|〈k〉s0〈τ − αk2〉

1
2 .

It suffices to prove that∥∥∥∫
τ1,τ2

∗∑
k1,k2 6=0

M(k1, k2, k, τ1, τ2, τ)f(k1, τ1)f(k2, τ2)g(k−k1−k2, τ−τ1−τ2)
∥∥∥2

`2kL
2
τ

. ‖f‖42‖g‖22,

where

M(k1, k2, k, τ1, τ2, τ) =

〈k〉s〈k1〉−s1〈k2〉−s1〈k − k1 − k2〉−s0

(αk2 − α(k − k1)2 − |k1|)〈τ − αk2〉1−b〈τ1 − |k1|〉
1
2 〈τ2 − |k2|〉

1
2 〈τ − τ1 − τ2 − α(k − k1 − k2)2〉

1
2

.

By Cauchy Schwarz in τ1, τ2, k1, k2 variables, we estimate the norm above by
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sup
k,τ

(∫
τ1,τ2

∗∑
k1,k2 6=0

M2(k1, k2, k, τ1, τ2, τ)
)
×

∥∥∥∫
τ1,τ2

∑
k1,k2 6=0

f2(k1, τ1)f2(k2, τ2)g2(k − k1 − k2, τ − τ1 − τ2)
∥∥∥
`1kL

1
τ

.

Note that the norm above is equal to
∥∥f2∗f2∗g2

∥∥
`1kL

1
τ
, which can be estimated by ‖f‖42‖g‖22

by Young’s inequality. Therefore, it suffices to prove that the supremum above is finite.

Using part b) of Lemma 3.3 in τ1 and τ2 integrals, we obtain

sup
k,τ

∫
τ1,τ2

∗∑
k1,k2 6=0

M2 .

sup
k,τ

∗∑
k1,k2 6=0

〈k〉2s〈k1〉−2s1〈k2〉−2s1〈k − k1 − k2〉−2s0

(αk2 − α(k − k1)2 − |k1|)2〈τ − αk2〉2−2b〈τ − |k1| − |k2| − α(k − k1 − k2)2〉1−

. sup
k

∑
k1,k2 6=0

〈k〉2s〈k1〉−2s1〈k2〉−2s1〈k − k1 − k2〉−2s0

〈k1〉2〈2k − k1〉2〈αk2 − |k1| − |k2| − α(k − k1 − k2)2〉2−2b
.

The last line follows by (25) and by the simple fact

(26) 〈τ − n〉〈τ −m〉 & 〈n−m〉.

Setting k2 = n+ k − k1, we rewrite the sum as

sup
k

∑
k1≥0,n

〈k〉2s〈n+ k − k1〉−2s1

〈k1〉2+2s1〈2k − k1〉2〈n〉2s0〈α(n2 − k2) + k1 + |k1 − n− k|〉2−2b
.

Here, without loss of generality (since (k1, k2, k) → (−k1,−k2,−k) is a symmetry for the

sum), we only considered the case k1 ≥ 0.

Case i) −1/2 < s1 < 0, 0 < s1
2 + 1

4 ≤ s0 ≤ s1 + 1.

We write the sum as

∑
|n|∼|k|
k1≥0

+
∑
|n|�|k|

0≤k1≤|n+k|

+
∑
|n|�|k|

k1≥|n+k|

+
∑
|n|�|k|

k1≥|n+k|

+
∑
|n|�|k|

0≤k1≤|n+k|

=: S1 + S2 + S3 + S4 + S5.

Note that in the sum S1, we have

〈n〉 ∼ 〈k〉, 〈n+ k − k1〉 . 〈k1〉+ 〈2k − k1〉.
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Using this, we have

S1 .
∑

k1≥0,n

〈k〉2s−2s0
(
〈k1〉−2s1 + 〈2k − k1〉−2s1

)
〈k1〉2+2s1〈2k − k1〉2〈α(n2 − k2) + k1 + |k1 − n− k|〉2−2b

.

Summing in n using part c) of Lemma 3.3 and then summing in k1 using part a) of

Lemma 3.3, we obtain

S1 . 〈k〉2s−2s0−2−4s1 + 〈k〉2s−2s0−2−2s1 . 〈k〉2s−2s0−2−4s1 .

