RESTRICTING FOURIER TRANSFORMS OF MEASURES TO CURVES IN \mathbb{R}^{2}

M. BURAK ERDOGAN DANIEL M. OBERLIN

Abstract

We establish estimates for restrictions to certain curves in \mathbb{R}^{2} of the Fourier transforms of some fractal measures.

1. Introduction

The starting point for this note was the following observation: if μ is a compactly supported nonnegative Borel measure on \mathbb{R}^{2} which, for some $\alpha>3 / 2$, is α-dimensional in the sense that

$$
\begin{equation*}
\mu(B(y, r)) \lesssim r^{\alpha} \tag{1.1}
\end{equation*}
$$

for $y \in \mathbb{R}^{2}$ and $r>0$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left|\widehat{\mu}\left(t, t^{2}\right)\right|^{2} d t<\infty \tag{1.2}
\end{equation*}
$$

The proof is easy: writing $d \lambda$ for the measure given by $d t$ on the curve $\left(t, t^{2}\right)$, we see that

$$
\begin{align*}
& \int_{0}^{\infty}\left|\widehat{\mu}\left(t, t^{2}\right)\right|^{2} d t=\iiint e^{-2 \pi i\left(t, t^{2}\right) \cdot(x-y)} d \mu(x) d \mu(y) d t= \tag{1.3}\\
& \quad \iint \widehat{\lambda}(x-y) d \mu(x) d \mu(y) \lesssim \iint\left|x_{2}-y_{2}\right|^{-1 / 2} d \mu(x) d \mu(y)
\end{align*}
$$

where we put $x=\left(x_{1}, x_{2}\right)$ if $x \in \mathbb{R}^{2}$ and the inequality comes from the van der Corput estimate $|\widehat{\lambda}(x)| \lesssim\left|x_{2}\right|^{-1 / 2}$. For fixed y, the compact support of μ implies that

$$
\int\left|x_{2}-y_{2}\right|^{-1 / 2} d \mu(x) \lesssim \sum_{j=0}^{\infty} 2^{j / 2} \mu\left(\left\{x:\left|x_{2}-y_{2}\right| \leq 2^{-j}\right\}\right) \lesssim \sum_{j=0}^{\infty} 2^{j / 2} 2^{j} 2^{-j \alpha}
$$

since $\left\{x:\left|x_{2}-y_{2}\right| \leq 2^{-j}\right\}$ can be covered by $\lesssim 2^{j}$ balls of radius 2^{-j}. Clearly the last sum is finite if $\alpha>3 / 2$, and then (1.3) is finite since μ is a finite measure.

[^0]The simplemindedness of this argument made it seem unlikely that the index $3 / 2$ is best possible, and the search for that best index was the motivation for this work. Our results here are the following theorems:

Theorem 1.1. Suppose $\phi \in C^{2}([1,2])$ satisfies the estimates

$$
\begin{equation*}
\phi^{\prime} \approx m, \phi^{\prime \prime} \approx m \tag{1.4}
\end{equation*}
$$

for some $m \geq 1$, and let $\gamma(t)=(t, \phi(t))$. Suppose μ is a nonnegative and compactly supported measure on \mathbb{R}^{2} which is α-dimensional in the sense that (1.1) holds. Then, for $\epsilon>0$,

$$
\begin{equation*}
\int_{1}^{2}|\widehat{\mu}(R \gamma(t))|^{2} d t \lesssim R^{-\alpha / 2+\epsilon} m^{1-\alpha} \tag{1.5}
\end{equation*}
$$

when $R \geq 2$. Here the implied constant in (1.5) depends only on α, ϵ, the implied constants in (1.1) and (1.4), and the diameter of the support of μ.

Theorem 1.2. Suppose μ is as in Theorem 1.1, $p>1$, and
(i) $-1<\gamma<\alpha p-\alpha / 2-p$ if $1<\alpha<2$,
(ii) $-1<\gamma<-1 / 2$ if $1 / 2<\alpha \leq 1$,
(iii) $-1<\gamma<\alpha-1$ if $0<\alpha \leq 1 / 2$.

Then

$$
\begin{equation*}
\int_{0}^{\infty}\left|\widehat{\mu}\left(t, t^{p}\right)\right|^{2} t^{\gamma} d t \leq C<\infty \tag{1.6}
\end{equation*}
$$

where C depends only on p, the implied constant in (1.1), and the diameter of the support of μ.

Theorem 1.3. If (1.6) holds for $p>1$ and $\alpha \in(0,2)$ with C as stated in Theorem 1.2, then
(i) $-1<\gamma \leq \alpha p-\alpha / 2-p$ if $1<\alpha<2$,
(ii) $-1<\gamma \leq-1 / 2$ if $1 / 2<\alpha \leq 1$,
(iii) $-1<\gamma \leq \alpha-1$ if $0<\alpha \leq 1 / 2$.

