MIXED NORM ESTIMATES FOR CERTAIN GENERALIZED RADON TRANSFORMS

MICHAEL CHRIST AND M. BURAK ERDOĞAN

1. Introduction

In this paper we investigate the mapping properties in Lebesgue-type spaces of certain generalized Radon transforms defined by integration over curves.

Let X and Y be open subsets of $\mathbf{R}^{d}, d \geq 2$, and let Z be a smooth submanifold of $X \times Y \subset \mathbf{R}^{2 d}$ of dimension $d+1$. Assume that the projections $\pi_{1}: Z \rightarrow X$ and $\pi_{2}: Z \rightarrow Y$ are submersions at each point of Z. For each $y \in Y$, let

$$
\gamma_{y}=\{x \in X:(x, y) \in Z\}=\pi_{1} \pi_{2}^{-1}(y)
$$

In this case, γ_{y} are smooth curves in X which vary smoothly with $y \in Y$. For every $y \in Y$, choose a smooth, non-negative measure σ_{y} on γ_{y} which varies smoothly with y in the natural sense. A generalized Radon transform T (see e.g. $[2,11,13]$) is defined as an operator taking functions on X to functions on Y via

$$
T f(y)=\int_{\gamma_{y}} f d \sigma_{y}
$$

The adjoint of this operator has a similar form:

$$
T^{*} g(x)=\int_{\gamma_{x}^{*}} g d \sigma_{x}^{*}
$$

where

$$
\gamma_{x}^{*}=\{y:(x, y) \in Z\}=\pi_{2} \pi_{1}^{-1}(\{x\}) \subset Y
$$

and σ_{x}^{*} is a nonnegative measure on γ_{x}^{*} with a smooth density which varies smoothly with x.

Tao and Wright [14] have formulated and proved a nearly optimal characterization of the local $\left(L^{p}, L^{q}\right)$ mapping properties of these operators. We extend their result to the mixed-norm setting and obtain essentially optimal local mixed-norm inequalities for these operators, under one additional dimensional restriction. Previously this result was obtained for a model operator in $[15,7,5]$. See $[1,3,5,7,14,15]$ for various examples and prior work.

Date: 9/6/2005.
The second author was partially supported by the NSF grant DMS-0540084.

Mixed norms on Y. Throughout the entire discussion, X, Y will denote sufficiently small neighborhoods of x_{0}, y_{0} for some fixed point $\left(x_{0}, y_{0}\right) \in Z$. Let $\Pi: Y \rightarrow \mathbf{R}$ be a submersion such that the fibers $\Pi^{-1}(t)$ are transverse to the curves γ_{x}^{*}. This means that the restriction of Π to γ_{x}^{*} is a diffeomorphism for each $x \in X$. Choose coordinates so that $\Pi\left(y_{0}\right)=0$. Let λ_{t} be Lebesgue measure on the d-1-dimensional surface $\Pi^{-1}(t)$. To a function $f: Y \mapsto \mathbf{R}$ we associate the mixed norms

$$
\|f\|_{L^{q} L^{r}(Y)}=\|f\|_{q, r}:=\left[\int_{\mathbf{R}}\left[\int_{\Pi^{-1}(t)}|f(s)|^{r} d \lambda_{t}(s)\right]^{q / r} d t\right]^{1 / q} .
$$

The integral with respect to t is taken over a small neighborhood of the origin in \mathbf{R}; we may assume that this neighborhood is contained in $[-1,1]$. Here, and throughout this paper, t is restricted to lie in a one-dimensional manifold. This is not a natural restriction, but our analysis yields reasonably satisfactory results only in that special case.

We say that T is of strong mixed type (p, q, r) if T maps $L^{p}(X)$ to $L^{q} L^{r}(Y)$ boundedly. We are mainly interested in local estimates. We assume throughout the discussion that T is L^{p}-improving, which means that for each $p \in(1, \infty)$, there exists $q>p$ such that T maps $L^{p}(X)$ to $L^{q}(Y)$. See [6] and [13] for characterizations of this property.

Our theorem is a characterization of the exponents (p, q, r) for which T is bounded. Before we proceed let us record the simple facts about these exponents.
(i) Because of the transversality hypothesis described above, T is of strong mixed type (p, ∞, p) for all $p \in[1, \infty]$.
(ii) Since we are working in a bounded region, whenever T is of strong mixed type (p, q, r), it is also of strong mixed type (p_{1}, q_{1}, r_{1}) whenever $p_{1} \geq p, q_{1} \leq q$, and $r_{1} \leq r$.
(iii) Because of (i) and (ii), T is of strong mixed type (p, q, r) whenever $p \geq r$.
Two-parameter Carnot-Carathéodory Balls. Tao and Wright [14] related the set of all exponents (p, q) for which the operator T maps $L^{p}(X)$ to $L^{q}(Y)$ to the geometry of Z. To describe this relation, choose smooth nowhere-vanishing linearly independent real vector fields V_{1}, V_{2} on Z whose integral curves are the fibers of π_{1}, π_{2} respectively. Equivalently, at each point $z \in Z, V_{j}$ spans the nullspace of $D \pi_{j}$, for $j=1,2$. The L^{p}-improving property is equivalent to V_{1}, V_{2} satisfying the bracket condition, i.e., V_{1} and V_{2} together with their iterated commutators span the tangent space to Z at each point in Z [6].

Definition 1. Let $z_{0} \in Z$ and $0<\delta_{1}, \delta_{2} \ll 1$. The two-parameter CarnotCarathéodory ball $B\left(z_{0}, \delta_{1}, \delta_{2}\right)$ consists of all the points $z \in Z$ such that there exists an absolutely continuous function $\varphi:[0,1] \rightarrow Z$ satisfying
(i) $\varphi(0)=z_{0}, \varphi(1)=z$
(ii) for almost every $t \in[0,1]$

$$
\varphi^{\prime}(t)=a_{1}(t) V_{1}(\varphi(t))+a_{2}(t) V_{2}(\varphi(t))
$$

with $\left|a_{1}(t)\right|<\delta_{1},\left|a_{2}(t)\right|<\delta_{2}$.
The metric properties of Carnot-Carathéodory balls were studied extensively in [12]. The discussion there is phrased in terms of the one-parameter family of balls naturally associated to a family of vector fields satisfying the bracket condition. These balls depend on a center point, a radius r, and a family $\left\{W_{j}\right\}$ of vector fields. They can equivalently be viewed as depending on a center point and the family $\left\{r W_{j}\right\}$ of vector fields, with the radius redefined to be identically one. In these terms, the proofs in [12] go through more generally, for balls of radius one assigned to families of vector fields $\left\{U_{j}^{\alpha}: 1 \leq j \leq J\right\}$ satisfying the bracket condition for each parameter α, with appropriate uniformity as α varies. In particular, for the vector fields $\left\{\delta_{1} V_{1}, \delta_{2} V_{2}\right\}$, provided that $0<\delta_{1}, \delta_{2} \leq c_{0}$ for sufficiently small c_{0}, the conclusions of [12] hold uniformly in δ_{1}, δ_{2} under a supplementary hypothesis of weak comparability, which is discussed below. See $[14,3]$.