Note that S1 is bounded in k for s ≤ s0 + 1 + 2s1.

In the case of S2, we have

|n± k| ∼ |k|, |2k − k1| ∼ |k|, |n+ k − k1| . |k|.

Also note that (since we can assume that |k| � 1)∣∣α(n2 − k2) + k1 + |k1 − n− k|
∣∣ = α(k2 − n2) +O(|k|) ∼ k2.

Using these, and then summing in k1, we have

S2 .
∑
|n|�|k|

0≤k1≤|n+k|

〈k〉2s−6+4b−2s1

〈k1〉2+2s1〈n〉2s0
. 〈k〉2s−6−2s1+4bφ2s0(k)

Note that S2 is bounded in k if s < min(s0 + 5
2 + s1 − 2b, 3 + s1 − 2b), and in particular, if

s ≤ min(s0 + 1 + 2s1, 3 + 2s1 − 2b).

In the case of S3, we have k1 ≥ |n+ k| & |k|. Using this we estimate

S3 .
∑
|n|�|k|

k1≥|n+k|

〈k〉2s−2−4s1

〈2k − k1〉2〈n〉2s0〈α(n2 − k2) + 2k1 − n− k〉2−2b

.
∑
|n|�|k|

〈k〉2s−2−4s1

〈n〉2s0〈α(n2 − k2) + 3k − n〉2−2b
.

The second inequality follows from part a) of Lemma 3.3. Note that

〈α(n2 − k2) + 3k − n〉 ∼ k2,

since |n| � |k|. Using this and then summing in n, we have

S3 . 〈k〉2s−6−4s1+4bφ2s0(k).

Note that this is also bounded in k if s ≤ min(s0 + 1 + 2s1, 3 + 2s1 − 2b).
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In the case of S4, we have k1 � |k|. Therefore

S4 .
∑

|n|,k1�|k|

〈k〉2s−2s0

〈k1〉4+4s1〈α(n2 − k2) + 2k1 − n− k〉2−2b

.
∑
k1�|k|

〈k〉2s−2s0

〈k1〉4+4s1
. 〈k〉2s−2s0−3−4s1 .

We used part c) of Lemma 3.3 in the second inequality.

In the case of S5, we have |n+ k − k1| . |n| and∣∣α(n2 − k2) + k1 + |k1 − n− k|
∣∣ = α(k2 − n2) +O(|n|) ∼ n2.

Thus, we estimate using part a) of Lemma 3.3

S5 .
∑

|n|�|k|,k1

〈k〉2s

〈k1〉2+2s1〈2k − k1〉2〈n〉2s0+2s1+4−4b
. 〈k〉2s−2s0−5−4s1+4b.

Note that to sum in n we need 2s0 + 2s1 + 4− 4b > 1, which holds under the conditions of

the proposition.

Case ii) 0 ≤ s1, max(s1,
s1
2 + 1

4) ≤ s0 ≤ s1 + 1.

We write the sum as∑
k1≥0, |n|&|k|

+
∑

|n|�|k|, 0≤k1�k2

+
∑

|n|�|k|, k1&k2

=: S1 + S2 + S3.

In the case of S1 we have

S1 .
∑

k1≥0, |n|&|k|

〈k〉2s−2s0

〈k1〉2+2s1〈2k − k1〉2〈α(n2 − k2) + k1 + |k1 − n− k|〉2−2b
. 〈k〉2s−2s0−2.

We obtained the second inequality by first summing in n using part c) of Lemma 3.3, and

then in k1 using part a) of the Lemma. Thus S1 is bounded in k if s ≤ s0 + 1.

In the case of S2, we have

〈α(n2 − k2) + k1 + |k1 − n− k|〉 & k2, and 〈k1〉〈n+ k − k1〉 & 〈n+ k〉 & 〈k〉.

Therefore,

S2 . 〈k〉2s−4+4b−2s1
∑

|n|�|k|, 0≤k1�k2

1
〈k1〉2〈2k − k1〉2〈n〉2s0

. 〈k〉2s−6+4b−2s1φ2s0(k).