Here are some comments:
(a) Theorem 1.1 is a generalization of Theorem 1 in [7], which was reproved with a simpler argument in [1]. As described in $\S 2$, the proof of Theorem 1.1 is just an adaptation of ideas from [7] and [1].
(b) The examples which comprise the proof of Theorem 1.3 are similar in spirit to those in the proof of Proposition 3.2 in [7].
(c) If α_{0} is the infimum of the α 's for which (1.1) implies (1.2) whenever μ is compactly supported, it follows from Theorem 1.2 that $\alpha_{0} \leq 4 / 3$. Then the proof of Theorem 1.3 and a uniform boundedness argument together imply that $\alpha_{0}=4 / 3$.
(d) Analogs of Theorem 1.1 have been studied for hypersurfaces in \mathbb{R}^{d} and, particularly, for the sphere S^{d-1}. See, for example, [3], [4], [5], [6], [1], and [2].

The remainder of this note is organized as follows: the proof of Theorem 1.1 is in $\S 2$ and the proofs of Theorems 1.2 and 1.3 are in $\S 3$.

2. Proof of Theorem 1.1

As mentioned above, the proof is an adaptation of ideas from [7] and [1]. Specifically, with μ as in Theorem 1.1 and

$$
\Gamma_{R}=\{R \gamma(t): 1 \leq t \leq 2\}, \Gamma_{R, \delta}=\Gamma_{R}+B\left(0, R^{\delta}\right)
$$

for $R \geq 2$ and $\delta>0$, we will modify an uncertainty principle argument from [7] to show that (1.5) follows from the estimate

$$
\begin{equation*}
\int_{\Gamma_{R, \delta}}|\widehat{\mu}(y)|^{2} d y \lesssim R^{1-\alpha / 2+2 \delta} m^{2-\alpha} . \tag{2.1}
\end{equation*}
$$

We will then adapt a bilinear argument from [1] to prove (2.1).
So, arguing as in [7], if $\kappa \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ is equal to 1 on the support of μ, then

$$
\begin{align*}
& \int_{1}^{2}|\widehat{\mu}(R \gamma(t))|^{2} d t=\int_{1}^{2}\left|\int \widehat{\kappa}(R \gamma(t)-y) \widehat{\mu}(y) d y\right|^{2} d t \lesssim \tag{2.2}\\
& \iint_{1}^{2}|\widehat{\kappa}(R \gamma(t)-y)| d t|\widehat{\mu}(y)|^{2} d y
\end{align*}
$$

If $y=\left(y_{1}, y_{2}\right)$, then

$$
\begin{aligned}
\int_{1}^{2}|\widehat{\kappa}(R \gamma(t)-y)| d t \lesssim & \int_{1}^{2} \frac{1}{(1+|R \gamma(t)-y|)^{10}} d t \lesssim \\
& \frac{1}{\left(1+\operatorname{dist}\left(\Gamma_{R}, y\right)\right)^{8}} \int_{1}^{2} \frac{1}{\left(1+\left|R \phi(t)-y_{2}\right|\right)^{2}} d t .
\end{aligned}
$$

Estimating the last integral using the hypothesized lower bound on ϕ^{\prime}, we see from (2.2) that

$$
\begin{equation*}
\int_{1}^{2}|\widehat{\mu}(R \gamma(t))|^{2} d t \lesssim \frac{1}{R m} \int \frac{|\widehat{\mu}(y)|^{2}}{\left(1+\operatorname{dist}\left(\Gamma_{R}, y\right)\right)^{8}} d y \tag{2.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int \frac{|\widehat{\mu}(y)|^{2}}{\left(1+\operatorname{dist}\left(\Gamma_{R}, y\right)\right)^{8}} d y=\int_{\Gamma_{R, \epsilon / 2}}+\sum_{j=2}^{\infty} \int_{\Gamma_{R, j \epsilon / 2} \sim \Gamma_{R,(j-1) \epsilon / 2}} \lesssim \\
\int_{\Gamma_{R, \epsilon / 2}}|\widehat{\mu}(y)|^{2} d y+\sum_{j=2}^{\infty} R^{-8(j-1) \epsilon / 2} \int_{\Gamma_{R, j \epsilon / 2}}|\widehat{\mu}(y)|^{2} d y .
\end{aligned}
$$

Thus (1.5) follows from (2.1) and (2.3).
Turning to the proof of (2.1), we note that by duality (and the fact that μ is finite) it is enough to suppose that f, satisfying $\|f\|_{2}=1$, is supported on $\Gamma_{R, \delta}$ and then to establish the estimate

$$
\begin{equation*}
\int|\widehat{f}(y)|^{2} d \mu(y) \lesssim R^{1-\alpha / 2+2 \delta} m^{2-\alpha} \tag{2.4}
\end{equation*}
$$

The argument we will give differs from the proof of Theorem 3 in [1] only in certain technical details. But because those details are not always obvious, and for the convenience of any reader, we will give the complete proof.