It will be convenient in our proof to parametrize the curves γ_{x}^{*} by t so that $\Pi\left(\gamma_{x}^{*}(t)\right) \equiv t$. With this parametrization, the measure σ_{x} on γ_{x}^{*} is equivalent to $d t$, uniformly in x. We rescale V_{1} if necessary so that for each $z \in Z$ and sufficiently small $s \in \mathbf{R}$

$$
\begin{equation*}
\Pi \pi_{2}\left(e^{s V_{1}} z\right)=\Pi \pi_{2}(z)+s \tag{1}
\end{equation*}
$$

Definition 2. Let $0<\theta \leq 1$, and let A be a positive constant. We say that $0<\delta_{1}, \delta_{2} \ll 1$ are (θ, A)-weakly comparable, and write $\delta_{1} \sim_{\theta, A} \delta_{2}$, if $\delta_{1} \leq A \delta_{2}^{\theta}$ and $\delta_{2} \leq A \delta_{1}^{\theta}$.

The following lemma collects basic facts about the balls $B\left(z, \delta_{1}, \delta_{2}\right)$.
Lemma 1. Let K be a compact subset of Z. Assume that $\delta_{1} \sim_{(\theta, A)} \delta_{2}$ are sufficiently small, and let $z \in K$. Then $B=B\left(z, \delta_{1}, \delta_{2}\right)$ satisfies
(i) $|B| \sim\left|B\left(z, 2 \delta_{1}, 2 \delta_{2}\right)\right|$,
(ii) $|B| \sim\left|\pi_{1}(B)\right| \delta_{1} \sim\left|\pi_{2}(B)\right| \delta_{2}$
(iii) $\left|\Pi\left(\pi_{2}(B)\right)\right| \sim \delta_{1}$,
(iv) $\left\|\chi_{\pi_{2}(B)}\right\|_{q^{\prime}, r^{\prime}} \sim|B|^{1-\frac{1}{r}} \delta_{1}^{\frac{1}{r}-\frac{1}{q}} \delta_{2}^{\frac{1}{r}-1}$,
(v)

$$
\frac{|B|}{\left|\pi_{1}(B)\right|^{\frac{1}{p}}\left\|\chi_{\pi_{2}(B)}\right\|_{q^{\prime}, r^{\prime}}} \sim|B|^{\frac{1}{r}-\frac{1}{p}} \delta_{1}^{\frac{1}{p}+\frac{1}{q}-\frac{1}{r}} \delta_{2}^{1-\frac{1}{r}}
$$

Here $1 \leq p, q, r \leq \infty$, and q^{\prime}, r^{\prime} are the exponents conjugate to q, r, respectively.

The notation $A \sim C$ means that the ratio A / C is bounded above and below by quantities depending on Z, θ, A, and the compact set K, but not on δ_{1}, δ_{2}. In the absence of weak comparability, the doubling property (i) fails
in general for two-parameter Carnot-Carathéodory balls associated to C^{∞} vector fields satisfying the bracket condition [3].

For a sketch of the proof of the lemma see $\S 4$ below.
Statement of results. Recall that T is said to be of restricted weak type (p, q) if for all Lebesgue measurable sets $E \subset X$ and $F \subset Y$

$$
\begin{equation*}
\left\langle T \chi_{E}, \chi_{F}\right\rangle \lesssim|E|^{1 / p}|F|^{1 / q^{\prime}} \tag{2}
\end{equation*}
$$

where q^{\prime} denotes the exponent conjugate to q. In our setup

$$
\begin{equation*}
\left\langle T \chi_{E}, \chi_{F}\right\rangle \approx\left|\pi_{1}^{-1}(E) \cap \pi_{2}^{-1}(F)\right|, \tag{3}
\end{equation*}
$$

where $|\cdot|$ denotes Lebesgue measure on Z. We test the inequality (2) on the Carnot-Carathéodory balls $B\left(z, \delta_{1}, \delta_{2}\right)$ under the restriction that $\delta_{1} \sim_{(\theta, A)}$ δ_{2}. Let $E=\pi_{1}\left(B\left(z, \delta_{1}, \delta_{2}\right)\right), F=\pi_{2}\left(B\left(z, \delta_{1}, \delta_{2}\right)\right)$. Using (3), Lemma 1 and restricting attention to the nontrivial case where $q>p$, the inequality (2) reads

$$
\begin{equation*}
\left|B\left(z, \delta_{1}, \delta_{2}\right)\right| \gtrsim \delta_{1}^{c_{1}} \delta_{2}^{c_{2}}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}=\frac{p^{-1}}{p^{-1}-q^{-1}}, \quad c_{2}=\frac{1-q^{-1}}{p^{-1}-q^{-1}} . \tag{5}
\end{equation*}
$$

Define

$$
\mathcal{C}_{\theta, A}(T):=\left\{\left(c_{1}, c_{2}\right): \inf \left(\frac{\left|B\left(z, \delta_{1}, \delta_{2}\right)\right|}{\delta_{1}^{c_{1}} \delta_{2}^{c_{2}}}\right)>0\right\}
$$

where the infemum is taken over all $z \in Z$ and over all pairs δ_{1}, δ_{2} that satisfy $\delta_{1} \sim_{(\theta, A)} \delta_{2}$. Define

$$
\mathcal{C}(T):=\cap_{0<\theta \leq 1} \cap_{A \geq 1} \mathcal{C}_{\theta, A}(T) .
$$

According to (4), (2) can not hold for (p, q) if the corresponding $\left(c_{1}, c_{2}\right)$ does not belong to $\mathcal{C}(T)$. Tao and Wright [14] proved that ${ }^{1}$ for all $\left(c_{1}, c_{2}\right)$ in the interior of $\mathcal{C}(T),(2)$ holds for the exponents (p, q) defined by (4).