Note that S2 is bounded in k if s ≤ min(s0 + 1, s1 + 3− 2b).
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Finally we estimate S3 as follows

S3 .
∑

|n|�|k|, k1&k2

〈k〉2s

〈k1〉4+4s1〈α(n2 − k2) + k1 + |k1 − n− k|〉2−2b

. 〈k〉2s−6−8s1
∑
n

1
〈α(n2 − k2) + k1 + |k1 − n− k|〉2−2b

. 〈k〉2s−6−8s1 .

In the last inequality we used part c) of Lemma 3.3. Note that this term is bounded in k

if s ≤ s0 + 1.

We now consider R1. By using Cauchy Schwarz, the convolution structure, and then

integrating in τ1, τ2 as in the previous case, it suffices to prove that

sup
k

∗∑
k1,k2

〈k〉2s〈k1〉−2s0〈k2〉−2s0〈k − k1 − k2〉−2s0 |k1 + k2|2

(αk2 − α(k − k1 − k2)2 − |k1 + k2|)2〈k2 − k2
1 + k2

2 − (k − k1 − k2)2〉2−2b
<∞.

Recalling (24), and using

〈k2 − k2
1 + k2

2 − (k − k1 − k2)2〉 ∼ 〈(k1 + k2)(k − k1)〉,

it suffices to prove that

sup
k

∗∑
k1,k2

〈k〉2s〈k1〉−2s0〈k2〉−2s0〈k − k1 − k2〉−2s0

〈2k − k1 − k2〉2〈(k1 + k2)(k − k1)〉2−2b
<∞.

Note that the contribution of the case k1 = k is

.
∑
k2

〈k〉2s−2s0

〈k − k2〉2〈k2〉4s0
. 〈k〉2s−2s0−min(2,4s0),

and hence it satisfies the claim. For k1 6= k (since we also have k1 + k2 6= 0 by nonresonant

condition), we have 〈(k1 + k2)(k − k1)〉 ∼ 〈k1 + k2〉〈k − k1〉. Also letting n = k1 + k2 it

suffices to consider the following sum:

∑
k1,n

〈k〉2s

〈2k − n〉2〈k − n〉2s0〈n〉2−2b〈n− k1〉2s0〈k1〉2s0〈k − k1〉2−2b

=
∑

|n−2k|> |k|
2
, k1

+
∑

|n−2k|≤ |k|
2
, k1

=: S1 + S2.

We have

S1 . 〈k〉2s−2
∑
n,k1

1
〈k − n〉2s0〈n〉2−2b〈n− k1〉2s0〈k1〉2s0〈k − k1〉2−2b

.
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Using max(〈k−n〉2s0 , 〈n−k1〉2s0) & 〈k−k1〉2s0 , and then part a) of Lemma 3.3 (recall that

2s0 + 2− 2b > 1), we have

S1 . 〈k〉2s−2
∑
n,k1

1
〈n〉2−2b min

(
〈k − n〉2s0 , 〈n− k1〉2s0

)
〈k1〉2s0〈k − k1〉2s0+2−2b

. 〈k〉2s−2
∑
k1

1
〈k1〉2s0〈k − k1〉2s0+2−2b

. 〈k〉2s−2−2s0 .

In the case of S2 we have

〈n〉, 〈k − n〉 & 〈k〉,

and hence

S2 . 〈k〉2s−2s0−2+2b
∑

|n−2k|≤ |k|
2
, k1

1
〈2k − n〉2〈n− k1〉2s0〈k1〉2s0〈k − k1〉2−2b

.

Note that

max(〈n− k1〉2s0 , 〈k1〉2s0) & 〈n〉2s0 ≥ 〈k〉2s0 .

Thus,

S2 . 〈k〉2s−4s0−2+2b
∑

|n−2k|≤ |k|
2
, k1

1
〈2k − n〉2 min(〈n− k1〉2s0 , 〈k1〉2s0)〈k − k1〉2−2b

.

Using part a) of Lemma 3.3 (noting that |n − k| & |k| and that 〈k〉−γφβ(k) = 〈k〉−βφγ(k)

if 0 < β, γ < 1), we obtain

S2 . 〈k〉2s−4s0−2+2b
∑
n

1
〈2k − n〉2

〈k〉−2+2bφ2s0(k) . 〈k〉2s−4s0−4+4bφ2s0(k).

Note that S2 is bounded in k if s ≤ s0 + min(1, 2s0).