For $y \in \mathbb{R}^{2}$, write y^{\prime} for the point on the curve Γ_{R} which is closest to y (if there are multiple candidates for y^{\prime}, choose the one with least first coordinate). Then $y^{\prime}=R \gamma\left(t^{\prime}\right)$ for some $t^{\prime} \in[1,2]$. For a dyadic interval $I \subset[1,2]$, define

$$
\Gamma_{R, \delta, I}=\left\{y \in \Gamma_{R, \delta}: t^{\prime} \in I\right\}, f_{I}=f \cdot \chi_{\Gamma_{R, \delta, I}}
$$

For dyadic intervals $I, J \subset[1,2]$, we write $I \sim J$ if I and J have the same length and are not adjacent but have adjacent parent intervals. The decomposition

$$
\begin{equation*}
[1,2] \times[1,2]=\bigcup_{n \geq 2}\left(\bigcup_{\substack{|I|=|J|=2^{-n} \\ I \sim J}}(I \times J)\right) \tag{2.5}
\end{equation*}
$$

leads to

$$
\begin{equation*}
\int|\widehat{f}(y)|^{2} d \mu(y) \leq \sum_{n \geq 2} \sum_{\substack{|I|=|J|=2^{-n} \\ I \sim J}} \int\left|\widehat{f}_{I}(y) \widehat{f_{J}}(y)\right| d \mu(y) \tag{2.6}
\end{equation*}
$$

Truncating (2.5) and (2.6) gives

$$
\begin{align*}
& \int|\widehat{f}(y)|^{2} d \mu(y) \leq \tag{2.7}\\
& \quad \sum_{4 \leq 2^{n} \leq R^{1 / 2}} \sum_{\substack{|I|=|J|=2^{-n} \\
I \sim J}} \int\left|\widehat{f}_{I}(y) \widehat{f_{J}}(y)\right| d \mu(y)+\sum_{I \in \mathcal{I}} \int\left|\widehat{f}_{I}(y)\right|^{2} d \mu(y)
\end{align*}
$$

where \mathcal{I} is a finitely overlapping set of dyadic intervals I with $|I| \approx R^{-1 / 2}$.
To estimate the integrals on the right hand side of (2.7), we begin with two geometric observations. The first of these is that if $I \subset[1,2]$ is an interval with length ℓ, then

$$
\Gamma_{R, I} \doteq\{R(t, \phi(t)): t \in I\}
$$

is contained in a rectangle D with side lengths $\lesssim R \ell m, R \ell^{2}$, which we will abbreviate by saying that D is a $(R \ell m) \times\left(R \ell^{2}\right)$ rectangle. (To see this, note that the since the sine of the angle between vectors $(1, M)$ and $(1, M+\kappa)$ is

$$
\frac{\kappa}{\sqrt{1+M^{2}} \sqrt{1+(M+\kappa)^{2}}}
$$

it follows from (1.4) that the angle between tangent vectors at the beginning and ending points of the curve $\Gamma_{R, I}$ is $\lesssim \ell / m$. Since the distance between these two points is $\lesssim R \ell m$, it is clear that $\Gamma_{R, I}$ is contained in a rectangle D of the stated dimensions.) Secondly, we observe that if $\ell \gtrsim R^{-1 / 2}$, then an R^{δ} neighborhood of an $(R \ell m) \times\left(R \ell^{2}\right)$ rectangle is contained in an $\left(R^{1+\delta} \ell m\right) \times$ $\left(R^{1+\delta} \ell^{2}\right)$ rectangle. It follows that if I has length $2^{-n} \gtrsim R^{-1 / 2}$, then the
support of f_{I} is contained in a rectangle D with dimensions $\left(R^{1+\delta} 2^{-n} m\right) \times$ $\left(R^{1+\delta} 2^{-2 n}\right)$.

The next lemma is part of Lemma 3.1 in [1] (the hypothesis $1 \leq \alpha \leq 2$ there is not necessary for the conclusion of that lemma). To state it, we introduce some notation: ϕ is a nonnegative Schwartz function such that $\phi(x)=1$ for x in the unit cube $Q, \phi(x)=0$ if $x \notin 2 Q$, and, for each $M>0$,

$$
|\widehat{\phi}| \leq C_{M} \sum_{j=1}^{\infty} 2^{-M j} \chi_{2^{j} Q}
$$

For a rectangle $D \subset \mathbb{R}^{2}, \phi_{D}$ will stand for $\phi \circ b$, where b is an affine mapping which takes D onto Q.