In this note we extend this result to mixed norms. We say that T is of restricted weak mixed type (p, q, r) if for all $E \subset X$ and $F \subset Y$,

$$
\left\langle T \chi_{E}, \chi_{F}\right\rangle \lesssim|E|^{1 / p}\left\|\chi_{F}\right\|_{q^{\prime}, r^{\prime}}
$$

By interpolation, the strong mixed type estimates can be obtained from these inequalities, except for exponents corresponding to boundary points of $\mathcal{C}(T)$.

The two-parameter Carnot-Carathéodory balls defined above also dictate the allowed exponent triples (p, q, r) for mixed norm inequalities, under certain additional restrictions on the exponents p, q, r :

[^0]Definition 3. Let $P_{\theta, A}(T)$ be the set of all exponents (p, q, r) satisfying (i) $1 \leq p \leq q \leq r \leq \infty$,
(ii)

$$
\begin{equation*}
\sup _{z, \delta_{1}, \delta_{2}} \frac{\left|B\left(z, \delta_{1}, \delta_{2}\right)\right|}{\left|\pi_{1}\left(B\left(z, \delta_{1}, \delta_{2}\right)\right)\right|^{1 / p}\left\|\chi_{\pi_{2}\left(B\left(z, \delta_{1}, \delta_{2}\right)\right)}\right\|_{q^{\prime}, r^{\prime}}}<\infty \tag{6}
\end{equation*}
$$

where q^{\prime}, r^{\prime} are the conjugates of q, r respectively, and the supremum is taken over all $z \in Z$ and $\delta_{1} \sim_{\theta, A} \delta_{2}$.

Using Lemma 1 we can rewrite the second condition in the definition of $P_{\theta, A}(T)$ as in (4) with

$$
\begin{equation*}
c_{1}=\frac{p^{-1}+q^{-1}-r^{-1}}{p^{-1}-r^{-1}}, \quad c_{2}=\frac{1-r^{-1}}{p^{-1}-r^{-1}} . \tag{7}
\end{equation*}
$$

Define

$$
P(T):=\cap_{0<\theta \leq 1} \cap_{A \geq 1} P_{\theta, A}(T)=\left\{(p, q, r): r \geq q \geq p,\left(c_{1}, c_{2}\right) \in \mathcal{C}(T)\right\}
$$

We assume always that $r>p$, since otherwise the desired inequality holds automatically so long as π_{1}, π_{2} are submersions, as discussed above.

It is natural to conjecture that if $1 \leq p \leq q \leq r \leq \infty$, then T is of restricted weak mixed type (p, q, r) if and only if $(p, q, r) \in P(T)$; we prove this conjecture except at the endpoints. In an appendix we explain the presence of the additional restriction $p \leq q \leq r$.

Theorem 1. Let T be a generalized Radon transform of the class described above, and let $1 \leq p \leq q \leq r \leq \infty$. If (p, q, r) is in the interior of $P(T)$, then T maps $L^{p}(X)$ to $L^{q} L^{r}(Y)$ boundedly. Moreover, if $(p, q, r) \notin P(T)$, then T does not map $L^{p}(X)$ to $L^{q} L^{r}(Y)$ boundedly.

2. A brief account of [14].

Given $E \subset X$ and,$F \subset Y$, let

$$
\begin{equation*}
\alpha_{1}=\frac{\left\langle T \chi_{E}, \chi_{F}\right\rangle}{|E|}, \quad \alpha_{2}=\frac{\left\langle T \chi_{E}, \chi_{F}\right\rangle}{|F|} . \tag{8}
\end{equation*}
$$

(2) follows from an estimate of the form

$$
|\Omega|:=\left|\pi_{1}^{-1}(E) \cap \pi_{2}^{-1}(F)\right| \approx\left\langle T \chi_{E}, \chi_{F}\right\rangle \gtrsim \alpha_{1}^{c_{1}} \alpha_{2}^{c_{2}}
$$

where c_{1}, c_{2} are as in (5). Moreover, a loss of an arbitrarily small power of $\alpha_{1} \alpha_{2}$ is of no consequence since $\left(c_{1}, c_{2}\right)$ belongs to the interior of $\mathcal{C}(T)$. Throughout the remainder of the discussion we will denote

$$
\begin{equation*}
\Omega:=\pi_{1}^{-1}(E) \cap \pi_{2}^{-1}(F) . \tag{9}
\end{equation*}
$$

Let $\varepsilon>0$ be a small exponent to be specified near the end of the proof, and let C_{ε} be a large constant. All constants in the ensuing discussion depend on X, Y, Z, c_{1}, c_{2} and the quantities given as subscripts.

Definition 4. Let $S \subset[-1,1]$ be a measurable set of positive Lebesgue measure. We say that S is central with width $w>0$ if
(i) $S \subset\left[-C_{\varepsilon} w, C_{\varepsilon} w\right]$ and
(ii) $|I \cap S| \leq C_{\varepsilon}(|I| / w)^{\varepsilon}|S|$ for all intervals I.

Let Ω be a Lebesgue measurable subset of Z, having positive measure. We will assume throughout the discussion that $\pi_{j}(\Omega)$ has positive measure, for both $j=1,2$. Define

$$
\begin{gather*}
\alpha_{j}=\frac{|\Omega|}{\left|\pi_{j}(\Omega)\right|} \text { for } j=1,2 \tag{10}\\
\alpha:=\min \left(\alpha_{1}, \alpha_{2}\right) \tag{11}
\end{gather*}
$$

Fix any $\rho>0 ; \rho$ will eventually be chosen to be arbitrarily small at the conclusion of the proof.

Definition 5. Let $\Omega \subset Z$ and let α_{1}, α_{2} be as defined in (10). Let j be an integer. A j-subsheaf Ω^{\prime} of Ω, of width w_{j}, is a subset of Ω of measure $\geq C_{\rho}^{-1} \alpha^{\rho}|\Omega|$ such that for all $x \in \Omega^{\prime}$, the set

$$
\left\{|t| \ll 1: e^{t V_{j}}(x) \in \Omega^{\prime}\right\}
$$

is a central set of width w_{j} and measure $\geq C_{N, \varepsilon} \alpha^{C_{N} \varepsilon+C / N} \alpha_{j}$. Here $V_{j}=V_{1}$ of j is odd, and $V_{j}=V_{2}$ if j is even.

