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Abstract. An analog of the Falconer distance problem in vector spaces over finite fields asks for
the threshold α > 0 such that |∆(E)| & q whenever |E| & qα, where E ⊂ Fd

q , the d-dimensional

vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1)
2 +

· · · + (xd − yd)2 : x, y ∈ E}. The fourth listed author and Misha Rudnev ([20]) established the
threshold d+1

2
, and in [16] Misha Rudnev and the third, fourth and fifth authors of this paper

proved that this exponent is sharp in odd dimensions. In two dimensions we improve the exponent
to 4

3
, consistent with the corresponding exponent in Euclidean space obtained by Wolff ([31]).

The pinned distance set ∆y(E) = {(x1 − y1)
2 + · · · + (xd − yd)2 : x ∈ E} for a pin y ∈ E

has been studied in the Euclidean setting. Peres and Schlag ([25]) showed that if the Hausdorff
dimension of a set E is greater than d+1

2
then the Lebesgue measure of ∆y(E) is positive for almost

every pin y. In this paper we obtain the analogous result in the finite field setting. In addition,
the same result is shown to be true for the pinned dot product set Πy(E) = {x · y : x ∈ E}. Under
the additional assumption that the set E has cartesian product structure we improve the pinned

threshold for both distances and dot products to d2

2d−1
.

The pinned dot product result for cartesian products implies the following sum-product result.

Let A ⊂ Fq and z ∈ F∗q . If |A| ≥ q
d

2d−1 then there exists a subset A′ ⊂ A with |A′| & |A| such that
for every a1, . . . , ad−1 in A′ one has |a1A + a2A + · · · + ad−1A + zA| > q

2
, where ajA = {aja : a ∈

A}, j = 1, . . . , d− 1.
A generalization of the Falconer distance problem is determine the minimal α > 0 such that

E contains a congruent copy of every k dimensional simplex whenever |E| & qα. Here the authors
improve on known results (for k > 3) using Fourier analytic methods, showing that α may be taken
to be d+k

2
.
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1. Introduction

The classical Erdős distance problem asks for the minimal number of distinct distances deter-
mined by a finite point set in Rd, d ≥ 2. The continuous analog of this problem, called the Falconer
distance problem asks for the optimal threshold such that the set of distances determined by a
subset of Rd, d ≥ 2, of larger dimension has positive Lebesgue measure. It is conjectured that
a set of N points in Rd, d ≥ 2, determines ' N

2
d distances and, similarly, that a subset of Rd,

d ≥ 2, of Hausdorff dimension greater than d
2 determines a set of distances of positive Lebesgue

measure. Here, and throughout, X / Y means that for every ε > 0 there exists Cε > 0 such that
X ≤ CεN

εY . Similarly, X . Y means that there exists C > 0 such that X ≤ CY .
Neither problem is close to being completely solved. See [21] and [27], and the references

contained therein, on the latest developments on the Erdős distance problem. See [9] and the
references contained therein for the best known exponents for the Falconer distance problem.

In vector spaces over finite fields, one may define for E ⊂ Fd
q ,

∆(E) = {||x− y|| : x, y ∈ E},

where
‖x− y‖ = (x1 − y1)

2 + · · ·+ (xd − yd)
2,

and one may again ask for the smallest possible size of ∆(E) in terms of the size of E. While
|| · || is not a distance, in the sense of metric spaces, it is still a rigid invariant in the sense that if
||x−y|| = ||x′−y′||, there exists τ ∈ Fd

q and O ∈ SOd(Fq), the group of special orthogonal matrices,
such that x′ = Ox+ τ and y′ = Oy + τ .

There are several issues to contend with here. First, E may be the whole vector space, which
would result in the rather small size for the distance set:

|∆(E)| = |E|
1
d .

Another compelling consideration is that if q is a prime congruent to 1 (mod 4), then there
exists i ∈ Fq such that i2 = −1. This allows us to construct a set in F2

q ,

Z = {(t, it) : t ∈ Fq}

and one can readily check that
∆(Z) = {0}.