Lemma 2.1. Suppose that μ is a non-negative Borel measure on \mathbb{R}^{2} satisfying (1.1). Suppose D is a rectangle with dimensions $R_{2} \times R_{1}$, where $R_{2} \gtrsim R_{1}$, and let $D_{\text {dual }}$ be the dual of D centered at the origin. Then, if $\widetilde{\mu}(E)=\mu(-E)$,

$$
\begin{equation*}
\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(y) \lesssim R_{2}^{2-\alpha}, y \in \mathbb{R}^{2} \tag{2.8}
\end{equation*}
$$

and, if $K \gtrsim 1, y_{0} \in \mathbb{R}^{2}$, then

$$
\begin{equation*}
\int_{K \cdot D_{\text {dual }}}\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)\left(y_{0}+y\right) d y \lesssim K^{\alpha} R_{2}^{1-\alpha} R_{1}^{-1} \tag{2.9}
\end{equation*}
$$

Now if $I \in \mathcal{I}$ and $\operatorname{supp} f_{I} \subset D$ as above, the identity $\widehat{f_{I}}=\widehat{f_{I}} * \widehat{\phi_{D}}$ implies that

$$
\left|\widehat{f}_{I}\right| \leq\left(\left|\widehat{f}_{I}\right|^{2} *\left|\widehat{\phi_{D}}\right|\right)^{1 / 2}\left\|\widehat{\phi_{D}}\right\|_{1}^{1 / 2} \lesssim\left(\left|\widehat{f}_{I}\right|^{2} *\left|\widehat{\phi_{D}}\right|\right)^{1 / 2}
$$

and so

$$
\begin{align*}
& \int\left|\widehat{f}_{I}(y)\right|^{2} d \mu(y) \lesssim \int\left(\left|\widehat{f}_{I}\right|^{2} *\left|\widehat{\phi_{D}}\right|\right)(y) d \mu(y)= \tag{2.10}\\
& \int\left|\widehat{f_{I}}(y)\right|^{2}\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) d y \lesssim\left\|f_{I}\right\|_{2}^{2} R^{1-\alpha / 2+2 \delta} m^{2-\alpha}
\end{align*}
$$

where the last inequality follows from (2.8) and the fact that D has dimensions $\left(R^{1 / 2+\delta} m\right) \times R^{\delta}$ since $2^{-n} \approx R^{-1 / 2}$. Thus the estimate

$$
\begin{equation*}
\sum_{I \in \mathcal{I}} \int\left|\widehat{f}_{I}(y)\right|^{2} d \mu(y) \lesssim R^{1-\alpha / 2+2 \delta} m^{2-\alpha} \sum_{I \in \mathcal{I}}\left\|f_{I}\right\|_{2}^{2} \lesssim R^{1-\alpha / 2+2 \delta} m^{2-\alpha} \tag{2.11}
\end{equation*}
$$

follows from $\|f\|_{2}=1$ and the finite overlap of the intervals $I \in \mathcal{I}$ (which implies finite overlap for the supports of the $\left.f_{I}, I \in \mathcal{I}\right)$.

To bound the principal term of the right hand side of (2.7), fix n with $4 \leq 2^{n} \leq R^{1 / 2}$ and a pair I, J of dyadic intervals with $|I|=|J|=2^{-n}$ and $I \sim J$. Since $I \sim J$, the support of $f_{I} * f_{J}$ is contained in a rectangle D with dimensions $\left(R^{1+\delta} 2^{-n} m\right) \times\left(R^{1+\delta} 2^{-2 n}\right)$. For later reference, let v be a
unit vector in the direction of the longer side of D. As in (2.10),

$$
\begin{align*}
\int\left|\widehat{f_{I}}(y) \widehat{f_{J}}(y)\right| d \mu(y) \lesssim \int\left(\left|\widehat{f_{I}} \widehat{f_{J}}\right| *\left|\widehat{\phi_{D}}\right|\right)(y) d \mu(y)= \tag{2.12}\\
\int\left|\left|\widehat{\widehat{f}_{I}}(y) \widehat{f_{J}}(y)\right|\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) d y\right.
\end{align*}
$$

Now tile \mathbb{R}^{2} with rectangles P having exact dimensions $C \times\left(C 2^{-n} m^{-1}\right)$ for some large $C>0$ to be chosen later and having shorter axis in the direction of v. Let ψ be a fixed nonnegative Schwartz function satisfying $\psi(y)=1$ if $y \in Q, \widehat{\psi}(x)=0$ if $x \notin Q$, and

$$
\begin{equation*}
\psi \leq C_{M} \sum_{j=1}^{\infty} 2^{-M j} \chi_{2^{j} Q} \tag{2.13}
\end{equation*}
$$

Since $\sum_{P} \psi_{P}^{3} \approx 1$, it follows from (2.12) that if $f_{I, P}$ is defined by

$$
\widehat{f_{I, P}}=\psi_{P} \cdot \widehat{f_{I}}
$$

then

$$
\begin{align*}
& \int\left|\widehat{f_{I}}(y) \widehat{f_{J}}(y)\right| d \mu(y) \lesssim \tag{2.14}\\
& \sum_{P}\left(\int\left|\widehat{f_{I, P}}(y) \widehat{f_{J, P}}(y)\right|^{2} d y\right)^{1 / 2}\left(\int\left|\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) \psi_{P}(y)\right|^{2} d y\right)^{1 / 2}
\end{align*}
$$