In [14] it is proved (see Corollary 8.3) that for any $\rho \in(0,1]$ there exists $C_{\rho}<\infty$ such that for any measurable set $\Omega \subset Z$ there exists a nested sequence of subsets of Ω

$$
\Omega_{0} \subset \Omega_{1} \subset \ldots \subset \Omega_{d+1} \subset \Omega
$$

such that: For each j, Ω_{j} is a j-sheaf of Ω with width w_{j},

$$
C_{\rho}^{-1} \alpha^{\rho} \delta_{j} \leq w_{j} \leq \delta_{j}
$$

where δ_{j} is a 2-periodic sequence (that is, $\delta_{j+2}=\delta_{j}$ for all $0 \leq j \leq d-1$) with the properties

$$
C_{\rho}^{-1} \alpha^{\rho} \alpha_{j} \leq \delta_{j} \leq 1
$$

and

$$
\delta_{1} \leq C_{\rho} \delta_{2}^{\rho}, \quad \delta_{2} \leq C_{\rho} \delta_{1}^{\rho}
$$

In particular, δ_{1}, δ_{2} are weakly comparable, even though α_{1}, α_{2} need not be; this ultimately explains why only balls with weakly comparable radii δ_{1}, δ_{2} need be taken into account in the hypothesis of our theorem.

Using this construction, it is proved [14] that there exists some ball $B\left(z, \delta_{1}, \delta_{2}\right)$ such that

$$
\begin{equation*}
\left|B\left(z, \delta_{1}, \delta_{2}\right) \cap \Omega\right| \geq c \alpha^{\varrho}\left(\frac{\alpha_{1}}{\delta_{1}}\right)^{\lfloor(d+2) / 2\rfloor}\left(\frac{\alpha_{2}}{\delta_{2}}\right)^{\lfloor(d+1) / 2\rfloor}\left|B\left(z, \delta_{1}, \delta_{2}\right)\right| \tag{12}
\end{equation*}
$$

where $\varrho>0$ can be made arbitrarily small by choosing ρ sufficiently small, and where $c>0$ depends on ϱ but not on $\Omega, \alpha_{j}, \delta_{j}$. This implies that for arbitrarily small $\varrho>0$

$$
\begin{equation*}
|\Omega| \gtrsim C_{\varrho} \alpha^{\varrho} \delta_{1}^{c_{1}} \delta_{2}^{c_{2}}\left(\frac{\alpha_{1}}{\delta_{1}}\right)^{\lfloor(d+2) / 2\rfloor}\left(\frac{\alpha_{2}}{\delta_{2}}\right)^{\lfloor(d+1) / 2\rfloor}, \tag{13}
\end{equation*}
$$

for all $\left(c_{1}, c_{2}\right)$ in the interior of $\mathcal{C}(T)$. This finishes the proof in the non mixed-norm case since ${ }^{2} c_{1}, c_{2} \geq d \geq\lfloor(d+2) / 2\rfloor,\lfloor(d+1) / 2\rfloor$. The roles of X and Y are interchangeable. Therefore there is the alternative bound

$$
\begin{equation*}
|\Omega| \gtrsim C_{\varrho} \alpha^{\varrho} \delta_{1}^{c_{1}} \delta_{2}^{c_{2}}\left(\frac{\alpha_{1}}{\delta_{1}}\right)^{\lfloor(d+1) / 2\rfloor}\left(\frac{\alpha_{2}}{\delta_{2}}\right)^{\lfloor(d+2) / 2\rfloor}, \tag{14}
\end{equation*}
$$

for all (c_{1}, c_{2}) in the interior of $\mathcal{C}(T)$.

3. Proof of Theorem 1.

The second conclusion of the theorem is immediate. If $(p, q, r) \notin P(T)$, then $(p, q, r) \notin P_{\theta, A}(T)$ for some θ, A. Therefore T can not be of mixed type (p, q, r).

For the first conclusion, it suffices to prove that for all (p, q, r) in the interior of $P(T)$ and for all $\eta>0, \beta>0$, and $F \subset Y$,

$$
\begin{equation*}
\left\langle T \chi_{E}, \chi_{F}\right\rangle \leq C_{p, q, r, \eta} \beta^{-\eta}|E|^{1 / p}\left\|\chi_{F}\right\|_{q^{\prime}, r^{\prime}}, \tag{15}
\end{equation*}
$$

where $E:=\left\{x \in X: \beta<T^{*} \chi_{F}(x) \leq 2 \beta\right\}$.
Let $\Omega:=\pi_{1}^{-1}(E) \cap \pi_{2}^{-1}(F)$. Note that

$$
\begin{equation*}
|\Omega| \approx\left\langle T \chi_{E}, \chi_{F}\right\rangle=\left\langle\chi_{E}, T^{*} \chi_{F}\right\rangle \approx \beta|E| . \tag{16}
\end{equation*}
$$

For each $x \in E$, let $\mathcal{F}(x):=\left\{t \in \mathbf{R}: \gamma_{x}^{*}(t) \in F\right\} \subset \Pi(F) \subset[-1,1]$. Note that $|\mathcal{F}(x)| \approx \beta$.

Let $\eta>0$ be a small constant to be specified at the end of the proof. Fix a small constant $c_{\eta}>0$. Let $I(x) \subset[-1,1]$ be a dyadic interval of minimal length so that

$$
\begin{equation*}
|I(x) \cap \mathcal{F}(x)| \geq c_{\eta}|I(x)|^{\eta}|\mathcal{F}(x)| ; \tag{17}
\end{equation*}
$$

we choose c_{η} to guarantee that either $I=[-1,0]$ or $I=[0,1]$ satisfies (17). No interval of length $<\left(c_{\eta}|\mathcal{F}(x)|\right)^{1 /(1-\eta)}$ can satisfy (17), so there must exist at least one dyadic interval of minimal length among all those satisfying the inequality.