The first non-trivial result on the Erdős-Falconer distance problem in vector spaces over finite
fields is proved by Bourgain, Katz and Tao in [5]. The authors get around the first mentioned
obstruction by assuming that |E| . q2−ε for some ε > 0. They get around the second mentioned
obstruction by mandating that q is a prime ≡ 3 (mod 4). As a result they prove that

|∆(E)| & |E|
1
2
+δ,

where δ is a function of ε.
In [20] the fourth author along with M. Rudnev went after a distance set result for general

fields in arbitrary dimension with explicit exponents. In order to deal with the obstructions outlined
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above, they reformulated the question in analogy with the Falconer distance problem: how large
does E ⊂ Fd

q , d ≥ 2, need to be to ensure that ∆(E) contains a positive proportion of the elements

of Fq. They proved that if |E| ≥ 2q
d+1
2 , then ∆(E) = Fq directly in line with Falconer’s result

([10]) in Euclidean setting that for a set E with Hausdorff dimension greater than d+1
2 the distance

set is of positive measure. At first, it seemed reasonable that the exponent d+1
2 may be improvable,

in line with the Falconer distance conjecture described above. However, the third, fourth, and fifth
authors of this paper along with M. Rudnev discovered in [16] that the arithmetic of the problem
makes the exponent d+1

2 best possible in odd dimensions, at least in general fields. In even
dimensions it is still possible that the correct exponent is d

2 , in analogy with the Euclidean case.
In this paper the authors take a first step in this direction by showing that if |E| ⊂ F2

q satisfies

|E| ≥ q
4
3 then |∆(E)| ≥ cq. This is in line with Wolff’s result for the Falconer conjecture in the

plane which says that the Lebesgue measure of the set of distances determined by a subset of the
plane of Hausdorff dimension greater than 4

3 is positive.
In [25] Peres and Schlag studied the “pinned” distance sets ∆y(E) = {‖x − y‖ : x ∈ E} for

a “pin” y ∈ E. They showed that Falconer’s result ([10]) could be sharpened to show that if the
Hausdorff dimension of a set E is greater than d+1

2 then the Lebesgue measure of ∆y(E) is positive
for almost every pin y ∈ E. In this paper the authors obtain the analogous result in the finite
field setting. In addition, the authors show that this result holds for the pinned dot product sets
Πy(E) = {x · y : x ∈ E}

The example which shows that the d+1
2 is sharp in odd dimensions is very radial in nature

and this led the authors of this paper to consider classes of sets that possess a certain amount of
product structure. In d dimensions we show that for a positive proportion of pins one may obtain
a positive proportion of pinned distances for product sets, with the exponent d2

2d−1 in place of d+1
2 ,

improving an analog the exponent due to the second listed author ([9]) in Euclidean space which
holds for all sets. In the case of pinned dot product sets of subsets with product structure the same
result is shown to hold. This result gives as a direct corollary a result which lies squarely inside a
class of problems known as the sum-product problems. These problems deal with showing in the
context of a ring that in a variety of senses multiplicative structure is incompatible with additive
structure.

A classical result due to Furstenberg, Katznelson and Weiss ([11]) states that if E ⊂ R2 positive
upper Lebesgue density, then for any δ > 0, the δ-neighborhood of E contains a congruent copy of a
sufficiently large dilate of every three-point configuration. For arbitrary three-point configurations
it is not possible to replace the thickened set Eδ by E. This is due to Bourgain ([6]) who gave
an example of a degenerate triangle where all three vertices are on the same line whose large
dilates could not be placed in E. In the case of k-simplex, that is the k + 1 points spanning
a k-dimensional subspace, Bourgain ([6]) applied Fourier analytic techniques to prove that a set
E of positive upper Lebesgue density will always contain a sufficiently large dilate of every non-
degenerate k-point configuration where k < d. If k ≥ d, it is not currently known whether the
δ-neighborhood assumption is necessary.
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In the case of the integer lattice Zd this problem has been explored as well. Using Fourier
analytic methods Ákos Magyar proved ([23], [24]) that a set of positive density will contain an
congruent copy of every large dilate of a non-degenerate k-simplex where d > 2k + 4.

In combinatorics and geometric measure theory the study of k-simplices up to congruence may
be rephrased in terms of distances. By elementary linear algebra, asking whether a particular
translated and rotated copy of a k-simplex occurs in a set E is equivalent to asking whether the set
of
(
k+1
2

)
distances determined by that k + 1-point configuration is also determined by some k + 1

point subset of E. In the case of a 1-simplex this is equivalent to the already discussed Erdős and
Falconer distance problems.

In the case of vector spaces over finite fields one may then phrase the following generalization
of the Erdős-Falconer distance problem. How large does E need to be to ensure that E contains a
congruent copy of every or at least a positive proportion of all k-simplices? Observe that dilations
are not used because the lack of order in in a finite field makes the notion of a sufficiently large
dilation meaningless.