5. Proof of Proposition 3.6

We first consider R3. By using Cauchy Schwarz, the convolution structure, and then

integrating in τ1, τ2 as in the proof of the previous proposition, it suffices to prove that

sup
j

∗∑
j1 6=0,j2

〈j〉2s|j|2〈j1〉−2s1〈j2〉−2s0〈j − j1 − j2〉−2s0∣∣|j| − α(j1 + j2)2 + α(j − j1 − j2)2
∣∣2〈|j| − |j1|+ α(j − j1 − j2)2 − αj2

2〉2−2b
<∞.

Recalling (25), it suffices to prove that∑
j1 6=0,j2

〈j〉2s〈j1〉−2s1〈j2〉−2s0〈j − j1 − j2〉−2s0

〈j − 2j1 − 2j2〉2〈|j| − |j1|+ α(j − j1 − j2)2 − αj2
2〉2−2b
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is bounded in j. Letting n = j − j1 − j2 and m = j2, we rewrite the sum as

(27)
∑
m,n

〈j〉2s〈j − n−m〉−2s1

〈2n− j〉2〈m〉2s0〈n〉2s0〈αn2 − αm2 + |j| − |j − n−m|+〉2−2b
.

We note that a similar argument gives us the following sum for R4:

(28)
∑
m,n

〈j〉2s〈j − n−m〉−2s1

〈2n− j〉2〈m〉2s0〈n〉2s0〈αn2 − αm2 − |j| − |j − n−m|+〉2−2b
.

We note that, by symmetry, if we can prove that

(29)
∑
m,n

〈j〉2s〈j − n−m〉−2s1

〈2n− j〉2〈m〉2s0〈n〉2s0〈αn2 − αm2 + j − |j − n−m|+〉2−2b

is bounded in j 6= 0, then the boundedness of (27) and (28) follow.

Case i) −1
2 < s1 < 0.

We rewrite (27) as∑
|n|∼|m|.|j|

+
∑

|n|∼|m|�|j|

+
∑
|n|�|m|
|j|≥|m+n|

+
∑
|n|�|m|
|j|≥|m+n|

+
∑
|n|�|m|
|j|≤|m+n|

+
∑
|n|�|m|
|j|≤|m+n|

=: S1+S2+S3+S4+S5+S6.

For S1 we have

S1 .
∑

|n|∼|m|.|j|

〈j〉2s−2s1

〈2n− j〉2〈n〉4s0〈j − |j − n−m|+ αn2 − αm2〉2−2b
. 〈j〉2s−2s1−min(2,4s0).

In the second inequality we first summed in m using part c) of Lemma 3.3, and then in n

using part a) of the lemma.

For S2 we have

S2 .
∑

|n|∼|m|�|j|

〈j〉2s

〈n〉2+4s0+2s1〈j − |j − n−m|+ αn2 − αm2〉2−2b
. 〈j〉2s−2s1−4s0−1.

Again, we first summed in m using part c) of Lemma 3.3.

In the case of S3 we have |n| � |m| . |j|, and hence

S3 .
∑

|n|�|m|.|j|

〈j〉2s−2s1−2

〈n〉4s0〈j − |j − n−m|+ αn2 − αm2〉2−2b

.
∑
|n|.|j|

〈j〉2s−2s1−2

〈n〉4s0
. 〈j〉2s−2s1−2φ4s0(j) . 〈j〉2s−2s1−min(2,4s0).
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In the case of S4 we have

〈2n− j〉+ 〈j − |j − n−m|+ αn2 − αm2〉 & n2.

Since 〈2n− j〉 & n2 implies that 〈2n− j〉 & 〈j〉, we have

1
〈2n− j〉2〈j − |j − n−m|+ αn2 − αm2〉2−2b

.
1

〈j〉2〈j − |j − n−m|+ αn2 − αm2〉2−2b
+

1
〈2n− j〉2〈n〉4−4b

.

Therefore we estimate

S4 .
∑

|m|�|n|.|j|

〈j〉2s−2s1−2

〈m〉4s0〈j − |j − n−m|+ αn2 − αm2〉2−2b

+
∑

|m|�|n|.|j|

〈j〉2s−2s1

〈2n− j〉2〈n〉2s0+4−4b〈m〉2s0
.