This implies that for any dyadic subinterval $J \subset I(x)$,

$$
\begin{equation*}
|J \cap \mathcal{F}(x)| \leq \frac{|J|^{\eta}}{|I|^{\eta}}|I(x) \cap \mathcal{F}(x)| . \tag{18}
\end{equation*}
$$

Let

$$
E_{m, k}=\left\{x \in E:|I(x)| \approx 2^{m} \beta,|I(x) \cap \mathcal{F}(x)| \approx 2^{k}\right\} .
$$

[^1]Note that $\beta^{\eta /(1-\eta)} \lesssim 2^{m} \lesssim \beta^{-1}$ and $\beta^{1 /(1-\eta)} \lesssim 2^{k} \lesssim \beta$.
By the pigeonhole principle there exists a pair m, k such that $\tilde{E}=E_{m, k}$ satisfies

$$
\begin{equation*}
\left\langle T \chi_{E}, \chi_{F}\right\rangle \leq C_{\eta} \beta^{-\eta}\left\langle T \chi_{\tilde{E}}, \chi_{F}\right\rangle \tag{19}
\end{equation*}
$$

Choose one such pair, with which we work exclusively henceforth.
Partition \mathbf{R} into intervals I_{n}, each of length $C 2^{m} \beta$ where C is a sufficiently large fixed constant. Set

$$
\begin{gathered}
E_{n}=\left\{x \in \tilde{E}: I(x) \cap I_{n} \neq \emptyset\right\}, \\
F_{n}=F \cap \Pi^{-1}\left(I_{n-1} \cup I_{n} \cup I_{n+1}\right) .
\end{gathered}
$$

Note that

$$
\begin{equation*}
\left\langle T \chi_{\tilde{E}}, \chi_{F}\right\rangle \lesssim \sum_{n}\left\langle T \chi_{E_{n}}, \chi_{F_{n}}\right\rangle \tag{20}
\end{equation*}
$$

Let $\Omega^{n}:=\pi_{1}^{-1}\left(E_{n}\right) \cap \pi_{2}^{-1}\left(F_{n}\right)$. Then

$$
\begin{equation*}
2^{k}\left|E_{n}\right| \lesssim\left|\Omega^{n}\right| \leq \beta\left|E_{n}\right| \tag{21}
\end{equation*}
$$

by Fubini's theorem. For on one hand, $\left|\pi_{1}^{-1}(x)\right| \leq \beta$ for all $x \in E$. On the other hand, $2^{k} \sim|I(x) \cap \mathcal{F}(x)|$ and for $x \in E_{n}, I(x) \cap \mathcal{F}(x) \subset\left(I_{n-1} \cup I_{n} \cup\right.$ $\left.I_{n+1}\right) \cap \mathcal{F}(x) \subset \pi_{2}^{-1}\left(F_{n}\right)$. Using (18) with $I=I_{n-1} \cup I_{n} \cup I_{n+1}$, for each $x \in E_{n}$ and any dyadic interval J, we obtain

$$
\begin{equation*}
|J \cap \mathcal{F}(x)| \lesssim|J|^{\eta}\left(2^{m} \beta\right)^{-\eta} 2^{k} . \tag{22}
\end{equation*}
$$

Let $\alpha_{n, i}=\left|\Omega^{n}\right| /\left|\pi_{i}\left(\Omega^{n}\right)\right|, i=1,2$. Then

$$
\begin{equation*}
2^{k} \lesssim \alpha_{n, 1} \lesssim \beta \tag{23}
\end{equation*}
$$

by (21). Let $\alpha_{n}=\min \left(\alpha_{n, 1}, \alpha_{n, 2}\right)$.
The following lemma follows from a simple application of Hölder's inequality; see [5].
Lemma 2. Let $F \subset Y$. For $r \geq q$,

$$
\left\|\chi_{F}\right\|_{q^{\prime} r^{\prime}} \geq|F|^{1 / r^{\prime}}|\Pi(F)|^{1 / q^{\prime}-1 / r^{\prime}}
$$

We aim to prove that $\left\langle T \chi_{E_{n}}, \chi_{F_{n}}\right\rangle \lesssim\left|E_{n}\right|^{1 / p}\left\|\chi_{F_{n}}\right\|_{q^{\prime}, r^{\prime}}$. Via the preceding lemma, this would follow from

$$
\begin{equation*}
\left|\Omega^{n}\right| \approx\left\langle T \chi_{E_{n}}, \chi_{F_{n}}\right\rangle \gtrsim \alpha_{n, 1}^{\gamma_{1}} \alpha_{n, 2}^{\gamma_{2}}\left|\Pi\left(F_{n}\right)\right|^{\gamma_{3}} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=\frac{p^{-1}}{p^{-1}-r^{-1}}, \quad \gamma_{2}=\frac{1-r^{-1}}{p^{-1}-r^{-1}}, \quad \gamma_{3}=\frac{q^{-1}-r^{-1}}{p^{-1}-r^{-1}} \tag{25}
\end{equation*}
$$

Whereas the exponent $\frac{1}{q^{\prime}}-\frac{1}{r^{\prime}}$ in Lemma 2 was nonpositive, here all the exponents γ_{j} are nonnegative.

The construction of Tao and Wright [14] produces a nested sequence of subsets $\Omega_{0}^{n} \subset \Omega_{1}^{n} \subset \ldots \subset \Omega_{d+1}^{n} \subset \Omega^{n}$ satisfying: For each j, Ω_{j}^{n} is a j-sheaf of Ω^{n} with width w_{j},

$$
C_{\rho}^{-1} \alpha_{n}^{\rho} \delta_{j} \leq w_{j} \leq C_{\rho} \delta_{j}
$$

where δ_{j} is a 2 -periodic sequence with the property

$$
\begin{equation*}
C_{\rho}^{-1} \alpha_{n}^{\rho} \alpha_{n, j} \leq \delta_{j} \leq 1 \tag{26}
\end{equation*}
$$

and $\left|\Omega_{j}^{n}\right| \geq c_{\rho} \alpha_{n}^{\rho}\left|\Omega^{n}\right|$. Moreover, δ_{1}, δ_{2} are weakly comparable.
Now, we prove that the construction above guarantees a lower bound for δ_{1}. Indeed, let j be odd. Using (22), we have

$$
\begin{equation*}
\left|\Omega_{j}^{n}\right| \leq\left|E_{n}\right| \sup _{J, x}\left|J \cap F_{n}(x)\right| \leq\left|E_{n}\right| w_{j}^{\eta}\left(2^{m} \beta\right)^{-\eta} 2^{k} \tag{27}
\end{equation*}
$$

where the supremum is taken over all intervals J of length w_{j} and all points $x \in E_{n}$. Using (27), (21) and the fact that Ω_{j}^{n} is a j-sheaf of Ω^{n}, we get

$$
\begin{equation*}
c_{\rho} \alpha_{n}^{\rho} 2^{k}\left|E_{n}\right| \lesssim C_{\rho} \alpha_{n}^{\rho}\left|\Omega^{n}\right| \leq\left|\Omega_{j}^{n}\right| \leq\left|E_{n}\right| w_{j}^{\eta}\left(2^{m} \beta\right)^{-\eta} 2^{k} \tag{28}
\end{equation*}
$$