The first investigation into this was done by the third and forth listed authors in [15] (see
also [17]). It was shown that if a subset E of Fd

q , d >
(
k+1
2

)
is of such that |E| & q

k
k+1

d+ k
2 then E

contains a congruent copy of every k-simplices (as long as one is willing to ignore simplices with zero
distances). This was improved using graph theoretic methods by L. A. Vinh ([29]) who obtained
the same conclusion for E such that |E| & q

d−1
2

+k, d ≥ 2k. When the number of points is very close
to d these results are trivial. In the case of triangles in F2

q the third and forth listed authors along
with D. Covert and I. Uriarte-Tuero ([7]) showed that if E has density greater than ρ for some
Cq−1/2 ≤ ρ ≤ 1 with a sufficiently large constant C > 0, then the set of triangles determined by
E, up to congruence, has density greater than cρ. L. A. Vinh ([30]) has shown that for |E| & q

d+2
2

then the set of triangles, up to congruence, has density greater than c.
In this paper the authors show that for |E| & q

d+k
2 , d ≥ k then the set of k-simplices, up to

congruence, has density greater than c. We obtain a stronger result in the following situation.
Suppose that E is a subset of the d-dimensional sphere S where S = {x ∈ Fd

q : ‖x‖ = 1}. We show

that if |E| & q
d+k−1

2 then E contains a congruent copy of a positive proportion of all k-simplices.
The only meaningful sharpness example we have at this point is the Cartesian product of sub-

spaces. If q = p2, then there exists a subset of Fd
q of size exactly q

d
2 such that all the distances

among the vertices of a k-simplex are elements of Fp and thus a positive proportion of k-simplexes
cannot possibly be realized. On the other hand, in Rd, a conjecture due to Erdős and Purdy (see
[1] and [2] and the references contained therein) says that an n point set contains fewer than O(n

d
2 )

copies of a a k-simplex. The classical Lenz construction shows that this estimate would be best
possible. It follows that a n-point set determines at least Cnk+1− d

2 non-congruent k-simplexes.
The most ambitious conjecture one might be tempted to formulate based on these observations in
Fd

q is that E ⊂ Fd
q determines a positive proportion of all the k-simplexes, up to congruence, if

|E| & max
{
q

d
2 , q

k+1

k+1− d
2

}
.
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Unfortunately, as we pointed out above, this already fails in the case k = 1 where the exponent
d+1
2 is best possible in odd dimensions. We conjecture that in odd dimensions, the exponent d+k

2 ,
obtained in this paper, is sharp. In even dimensions, we believe the exponent d+k−1

2 to be best
possible.

2. Statement of Results

2.1. Wolff’s exponent in finite fields. Define

ME(q) =
q3d+1

|E|4
∑
t∈F∗q

σ2
E(t),

where
σE(t) =

∑
||m||=t

|Ê(m)|
2
.

In [20] the following result is given that gives us a lower bound on the size of the distance set
in terms of the upper bound on ME(q).

Theorem 2.1. Let E ⊂ Fd
q , d ≥ 2. Suppose that |E| ≥ Cq

d
2 with C sufficiently large. Then

|∆(E)| ≥ cmin
{
q,

q

ME(q)

}
.

In this paper the authors show that in the case of two dimensions one may give a slightly more
explicit version of Theorem 2.1. An upper bound on ME(q) of

√
3|E|−

3
2 q2 is obtained, which yields

that if E ⊂ F2
q with |E| ≥ q

4
3 , then |∆(E)| ≥ cq. In more detail, we have the following result.

Theorem 2.2. Let E ⊂ F2
q . If q ≡ 3 (mod 4) and |E| ≥ q4/3, then

|∆(E)| > q

1 +
√

3
.

On the other hand, given q ≡ 1 (mod 4) sufficiently large and |E| ≥ q4/3, there exists 0 < εq < 1
such that

|∆(E)| > εq · q,

where εq → 1
1+

√
3

as q →∞. In fact, we can choose a εq as the following:

εq =

(
1− 2q−1

)2
1 +

√
3−

√
3q−2/3

.

2.2. Pinned distances and dot products. Given y ∈ Fd
q , define the pinned distance set by

∆y(E) = {||x− y|| : x ∈ E}.

We have the following result.

Theorem 2.3. Let E ⊂ Fd
q , d ≥ 2. Suppose that |E| ≥ q

d+1
2 . Then there exists a subset E′ of

E with |E′| & |E| such that for every y ∈ E′ one has that

|∆y(E)| > q

2
.
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In analogy with the pinned distance set define the pinned dot product set by

Πy(E) = {x · y : x ∈ E}.