The first line above can be estimated as in S3 switching the roles of n and m. To estimate

the second line first sum in n using part a) of Lemma 3.3, and then in m to obtain

. 〈j〉2s−2s1−min(2,2s0+4−4b)φ2s0(j) . 〈j〉2s−2s1−min(2,4s0).

In the case of S5, we have

〈j − |j − n−m|+ αn2 − αm2〉 ∼ 〈m〉2, |m| & |j|.

Therefore, noting that 2s0 + 2s1 + 4− 4b > 1, we have

S5 .
∑
|n|�|m|

〈j〉2s

〈2n− j〉2〈n〉2s0〈m〉2s0+2s1+4−4b

.
∑
n

〈j〉2s

〈2n− j〉2〈n〉4s0+2s1+3−4b
. 〈j〉2s−min(2,4s0+2s1+3−4b).

In the case of S6, we have

(30) 〈j − |j − n−m|+ αn2 − αm2〉 ∼ 〈n〉2, |n| & |j|.

Therefore,

S6 .
∑

|m|�|n|&|j|

〈j〉2s

〈2n− j〉2〈n〉2s0+2s1+4−4b〈m〉2s0
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.
∑
|n|&|j|

〈j〉2sφ2s0(n)
〈2n− j〉2〈n〉2s0+2s1+4−4b

. 〈j〉2s−2s0−2s1−4+4bφ2s0(j).

In the last inequality we used |n| & |j| and then summed in n.

Case ii) s1 ≥ 0.

We rewrite (27) as ∑
|n|.|m|

+
∑

|m|�|n|�|j|

+
∑

|m|�|n|&|j|

=: S1 + S2 + S3.

In the case of S1, we have |j| ≤ |j − n−m|+ |m+ n| . |j − n−m|+ |m|, and hence

〈j − n−m〉〈m〉 & 〈j〉.

Using this and noting that s0 ≥ s1, we have

S1 .
∑
|n|.|m|

〈j〉2s−2s1

〈2n− j〉2〈n〉4s0−2s1〈j − |j − n−m|+ αn2 − αm2〉2−2b

. 〈j〉2s−2s1−min(2,4s0−2s1).

In the last inequality we summed in m using part c) of Lemma 3.3 and then in n using part

a) of the lemma.

In the case of S2 we have

S2 .
∑

|m|�|n|�|j|

〈j〉2s−2−2s1

〈m〉4s0〈j − |j − n−m|+ αn2 − αm2〉2−2b
. 〈j〉2s−2−2s1φ4s0(j).

Note that in the case of S3 we have (30). Therefore

S3 .
∑

|m|�|n|&|j|

〈j〉2s

〈2n− j〉2〈n〉2s0+4−4b〈m〉2s0〈j − n−m〉2s1
.

If s0 + s1 > 1/2, we sum in m and then in n using part a) of Lemma 3.3 to obtain

S3 .
∑
|n|&|j|

〈j〉2s−2s0−4+4b

〈2n− j〉2〈j − n〉2s1+min(0,2s0−1)− . 〈j〉
2s−2s0−4+4b−min(2,2s1,2s1+2s0−1)+.

If s0 + s1 ∈ (0, 1/2], we have

S3 .
∑
|n|&|j|

〈j〉2s〈n〉1−2s0−2s1+

〈2n− j〉2〈n〉2s0+4−4b
. 〈j〉2s−4s0−2s1−3+4b+.

To estimate the second line



26 M. B. ERDOĞAN AND N. TZIRAKIS

Note that each term above is bounded in j if s ≤ s1 + min(1, 2s0 − s1).

6. Existence of Global Attractor

In this section we prove Theorem 2.8. As in the previous sections we drop the ‘±’ signs

and work with the system:

(31)


(i∂t + α∂2

x + iγ)u = nu+ f, x ∈ T, t ∈ [−T, T ],

(i∂t − d+ iγ)n = d(|u|2),

u(x, 0) = u0(x) ∈ H1(T), n(x, 0) = n0(x) ∈ L̇2(T).