This implies that for odd j,

$$
\begin{equation*}
\delta_{1} \gtrsim w_{j} \gtrsim 2^{m} \beta C_{\rho}^{1 / \eta} \alpha_{n}^{\rho / \eta} \gtrsim\left|\Pi\left(F_{n}\right)\right| C_{\rho}^{1 / \eta} \alpha_{n}^{\rho / \eta} \tag{29}
\end{equation*}
$$

Using the fundamental information (14), we obtain

$$
\left|\Omega^{n}\right| \gtrsim \alpha_{n}^{\varrho} \alpha_{n}^{C \rho / \eta} \delta_{1}^{c_{1}} \delta_{2}^{c_{2}}\left(\frac{\alpha_{n, 1}}{\delta_{1}}\right)^{\lfloor(d+1) / 2\rfloor}\left(\frac{\alpha_{n, 2}}{\delta_{2}}\right)^{\lfloor(d+2) / 2\rfloor}
$$

for any $\left(c_{1}, c_{2}\right)$ belonging to the interior of $\mathcal{C}(T)$. Note that for $d \geq 2$ and for such $\left(c_{1}, c_{2}\right)$, we have $0 \leq \gamma_{3}<1 \leq c_{1}-\lfloor(d+1) / 2\rfloor$ and $c_{2}>\lfloor(d+2) / 2\rfloor$. Using this, (26) and (29), we obtain

$$
\left|\Omega^{n}\right| \gtrsim \alpha_{n}^{\varrho} \alpha_{n}^{C \rho / \eta} \delta_{1}^{\gamma_{3}} \alpha_{n, 1}^{c_{1}-\gamma_{3}} \alpha_{n, 2}^{c_{2}} \gtrsim \alpha_{n}^{\varrho} \alpha_{n}^{C \rho / \eta}\left|\Pi\left(F_{n}\right)\right|^{\gamma_{3}} \alpha_{n, 1}^{c_{1}-\gamma_{3}} \alpha_{n, 2}^{c_{2}}
$$

for all $\left(c_{1}, c_{2}\right)$ in the interior of $\mathcal{C}(T)$.
Given exponents $(p, q, r) \in P(T)$, define $\gamma_{1}, \gamma_{2}, \gamma_{3}$ by (25). Choose $\rho>0$, depending on η, and $\left(c_{1}, c_{2}\right)$ in the interior of $\mathcal{C}(T)$, so that

$$
\frac{C \rho}{\eta}+c_{1}-\gamma_{3}+\varrho \leq \gamma_{1}, \quad \frac{C \rho}{\eta}+c_{2}+\varrho \leq \gamma_{2}
$$

Therefore, since $\gamma_{3} \geq 0$ (which is a consequence of the assumptions that $r>p$ and $r \geq q$),

$$
\left|\Omega^{n}\right| \gtrsim \alpha_{n, 1}^{\gamma_{1}} \alpha_{n, 2}^{\gamma_{2}}\left|\Pi\left(F_{n}\right)\right|^{\gamma_{3}}
$$

and hence

$$
\left\langle T \chi_{E_{n}}, \chi_{F_{n}}\right\rangle \lesssim\left|E_{n}\right|^{1 / p}\left\|\chi_{F_{n}}\right\|_{q^{\prime}, r^{\prime}}
$$

Using this and then Hölder's inequality in (20) (here we use the assumption $q \geq p$), we have

$$
\begin{aligned}
\left\langle T \chi_{E}, \chi_{F}\right\rangle & \lesssim \beta^{-\eta} \sum_{n}\left\langle T \chi_{E_{n}}, \chi_{F_{n}}\right\rangle \\
& \lesssim \beta^{-\eta} \sum_{n}\left|E_{n}\right|^{1 / p}\left\|\chi_{F_{n}}\right\|_{q^{\prime}, r^{\prime}} \\
& \lesssim \beta^{-\eta}\left[\sum_{n}\left|E_{n}\right|\right]^{1 / p}\left[\sum_{n}\left\|\chi_{F_{n}}\right\|_{q^{\prime}, r^{\prime}}^{q^{\prime}}\right]^{1 / q^{\prime}} \\
& \leq \beta^{-\eta}|E|^{1 / p}\left\|\chi_{F}\right\|_{q^{\prime}, r^{\prime}} .
\end{aligned}
$$

In the last inequality we have used the bounded overlap property of the collections $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$. Since $\eta>0$ can be chosen to be arbitrarily small, this finishes the proof of Theorem 1.

4. Proof of Lemma 1

We refer the reader to [3] for the proof of (i) and (ii).
Let B be the ball $B\left(z_{0}, \delta_{1}, \delta_{2}\right)$. Note that $\left\{e^{s V_{1}} z_{0}:|s|<\delta_{1}\right\} \subset B$ and by (1), $\left|\Pi \pi_{2}\left(\left\{e^{s V_{1}} z_{0}:|s|<\delta_{1}\right\}\right)\right| \approx \delta_{1}$. Now, we prove that $\left|\Pi \pi_{2}(B)\right| \lesssim \delta_{1}$. Let $z \in B$ and let φ be a curve connecting z_{0} to z as in Definition 1. Let $\psi=\Pi \circ \pi_{2} \circ \varphi$. Since V_{2} is contained in the kernel of $D \pi_{2},\left|a_{1}(t)\right|<\delta_{1}$ and $\left|V_{1}\right| \lesssim 1$, we have

$$
\left|\psi^{\prime}(t)\right| \lesssim \delta_{1} .
$$

Therefore $\left|\Pi \pi_{2}(B)\right| \lesssim \delta_{1}$. This proves (iii).
We have actually shown that the 1-dimensional measure of $B\left(z_{0}, 2 \delta_{1}, 2 \delta_{2}\right) \cap$ $\pi_{1}^{-1}(x)$ is $\approx \delta_{1}$ for every $x \in \pi_{1}(B)$. This also proves (ii) for $j=1$. In fact it implies that if A is a subset of a k-dimensional smooth submanifold of X, then δ_{1} times the k-dimensional measure of A is comparable to the $k+1$ dimensional measure of $\pi_{1}^{-1}(A) \cap B$. The corresponding statement holds for $j=2$, as well.