To estimate the first integral in this sum, we begin by noting that the support of $f_{I, P}$ is contained in $\operatorname{supp}\left(f_{I}\right)+P_{\text {dual }}$, where $P_{\text {dual }}$ is a rectangle dual to P and centered at the origin. Let \widetilde{I} be the interval with the same center as I but lengthened by $2^{-n} / 10$ and let \widetilde{J} be defined similarly. Since $I \sim J$, it follows that $\operatorname{dist}(\widetilde{I}, \widetilde{J}) \geq 2^{-n} / 2$. Now the support of f_{I} is contained in $\Gamma_{R, I}+B\left(0, R^{\delta}\right)$ and $P_{\text {dual }}$ has dimensions $\left(m 2^{n} C^{-1}\right) \times C^{-1}$ with the longer direction at an angle $\lesssim 2^{-n} / m$ to any of the tangents to the curve $(t, \phi(t))$ for $t \in \widetilde{I}$ (or $t \in \widetilde{J}$). Recalling that $2^{n} \lesssim R^{1 / 2}$, one can check that, if C is large enough,

$$
\operatorname{supp}\left(f_{I, P}\right) \subset \Gamma_{R, \tilde{I}}+B\left(0, C R^{\delta}\right)
$$

and, similarly,

$$
\operatorname{supp}\left(f_{J, P}\right) \subset \Gamma_{R, \widetilde{J}}+B\left(0, C R^{\delta}\right)
$$

The following lemma will be proved at the end of this section:
Lemma 2.2. Suppose ϕ satisfies the estimates

$$
0<\phi^{\prime} \leq m_{1} \text { and } \phi^{\prime \prime} \geq m_{2}
$$

with $m_{1} \geq 1$ and

$$
\begin{equation*}
m_{1}, m_{2} \approx m \tag{2.15}
\end{equation*}
$$

Suppose that the closed intervals $\tilde{I}, \tilde{J} \subset[1,2]$ satisfy $\operatorname{dist}(\tilde{I}, \tilde{J}) \geq c 2^{-n}$. Then, for $\delta>0$ and $x \in \mathbb{R}^{2}$, there is the following estimate for the twodimensional Lebesgue measure of the intersection of translates of tubular neighborhoods of $\Gamma_{R, \tilde{I}}$ and $\Gamma_{R, \tilde{J}}$:

$$
\begin{equation*}
\left|x+\Gamma_{R, \tilde{I}}+B\left(0, C R^{\delta}\right) \cap \Gamma_{R, \tilde{J}}+B\left(0, C R^{\delta}\right)\right| \lesssim R^{2 \delta} 2^{n} m \tag{2.16}
\end{equation*}
$$

The implicit constant in (2.16) depends only on the implicit constants in (2.15) and the positive constants c and C.

It follows from Lemma 2.2 that for $x \in \mathbb{R}^{2}$ we have

$$
\begin{equation*}
\left|x+\operatorname{supp}\left(f_{I, P}\right) \cap \operatorname{supp}\left(f_{J, P}\right)\right| \lesssim R^{2 \delta} 2^{n} m \tag{2.17}
\end{equation*}
$$

Now

$$
\int\left|\widehat{f_{I, P}}(y) \widehat{f_{J, P}}(y)\right|^{2} d y=\int\left|\widetilde{f_{I, P}} * f_{J, P}(x)\right|^{2} d x
$$

and

$$
\begin{aligned}
\left|\widetilde{f_{I, P}} * f_{J, P}(x)\right| \leq & \int\left|f_{I, P}(w-x) f_{J, P}(w)\right| d w \leq \\
& \left|x+\operatorname{supp}\left(f_{I, P}\right) \cap \operatorname{supp}\left(f_{J, P}\right)\right|^{1 / 2}\left(\left|\widetilde{f_{I, P}}\right|^{2} *\left|f_{J, P}\right|^{2}(x)\right)^{1 / 2}
\end{aligned}
$$

Thus, by (2.17),

$$
\begin{align*}
\left(\int\left|\widehat{f_{I, P}}(y) \widehat{f_{J, P}}(y)\right|^{2} d y\right)^{1 / 2} \lesssim R^{\delta} 2^{n / 2} m^{1 / 2}(& \left.\int\left|\widetilde{f_{I, P}}\right|^{2} *\left|f_{J, P}\right|^{2}(x) d x\right)^{1 / 2}= \tag{2.18}\\
& R^{\delta} 2^{n / 2} m^{1 / 2}\left\|f_{I, P}\right\|_{2}\left\|f_{J, P}\right\|_{2}
\end{align*}
$$

To estimate the second integral in the sum (2.14) we use (2.13) to observe that

$$
\psi_{P} \lesssim \sum_{j=1}^{\infty} 2^{-M j} \chi_{2^{j} P}
$$

Thus

$$
\int\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) \psi_{P}(y) d y \lesssim \sum_{j=1}^{\infty} 2^{-M j} \int_{2^{j} P}\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) d y
$$