We start with a smoothing estimate for (31) which implies the existence of a global

attractor:

Theorem 6.1. Consider the solution of (31) with initial data (u0, n0) ∈ H1 × L̇2. Then,

for 1
α 6∈ N, and for any a < 1, we have

u(t)− eiαt∂2
x−γtu0 ∈ C0

tH
1+a
x ([0,∞)× T),(32)

n(t)− e−itd−γtn0 ∈ C0
tH

a
x([0,∞)× T).(33)

Moreover,

(34) ‖u(t)−eiαt∂2
x−γtu0‖H1+a +‖n(t)−e−itd−γtn0‖Ha ≤ C

(
a, α, γ, ‖f‖H1 , ‖u0‖H1 , ‖n0‖L2

)
.

In the case α = 1 we have, for any a < 1,

(35)
∥∥∥u(t)− eit∂2

x−γtu0 + i

∫ t

0
e(i∂2

x−γ)(t−t′)ρ1dt
′
∥∥∥
H1+a

+
∥∥n(t)− e−itd−γtn0

∥∥
Ha

≤ C
(
a, γ, ‖f‖H1 , ‖u0‖H1 , ‖n0‖L2

)
,

where ρ1 is as in Proposition 3.2. The analogous continuity statements as in (32), (33) are

also valid.

Proof. Writing

u(x, t) =
∑
k

uk(t)eikx, n(x, t) =
∑
j 6=0

nj(t)eijx, f(x) =
∑
k

fk(t)eikx
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we obtain the following system for the Fourier coefficients:

(36)

 i∂tuk + (iγ − αk2)uk =
∑

k1+k2=k, k1 6=0 nk1uk2 + fk,

i∂tnj + (iγ − |j|)nj = |j|
∑

j1+j2=j uj1u−j2 .

We have the following proposition which follows from differentiation by parts as in Propo-

sition 3.2 by using the change of variables mj = nje
i|j|t+γt, and vk = uke

iαk2t+γt.

Proposition 6.2. The system (36) can be written in the following form:

(37) i∂t
[
eitαk

2+γtuk
]

+ ie−γt∂t
[
eitαk

2+2γtB1(n, u)k
]

=

eitαk
2+γt

[
ρ1(k) + fk +B1(n, f) +R1(u)(k̂, t) +R2(u, n)(k̂, t)

]
,

(38) i∂t
[
eit|j|+γtnj

]
+ ie−γt∂t

[
eit|j|+2γtB2(u)j

]
=

eit|j|+γt
[
ρ2(j) +B2(f, u) +B2(u, f) +R3(u, n)(ĵ, t) +R4(u, n)(ĵ, t)

]
.

where Bi, ρi, i = 1, 2, and Rj, j = 1, 2, 3, 4 are as in Proposition 3.2.

Integrating (37) from 0 to t, we obtain

uk(t)− e−itαk
2−γtuk(0) = −B1(n, u)k + e−itαk

2−γtB1(n0, u0)k+∫ t

0
e−(iαk2+γ)(t−t′)

[
− γB1(n, u)k − iρ1(k)− ifk − iB1(n, f)k

]
dt′

− i
∫ t

0
e−(iαk2+γ)(t−t′)[R1(u)(k̂, t′) +R2(u, n)(k̂, t′)

]
dt′.

First note that

(39)
∥∥∥∫ t

0
e−(iαk2+γ)(t−t′)fkdt

′
∥∥∥
H1+a

=
∥∥∥ fk
iαk2 + γ

(1− e−itαk2−γt)
∥∥∥
H1+a

. ‖f‖Ha−1 .

In the case 1
α 6∈ N, using (39), the estimates in Lemma 3.4 and Proposition 3.5 as above,

and also using the growth bound in (8), we obtain for any a < 1

‖u(t)−eiα∂2
xt−γtu0‖H1+a . ‖f‖Ha−1+

[
‖f‖H1+‖n(0)‖L2+‖u(0)‖H1

]2+
[
‖u‖

X
1, 12
δ

+‖n‖
Y

1, 12
δ

]3
.
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Using the local theory bound for X
1, 1

2
δ , Y

1, 1
2

δ norms for a δ = δ(‖n0‖L2 , ‖u0‖H1 , ‖f‖H1), we

obtain for t < δ

‖u(t)− eiα∂2
xt−γtu0‖H1+a . C(a, γ, ‖f‖H1 , ‖n0‖L2 + ‖u0‖H1).