To prove (iv), define $f\left(t, \delta_{1}, \delta_{2}\right)=\left|\pi_{2}^{-1} \Pi^{-1}(t) \cap B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right|$, where $|\cdot|$ signifies the d-dimensional measure of a subset of Z. To simplify notation we suppose that $\Pi\left(\pi_{2}\left(z_{0}\right)\right)=0$; this can be achieved by a change of coordinates. Note that if $A \subset B\left(z_{0}, \delta_{1}, \delta_{2}\right)$ then for $s<\delta_{1}, e^{s V_{1}} A \subset B\left(z_{0}, 2 \delta_{1}, 2 \delta_{2}\right)$. Choose $t_{0} \in\left[-\delta_{1}, \delta_{1}\right]$ so that $f\left(t_{0}, \delta_{1}, \delta_{2}\right)=\max _{|t| \leq \delta_{1}} f\left(t, \delta_{1}, \delta_{2}\right)$. Then

$$
\left|B\left(z_{0}, 2 \delta_{1}, 2 \delta_{2}\right)\right| \gtrsim \int_{|s| \leq \delta_{1}}\left|e^{s V_{1}} f\left(t_{0}\right)\right| d s \gtrsim \delta_{1} f\left(t_{0}\right) .
$$

Now $\left|B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right| \gtrsim\left|B\left(z_{0}, 2 \delta_{1}, 2 \delta_{2}\right)\right|$; the proof given by Nagel, Stein, and Wainger [12] of the volume doubling property carries over to two-parameter balls with (θ, A)-weakly comparable radii, with a bound depending on θ and on A but not on $\delta_{1}, \delta_{2}, z_{0}$. We conclude that $f(t) \lesssim\left|B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right| / \delta_{1}$ whenever $|t| \leq \delta_{1}$.

Similar reasoning shows that if $|t|,\left|t^{\prime}\right| \leq \delta_{1}$ then $f\left(t^{\prime}, \delta_{1}, \delta_{2}\right) \leq C f\left(t, 3 \delta_{1}, 3 \delta_{2}\right)$. Since $\Pi\left(\pi_{2}\left(B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right) \subset\left[-\delta_{1}, \delta_{1}\right]\right.$, there exists some $t^{\prime} \in\left[-\delta_{1}, \delta_{1}\right]$ for which $f\left(t^{\prime}, \delta_{1}, \delta_{2}\right) \gtrsim\left|B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right| / \delta_{1}$. By combining these two observations, we conclude the reverse inequality $f\left(t, 3 \delta_{1}, 3 \delta_{2}\right) \gtrsim\left|B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right| / \delta_{1}$ whenever $|t| \leq \delta_{1}$.

The lower bound for $\left\|\chi_{\pi_{2}(B)}\right\|_{q^{\prime}, r^{\prime}}$ in (iv) follows from this together with the observation that $f(t) \approx\left|\pi_{2}(f(t))\right| \delta_{2}$. The upper bound follows in the same way from the upper bound $f(t) \lesssim\left|B\left(z_{0}, \delta_{1}, \delta_{2}\right)\right| / \delta_{1}$.

Finally, conclusion (v) follows from (ii) and (iv).

5. On the hYpothesis $p \leq q \leq r$

One reason why the restriction $r \geq q \geq p$ in Theorem 1 is natural is as follows.

Proposition 3. Suppose that $\left|B\left(z, \delta_{1}, \delta_{2}\right)\right|$ is comparable to $\left|B\left(z^{\prime}, \delta_{1}, \delta_{2}\right)\right|$, uniformly for all z, z^{\prime} and all weakly comparable δ_{1}, δ_{2}. Then all valid mixed norm inequalities for T are implied by the conjectured inequalities. That is:
(i) If T is of restricted weak mixed type (p, q, r) with $r>p>q$, then $(p, p, r) \in P(T)$.
(ii) If T is of restricted weak mixed type (p, q, r) with $q>r>p$, then (p, q, r) is an interpolant between $(1, \infty, 1)$ and some $\left(p_{1}, q_{1}, r_{1}\right) \in P(T)$.

In case (i), the restricted weak mixed type bound for (p, p, r) implies that for (p, q, r) by Hölder's inequality, since we are working in a bounded region and $q<p$. In case (ii), the conclusion is that (p^{-1}, q^{-1}, r^{-1}) belongs to the line segment with endpoints $(1,0,1)$ and $\left(p_{1}^{-1}, q_{1}^{-1}, r_{1}^{-1}\right)$. Since any generalized Radon transform T is of strong type ($1, \infty, 1$), the restricted weak mixed type (p, q, r) inequality follows from the (p_{1}, q_{1}, r_{1}) inequality by interpolation.
Proof. (i) If $(p, p, r) \notin P(T)$ then there exist θ, A and a sequence of balls $B_{n}\left(z_{n}, \delta_{n, 1}, \delta_{n, 2}\right)$ with $\delta_{n, 1} \sim_{(\theta, A)} \delta_{n, 2}$ satisfying

$$
\left|B_{n}\right|^{\frac{1}{r}-\frac{1}{p}} \delta_{n, 1}^{\frac{2}{p}-\frac{1}{r}} \delta_{n, 2}^{1-\frac{1}{r}} \rightarrow \infty,
$$

as $n \rightarrow \infty$. Choose $N_{n} \approx \delta_{n, 1}^{-1}$ balls of size comparable to B_{n} with disjoint projections under $\Pi \circ \pi_{2}$; this is possible by Lemma 1 . Let U_{n} be the union of these balls. Note that $\left|\pi_{1}\left(U_{n}\right)\right| \lesssim N_{n}\left|\pi_{1}\left(B_{n}\right)\right|$.