Noting that $2^{j} P \subset y_{P}+K D_{\text {dual }}$ for some $K \lesssim R^{1+\delta} 2^{-2 n+j}$ and some $y_{P} \in$ \mathbb{R}^{2}, we apply (2.9) to obtain

$$
\begin{aligned}
& \int\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) \psi_{P}(y) d y \lesssim \\
& \sum_{j=1}^{\infty} 2^{-M j}\left(R^{1+\delta} 2^{-2 n+j}\right)^{\alpha}\left(R^{1+\delta} 2^{-n} m\right)^{1-\alpha}\left(R^{1+\delta} 2^{-2 n}\right)^{-1} \lesssim 2^{-n(\alpha-1)} m^{1-\alpha}
\end{aligned}
$$

Since

$$
\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) \lesssim\left(R^{1+\delta} 2^{-n} m\right)^{2-\alpha}
$$

by (2.8) and since $\psi_{P}(y) \lesssim 1$, it follows that

$$
\begin{equation*}
\left(\int\left(\left(\widetilde{\mu} *\left|\widehat{\phi_{D}}\right|\right)(-y) \psi_{P}(y)\right)^{2} d y\right)^{1 / 2} \lesssim R^{1-\alpha / 2+\delta(1-\alpha / 2)} 2^{-n / 2} m^{3 / 2-\alpha} \tag{2.19}
\end{equation*}
$$

Now (2.18) and (2.19) imply, by (2.14), that

$$
\int\left|\widehat{f}_{I}(y) \widehat{f_{J}}(y)\right| d \mu(y) \lesssim R^{1-\alpha / 2+\delta(2-\alpha / 2)} m^{2-\alpha}\left(\sum_{P}\left\|f_{I, P}\right\|_{2}^{2}\right)^{1 / 2}\left(\sum_{P}\left\|f_{J, P}\right\|_{2}^{2}\right)^{1 / 2}
$$

Since

$$
\sum_{P}\left\|\widehat{f_{I, P}}\right\|_{2}^{2}=\int\left|\widehat{f_{I}}(y)\right|^{2} \sum_{P}\left|\psi_{P}(y)\right|^{2} d y
$$

it follows from $\sum_{P} \psi_{P}^{2} \lesssim 1$ that

$$
\int\left|\widehat{f_{I}}(y) \widehat{f_{J}}(y)\right| d \mu(y) \lesssim R^{1-\alpha / 2+\delta(2-\alpha / 2)} m^{2-\alpha}\left\|f_{I}\right\|_{2}\left\|f_{J}\right\|_{2}
$$

Thus

$$
\begin{align*}
& \sum_{\substack{|I|=|J|=2^{-n} \\
I \sim J}} \int\left|\widehat{f_{I}}(y) \widehat{f_{J}}(y)\right| d \mu(y) \lesssim \tag{2.20}\\
& R^{1-\alpha / 2+\delta(2-\alpha / 2)} m^{2-\alpha} \sum_{\substack{|I|=|J|=2^{-n} \\
I \sim J}}\left\|f_{I}\right\|_{2}\left\|f_{J}\right\|_{2} \lesssim \\
& R^{1-\alpha / 2+\delta(2-\alpha / 2)} m^{2-\alpha}\|f\|_{2}^{2} .
\end{align*}
$$

Now (2.4) follows from (2.7), (2.11), (2.20), and the fact that the first sum in (2.7) has $\lesssim \log R$ terms.

Here is the proof of Lemma 2.2:
Proof. Fix $t \in \tilde{I}, s \in \tilde{J}$ such that

$$
\begin{equation*}
x+R(t, \phi(t))+\overline{B\left(0, C R^{\delta}\right)} \cap R(s, \phi(s))+\overline{B\left(0, C R^{\delta}\right)} \neq \emptyset \tag{2.21}
\end{equation*}
$$

and such that t is minimal subject to (2.21). Without loss of generality, assume that $t<s$. Suppose that v and w satisfy
$x+R(t+w, \phi(t+w))+\overline{B\left(0, C R^{\delta}\right)} \cap R(s+v, \phi(s+v))+\overline{B\left(0, C R^{\delta}\right)} \neq \emptyset$.
We will begin by observing that

$$
\begin{equation*}
w \leq \frac{8 C 2^{n} R^{\delta-1} m_{1}}{c m_{2}} \tag{2.23}
\end{equation*}
$$

From (2.21) and (2.22) it follows that

$$
\begin{equation*}
|w-v|,|(\phi(s+v)-\phi(s))-(\phi(t+w)-\phi(t))| \leq 4 C R^{\delta-1} \tag{2.24}
\end{equation*}
$$

Now

$$
\begin{equation*}
(\phi(s+v)-\phi(s))-(\phi(t+w)-\phi(t))=\int_{t}^{t+w}\left(\phi^{\prime}(u+s-t)-\phi^{\prime}(u)\right) d u+e \tag{2.25}
\end{equation*}
$$

where the error term e satisfies $|e| \leq 4 C R^{\delta-1} m_{1}$ because of the first inequality in (2.24) and the bound on ϕ^{\prime}. Since $s-t \geq c 2^{-n}$, the lower bound on $\phi^{\prime \prime}$ shows that the integral in (2.25) exceeds $w c 2^{-n} m_{2}$. Thus if

$$
w c 2^{-n} m_{2}>8 C R^{\delta-1} m_{1}
$$

(that is, if (2.23) fails) then, since $m_{1} \geq 1,(2.25)$ exceeds $4 C R^{\delta-1}$, contradicting (2.24).