In the rest of the proof the implicit constants depend on a, γ, ‖f‖H1 , ‖n0‖L2 + ‖u0‖H1 . Fix

t large, and δ as above. We have

‖u(jδ)− eiα∂2
xδ−γδu((j − 1)δ)‖H1+a . 1,

for any j ≤ t/δ. Using this we obtain (with J = t/δ)

‖u(Jδ)− eJδ(iα∂2
x−γ)u(0)‖H1+a ≤

J∑
j=1

‖e(J−j)δ(iα∂2
x−γ)u(jδ)− e(J−j+1)δ(iα∂2

x−γ)u((j − 1)δ)‖H1+a

=
J∑
j=1

e−(J−j)δγ‖u(jδ)− eδ(iα∂2
x−γ)u((j − 1)δ)‖H1+a .

J∑
j=1

e−(J−j)δγ .
1

1− e−δγ
.

In the case α = 1, we have to separate the resonant term in this argument. We have the

following inequality for t < δ∥∥∥u(t)− eiα∂2
xt−γtu0 + i

∫ t

0
e(iα∂2

x−γ)(t−t′)ρ1dt
′
∥∥∥
H1+a

. C(a, γ, ‖f‖H1 , ‖n0‖L2 + ‖u0‖H1).

Accordingly we have

∥∥∥u(Jδ)− eJδ(iα∂2
x−γ)u(0) +

∫ Jδ

0
e(iα∂2

x−γ)(Jδ−t′)ρ1dt
′
∥∥∥
H1+a

≤

J∑
j=1

∥∥∥e(J−j)δ(iα∂2
x−γ)

(
u(jδ)− eδ(iα∂2

x−γ)u((j − 1)δ) + i

∫ jδ

(j−1)δ
e(iα∂2

x−γ)(jδ−t′)ρ1dt
′
)∥∥∥

H1+a
=

J∑
j=1

e−(J−j)δγ
∥∥∥u(jδ)− eδ(iα∂2

x−γ)u((j − 1)δ) + i

∫ jδ

(j−1)δ
e(iα∂2

x−γ)(jδ−t′)ρ1dt
′
∥∥∥
H1+a

.

J∑
j=1

e−(J−j)δγ .
1

1− e−δγ
.

The corresponding inequalities for the wave part follow similarly. The only difference is

that we don’t need to separate the resonant term, since ρ2 ∈ H1 by Lemma 3.4.

This completes the proof of the global bound stated in Theorem 6.1. Finally the conti-

nuity in in H1 × L̇2 follows as in [9]. We omit the details. �
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Proof of Theorem 2.8. We start with the case 1
α 6∈ N. First of all note that the existence

of an absorbing set, B0 ⊂ H1 × L̇2, is immediate from (8). Second, we need to verify the

asymptotic compactness of the propagator Ut. It suffices to prove that for any sequence

tr →∞ and for any sequence (u0,r, n0,r) in B0, the sequence Utr(u0,r, n0,r) has a convergent

subsequence in H1 × L̇2.

To see this note that by Theorem 6.1, (if (u0, n0) ∈ B0)

Ut
(
u0, n0

)
=
(
eiαt∂

2
x−γtu0, e

−itd−γtn0

)
+Nt

(
u0, n0

)
where Nt

(
u0, n0

)
is in a ball in H1+a ×Ha with radius depending on a ∈ (0, 1), α, γ, and

‖f‖H1 . By Rellich’s theorem, {Nt

(
u0, n0

)
: t > 0, (u0, n0) ∈ B0} is precompact in H1 × L̇2.

Since ∥∥(eiαt∂2
x−γtu0, e

−itd−γtn0

)∥∥
H1×L̇2 . e

−γt → 0, as t→∞,

uniformly on B0, we conclude that {Utr
(
u0,r, n0,r

)
: r ∈ N} is precompact in H1 × L̇2.

Thus, Ut is asymptotically compact. This and Theorem A imply the existence of a global

attractor A ⊂ H1 × L̇2.

We now prove that the attractor set A is a compact subset of H1+a×Ha for any a ∈ (0, 1).

By Rellich’s theorem, it suffices to prove that for any a ∈ (0, 1), there exists a closed ball

Ba ⊂ H1+a ×Ha of radius C(a, α, γ, ‖f‖H1) such that A ⊂ Ba. By definition

A =
⋂
τ≥0

⋃
t≥τ

UtB0 =:
⋂
τ≥0

Vτ .