$$
\begin{aligned}
\frac{\left|U_{n}\right|}{\left|\pi_{1}\left(U_{n}\right)\right|^{1 / p}\left\|\chi_{\pi_{2}\left(U_{n}\right)}\right\|_{q^{\prime}, r^{\prime}}} & \gtrsim \frac{N_{n}\left|B_{n}\right|}{\left[N_{n}\left|B_{n}\right|\right.} \frac{\left.\delta_{n, 1}\right]^{1 / p}\left[\frac{\left|B_{n}\right|}{\delta_{n, 1} \delta_{n, 2}}\right]^{1 / r^{\prime}} \delta_{n, 1}^{1 / q^{\prime}} N_{n}^{1 / q^{\prime}}}{} \\
& \approx\left(\left|B_{n}\right|^{\frac{1}{r}-\frac{1}{p}} \delta_{n, 1}^{\frac{2}{p}-\frac{1}{r}} \delta_{n, 2}^{1-\frac{1}{r}}\right)\left(N_{n} \delta_{n, 1}\right)^{1 / q-1 / p} \\
& \approx\left|B_{n}\right|^{\frac{1}{r}-\frac{1}{p}} \delta_{n, 1}^{\frac{2}{p}-\frac{1}{r}} \delta_{n, 2}^{1-\frac{1}{r}} \rightarrow \infty,
\end{aligned}
$$

as $n \rightarrow \infty$. Thus, T can not be of restricted weak mixed type (p, q, r).
(ii) For $s \in[0,1]$ define p_{1}, q_{1}, r_{1} by

$$
\frac{1}{p}=1-s+\frac{s}{p_{1}}, \quad \frac{1}{q}=\frac{s}{q_{1}}, \quad \frac{1}{r}=1-s+\frac{s}{r_{1}}
$$

A bit of algebra shows that $r_{1} \geq q_{1} \geq p_{1}$ if and only if $\frac{1}{q}+\frac{1}{p^{\prime}} \leq s \leq \frac{1}{q}+\frac{1}{r^{\prime}}$, and moreover that $0<\frac{1}{q}+\frac{1}{p^{\prime}} \leq \frac{1}{q}+\frac{1}{r^{\prime}}<1$ under our assumption that $q>r>p$. Thus it is possible to choose $s \in(0,1)$ so that $r_{1} \geq q_{1} \geq p_{1}$. Fix such a parameter s.

If $\left(p_{1}, q_{1}, r_{1}\right) \in P(T)$ then we have the conclusion of case (ii). Otherwise there exist θ, A and a sequence of balls $B_{n}=B_{n}\left(z_{n}, \delta_{n, 1}, \delta_{n, 2}\right)$ with $\delta_{n, 1} \sim{ }_{(\theta, A)} \delta_{n, 2}$ such that

$$
\left|B_{n}\right|^{\frac{1}{r_{1}}-\frac{1}{p_{1}}} \delta_{n, 1}^{\frac{1}{p_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}}} \delta_{n, 2}^{1-\frac{1}{r_{1}}} \rightarrow \infty
$$

Note that for these balls

$$
\begin{aligned}
\frac{\left|B_{n}\right|}{\left|\pi_{1}\left(B_{n}\right)\right|^{1 / p}\left\|\chi_{\pi_{2}\left(B_{n}\right)}\right\|_{q^{\prime}, r^{\prime}}} & \approx\left|B_{n}\right|^{\frac{1}{r}-\frac{1}{p}} \delta_{n, 1}^{\frac{1}{p}+\frac{1}{q}-\frac{1}{r}} \delta_{n, 2}^{1-\frac{1}{r}} \\
& =\left(\left|B_{n}\right|^{\frac{1}{r_{1}}-\frac{1}{p_{1}}} \delta_{n, 1}^{\frac{1}{p_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}}} \delta_{n, 2}^{1-\frac{1}{r_{1}}}\right)^{s} \rightarrow \infty
\end{aligned}
$$

Thus T can not be of restricted weak mixed type (p, q, r).
Case (ii) is valid for all operators T, without the hypothesis that balls of equal bi-radii have uniformly comparable measures.

References

[1] M. Christ, Convolution, curvature, and combinatorics. A case study, Internat. Math. Research Notices 19 (1998), 1033-1048.
[2] , Counting to L^{p}, Lecture notes for the Instructional conference on combinatorial aspects of mathematical analysis, ICMS, Edinburgh, April 1-2, 2002.
[3] _ , L^{p} bounds for one-dimensional generalized Radon transforms, preprint.
[4] , Quasi-extremals for a Radon-like transform, preprint.
[5] M. Christ and M. B. Erdoğan, Mixed norm estimates for a restricted X-ray transform, J. d'Analyse 87 (2002), 187-198.
[6] M. Christ, A. Nagel, E. M. Stein, S. Wainger, singular Radon transfoorms: Analysis and geometry, Ann. of Math. (2) 150 (1999), 489-577.
[7] M. B. Erdoğan, Mixed norm estimates for a restricted X-ray transform in \mathbf{R}^{4} and \mathbf{R}^{5}, Internat. Math. Research Notices 11 (2001), 575-600.
[8] A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, J. Reine Angew. Math. 455 (1994), 35-56.
[9] , Fourier integral operators with cusp singularities, Amer. Jour. Math. 120 (1998), 1077-1119.
[10] _ On X-ray transforms for rigid line complexes and integrals over curves in \mathbf{R}^{4}, Proc. Amer. Math. Soc. 127 (1999), 3533-3545.
[11] A. Greenleaf, A. Seeger, S. Wainger, Estimates for generalized Radon transforms in three and four dimensions, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), 243-254, Contemp. Math., 251, Amer. Math. Soc., Providence, RI, 2000.
[12] A. Nagel, E. Stein, S. Wainger, Balls and metrics defined by vector fields I. Basic properties, Acta. Math. 155 (1985), 103-147.
[13] A. Seeger, Radon transforms and finite type conditions, J. Amer. Math. Soc. 11 (1998), 869-897.
[14] T. Tao and J. Wright, L^{p} improving bounds for averages along curves, J. Amer. Math. Soc. 16 (2003), 605-638.
[15] T. Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), 661-698.

Department of Mathematics, University of California, Berkeley, CA 947203840

Department of Mathematics, University of Illinois, Urbana, IL 61801

[^0]: ${ }^{1}$ Tao and Wright defined the set $\mathcal{C}(T)$ differently. An analysis of the two-parameter balls along the lines of [12] establishes the equivalence of these two definitions.

[^1]: ${ }^{2}$ The bounds $c_{1}, c_{2} \geq d$ are a simple consequence of an equivalent definition of $\mathcal{C}(T)$ given in [14].