To see (2.16), define \tilde{t} by

$$
\tilde{t}=t+\frac{8 C 2^{n} R^{\delta-1} m_{1}}{c m_{2}}
$$

and note that by (2.23) the intersection in (2.16) is contained in a translate of

$$
\{R(u, \phi(u)): t \leq u \leq \tilde{t}\}+B\left(0, C R^{\delta}\right) \doteq \Gamma+B\left(0, C R^{\delta}\right)
$$

Using $\phi^{\prime} \lesssim m$, the length of the curve Γ is $\lesssim 2^{n} R^{\delta} m$. Thus Γ is contained in $\lesssim 2^{n} m$ balls of radius R^{δ}. This implies (2.16).

3. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2: First suppose $1<\alpha<2$. Choose $\epsilon>0$ such that $\gamma+2 \epsilon<\alpha(p-1 / 2)-p$. Then apply Theorem 1.1 with $\phi(t)=R^{p-1} t^{p}$ and $m=R^{p-1}$ to conclude that

$$
\int_{1}^{2}\left|\widehat{\mu}\left(R t,(R t)^{p}\right)\right|^{2} d t \lesssim R^{-\alpha / 2+\epsilon} R^{(p-1)(1-\alpha)}
$$

and so

$$
\int_{R}^{2 R}\left|\widehat{\mu}\left(t, t^{p}\right)\right|^{2} t^{\gamma} d t \lesssim R^{-\epsilon}
$$

Now (1.6) follows by taking $R=2^{n}$.
To deal with the remaining cases we note that if $d \nu$ is $d t$ on the curve $\left(t, R^{p-1} t^{p}\right), 1 \leq t \leq 2$, then there is the estimate $|\widehat{\nu}(\xi)| \lesssim|\xi|^{-1 / 2}$. It follows from Theorem 1 in [1] that

$$
\int_{1}^{2}\left|\widehat{\mu}\left(R t,(R t)^{p}\right)\right|^{2} d t \lesssim R^{-\min (\alpha, 1 / 2)}
$$

This implies the conclusions of Theorem 1.3 in cases (ii) and (iii) exactly as in the preceding paragraph.

Proof of Theorem 1.3: We begin by observing that if the conclusion (1.6) of Theorem 1.2 holds for $\alpha \in(0,2)$ with C depending only on the size of the support of the nonnegative measure μ and the implied constant in (1.1), then the same conclusion holds (with C replaced by $16 C$) for complex measures whose total variation measure $|\mu|$ satisfies (1.1).

We consider first the case $\alpha \in(1,2)$. Suppose R is large and positive. It is easy to check that the set

$$
\left\{\left(t, t^{p}\right): R \leq t \leq R+\sqrt{R}\right\}
$$

is contained in a rectangle D with (approximate) dimensions $1 \times R^{p-1 / 2}$. Let v be a unit vector in the direction of the long axis of D and c_{D} be the center of D. Also, denote the dual of D centered at the origin by $D_{\text {dual }}$. Note that $D_{\text {dual }}$ is a rectangle with dimensions $1 \times R^{1 / 2-p}$ with short axis in the direction v. Fix a function $\psi \in C_{c}^{\infty}$ supported in $D_{\text {dual }}$ such that $\widehat{\psi} \gtrsim R^{(p-1 / 2)(1-\alpha)}$ on D and $\|\psi\|_{\infty} \lesssim R^{(p-1 / 2)(2-\alpha)}$. Let $T \approx R^{(p-1 / 2)(\alpha-1)}$ be a natural number and define μ by

$$
\begin{equation*}
\mu(y) \doteq e^{2 \pi i y \cdot c_{D}} \sum_{k=1}^{T} \psi\left(y-k T^{-1} v\right) . \tag{3.1}
\end{equation*}
$$

It is easy to check that $|\mu|$ satisfies (1.1) independently of R. Also note that

$$
|\widehat{\mu}(x)| \gtrsim R^{(p-1 / 2)(1-\alpha)} \chi_{D}(x)\left|\sum_{k=1}^{T} e^{-2 \pi i \frac{k}{T} v \cdot\left(x-c_{D}\right)}\right| .
$$

Now if

$$
\left|\frac{1}{T} v \cdot\left(x-c_{D}\right)\right| \leq 1 / 4(\bmod 1)
$$

then we have

$$
\left|\sum_{k=1}^{T} e^{-2 \pi i \frac{k}{T} v \cdot\left(x-c_{D}\right)}\right| \gtrsim T
$$