By Theorem 6.1 and the discussion above, Vτ is contained in a δτ neighborhood, Nτ , of a

ball Ba in H1 × L̇2 whose radius depends only on a, α, γ, ‖f‖H1 , and where δτ → 0 as τ

tends to infinity. Since Ba is a compact subset of H1 × L̇2, we have

A =
⋂
τ≥0

Vτ ⊂
⋂
τ>0

Nτ = Ba.

Now consider the case 1
α ∈ N. For simplicity, we take α = 1. We have to be slightly more

careful in this case because of the contribution of the resonant term, ρ1, which is does not

belong to H1+a for any a > 0. Recall that, by Theorem 6.1, for (u0, n0) ∈ B0

(40) Ut
(
u0, n0

)
=
(
eiαt∂

2
x−γtu0, e

−itd−γtn0

)
+Nt

(
u0, n0

)
+ i
(∫ t

0
e(i∂2

x−γ)(t−t′)ρ1dt
′, 0
)
,
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where Nt

(
u0, n0

)
is in a ball in H1+a × Ha with radius depending on a ∈ (0, 1), γ, and

‖f‖H1 . Recall from Proposition 3.2, that the Fourier coefficients of ρ1 are

(ρ1)k = ρ1(n, u)k = n2k−sign(k)usign(k)−k, k 6= 0.

In light of the proof of the case 1
α 6∈ N above, it suffices to consider the contribution of the

resonant term under the assumption that (u0, n0) ∈ B0. Using (40), we write

(41) ρ1

(
n(t′), u(t′)

)
= ρ1

(
e−it

′d−γt′n0, u(t′)
)

+ ρ1

(
Nt′(n0), u(t′)

)
.

Now note that, by Lemma 3.4, we have∥∥ρ1(n, u)
∥∥
H1+a . ‖n‖Ha‖u‖H1 .

Using this with a = 0, we see that the contribution of the first summand in (41) to the

resonant term in (40) satisfies

∥∥∥∫ t

0
e(i∂2

x−γ)(t−t′)ρ1

(
e−it

′d−γt′n0, u(t′)
)
dt′
∥∥∥
H1
.
∫ t

0
e−γ(t−t′)‖e−it′d−γt′n0‖L2‖u(t′)‖H1dt′

≤ te−γtC(a, γ, ‖f‖H1),

which goes to zero uniformly in B0. Similarly, the contribution of the second summand in

(41) to the resonant term in (40) satisfies

∥∥∥∫ t

0
e(i∂2

x−γ)(t−t′)ρ1

(
Nt′(n0), u(t′)

)
dt′
∥∥∥
H1+a

.
∫ t

0
e−γ(t−t′)‖Nt′(n0)‖Ha‖u(t′)‖H1dt′

≤ C(a, γ, ‖f‖H1).

The rest of the proof is same as the case 1
α 6∈ N. �

7. Appendix

We prove Lemma 3.3. Note that, with m = k2− k1, we can rewrite the sum in part a) as∑
n

1
〈n〉β〈n−m〉γ

.

For |n| < |m|/2, we estimate the sum by∑
|n|<|m|/2

1
〈n〉β〈m〉γ

≤ 〈m〉−γφβ(m).
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For |n| > 2|m|, we estimate by∑
|n|>2|m|

1
〈n〉β+γ

. 〈m〉1−β−γ . 〈m〉−γφβ(m).

Finally for |n| ∼ |m|, we estimate by∑
|n|∼|m|

1
〈m〉β〈n−m〉γ

. 〈m〉−βφγ(m) . 〈m〉−γφβ(m).

The last inequality follows from the definition of φβ and the hypothesis β ≥ γ.

The part b) follows from part a). To obtain part c), write

|n2 + c1n+ c2| = |(n+ z1)(n+ z2)| ≥ |n+ x1||n+ x2|

where xi is the real part of zi. The contribution of the terms |n+ x1| < 1 or |n+ x2| < 1 is

. 1. Therefore, we estimate the sum in part c) by

. 1 +
∑
n

1
〈n+ x1〉β〈n+ x2〉β

. 1

by part a).
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