Therefore there are $N \approx R^{p-1 / 2} / T \approx R^{(p-1 / 2)(2-\alpha)}$ subrectangles P_{1}, \ldots, P_{N} of D with dimensions $1 \times 1 / 4$ whose centers are in an arithmetic progression with distance T between the adjacent points such that

$$
|\widehat{\mu}(x)| \gtrsim R^{(p-1 / 2)(1-\alpha)} T \sum_{k=1}^{N} \chi_{P_{k}}(x) \approx \sum_{k=1}^{N} \chi_{P_{k}}(x)
$$

Using this we obtain

$$
\begin{aligned}
\int_{R}^{R+\sqrt{R}}\left|\widehat{\mu}\left(t, t^{p}\right)\right|^{2} t^{\gamma} d t & \gtrsim R^{\gamma} \int_{R}^{R+\sqrt{R}} \sum_{k=1}^{N} \chi_{P_{k}}\left(t, t^{p}\right) d t \\
& \gtrsim R^{\gamma} \frac{N}{R^{p-1}} \approx R^{\gamma-\alpha p+\alpha / 2+p} .
\end{aligned}
$$

This implies that $\gamma \leq \alpha p-\alpha / 2-p$ and so gives the conclusion (i) of Theorem 1.3.

The conclusion (ii) of Theorem 1.3 also follows from the examples just constructed: since the support of μ above is contained in a ball of radius ≈ 1, if $|\mu|$ satisfies (1.1) for some $\alpha>1$, then the same is certainly true for all $\alpha \in(0,1]$. Taking $\alpha=1+\delta$ for arbitrary $\delta>0$ gives $\gamma \leq-1 / 2$.

To conclude, suppose $\alpha \in(0,1 / 2)$ and $R>0$ is large. Let D be a rectangle with dimensions $R \times R^{p}$ which contains

$$
\left\{\left(t, t^{p}\right): R \leq t \leq 2 R\right\}
$$

and let v, C_{D}, and $D_{\text {dual }}$ be as above. Note that now $D_{\text {dual }}$ is a rectangle with dimensions $R^{-1} \times R^{-p}$ with short axis in the direction v. Fix a function $\psi \in$ C_{c}^{∞} supported in $D_{\text {dual }}$ and satisfying $\widehat{\psi} \gtrsim R^{-\alpha}$ on D and $\|\psi\|_{\infty} \lesssim R^{p+1-\alpha}$. Fix a natural number T with $T \approx R^{\alpha}$ and again define μ by (3.1). As before, $|\mu|$ satisfies (1.1) independently of R and there are $N \approx R^{p} / T \approx R^{p-\alpha}$ disjoint subrectangles P_{1}, \ldots, P_{N} of D of dimensions $1 \times 1 / 4$ such that

$$
|\widehat{\mu}(x)| \gtrsim R^{-\alpha} T \sum_{k=1}^{N} \chi_{P_{k}}(x) \approx \sum_{k=1}^{N} \chi_{P_{k}}(x) .
$$

As above, that leads to

$$
\begin{aligned}
\int_{R}^{2 R}\left|\widehat{\mu}\left(t, t^{p}\right)\right|^{2} t^{\gamma} d t & \gtrsim R^{\gamma} \int_{R}^{2 R} \sum_{k=1}^{N} \chi_{P_{k}}\left(t, t^{p}\right) d t \\
& \gtrsim R^{\gamma} \frac{N}{R^{p-1}} \approx R^{\gamma+p-\alpha-(p-1)} .
\end{aligned}
$$

This gives the conclusion (iii) of Theorem 1.3.

References

[1] M. Burak Erdoğan, A note on the Fourier transform of fractal measures, Math. Res. Lett. 11 (2004), 299-313.
[2] , A bilinear Fourier extension theorem and applications to the distance set problem, Int. Math. Res. Not. 23 (2005), 1411-1425.
[3] K.J. Falconer, On the Hausdorff dimension of distance sets, Mathematika 32 (1985), 206-212.
[4] P. Mattila, Spherical averages of measures with finite energy: dimension of intersections and distance sets, Mathematika 34 (1987), 207-228.
[5] P. Sjölin, Estimates of spherical averages of Fourier transforms and dimensions of sets, Mathematika 40 (1993), 322-330.
[6] _ Estimates of averages of Fourier transforms of measures with finite energy, Ann. Acad. Sci. Fenn. Math. 22 (1997), 227-236.
[7] T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547-567.
M. B. Erdoğan, Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: berdogan@math.uiuc.edu
D. M. Oberlin, Department of Mathematics, Florida State University, TalLAHASSEE, FL 32306

E-mail address: oberlin@math.fsu.edu

[^0]: Date: September, 2010.
 1991 Mathematics Subject Classification. 42B10, 28A12.
 Key words and phrases. Fourier transforms of fractal measures, Fourier restriction. The first author is partially supported by the NSF grant DMS-0900865.