Theorem 2.4. Let E ⊂ Fd
q . Suppose that |E| ≥ q

d+1
2 . Then there exists a subset E′ of E with

|E′| & |E| such that for every y ∈ E′ one has that |Πy(E)| > q
2 .

2.3. Cartesian Products. Let π(x) = (x1, . . . , xd−1) and define

Ez = π(E)× {z},

where z is an element of Fq and x ∈ Fd
q . Here we could have chosen to place z in any coordinate

and have chosen to put z in the dth coordinate only for simplicity of notation.
Given y ∈ π(E)× Fq and z ∈ Fq, define

∆(z)
y (E) = {||x− ỹ|| : x ∈ E},

where ỹ = (π(y), z) ∈ Ez.

We have the following result.

Theorem 2.5. Let E ⊂ Fd
q and let Ez be defined with respect to the projection π, and an element

z ∈ Fq as above. Suppose that
|E||Ez| ≥ qd.

Then there exists a E′
z ⊂ Ez with |E′

z| & |Ez| such that for every (π(y), z) ∈ E′
z,

|∆(z)
y (E)| > q

3
.

Given E ⊂ Fd
q , we define

P (E) = {z ∈ Fq : (π(y), z) ∈ E for some y ∈ Fq}.

The set P (E) is composed of all the last coordinates of elements in E. Observe that if E is a
product set, then Ez ⊂ E for all z ∈ P (E) and

⋃
z∈P (E)Ez = E. Moreover, Ez and Ez′ are disjoint

if z 6= z′ and |Ez| = |Ez′ |. This leads us to the following consequence of Theorem 2.5.

Corollary 2.6. Suppose that E = A1 ×A2 × · · · ×Ad, where Aj is contained in Fq. Suppose
that

|E| ≥ q
d2

2d−1 .

Then there exists a subset E′ ⊂ E with |E′| & |E| such that for every y ∈ E′ one has that

|∆y(E)| > q

3
.

The Corollary immediately follows from Theorem 2.5. To see this, since E is a product set,
after perhaps relabeling some coordinates, we may assume, using straightforward pigeon-holing,
that E = π(E)× P (E), where |π(E)| ≥ |E|

d−1
d , and we have |π(E)| = |Ez| for all z ∈ P (E). Since

|E| ≥ q
d2

2d−1 , we see that |E||Ez| ≥ qd for all z ∈ P (E). Applying Theorem 2.5, we can choose the
set E′

z for all z ∈ P (E) which satisfies the conclusion of Theorem 2.5. Taking E′ =
⋃

z∈P (E)E
′
z ,
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the proof of Corollary 2.6 is complete. Observe that we could have made a much weaker, though
more technical, assumption on the structure of E.

Given y ∈ π(E)× Fq and z ∈ Fq, define the pinned dot product set to be

Π(z)
y (E) = {x · ỹ : x ∈ E},

where ỹ = (π(y), z) ∈ Ez. We use the method of proof of Theorem 2.5 above to obtain the following.

Theorem 2.7. Let E ⊂ Fd
q and let Ez, z ∈ F∗

q , be defined as above. Suppose that

|E||Ez| ≥ qd.

Then there exists a E′
z ⊂ Ez with |E′

z| & |Ez| such that for every (π(y), z) ∈ E′
z,

|Π(z)
y (E)| > q

2
.

2.4. Sums and products implications. A related line investigation that has received much
recent attention is the following. Let A ⊂ Fq. How large does A need to be to ensure that

F∗
q ⊂ A ·A+ . . .+A ·A︸ ︷︷ ︸

d times

or, more modestly,
|A ·A+ . . .+A ·A| ≥ cq

for some c > 0.
A result due to Bourgain ([3]) gave the following answer to this question.

Theorem 2.8. Let A be a subset of Fq such that |A| ≥ Cq
3
4 then A ·A+A ·A+A ·A = Fq.

Due to the misbehavior of the zero element it is not possible for A · A + A · A = Fq unless
A is a positive proportion of the elements of Fq. However, it is reasonable to conjecture that if
|A| ≥ Cεq

1
2
+ε, then A ·A+A ·A ⊇ F∗

q . This result cannot hold, especially in the setting of general
finite fields if |A| = √

q because A may in fact be a subfield. See also [4], [8], [28] and the references
contained therein on recent progress related to this problem and its analogs. For example, Glibichuk
and Konyagin, [14] (see also [12]), proved in the case of prime fields Zp that for |A| > √

p that on
case take d = 8. This was extended to arbitrary finite fields by Glibichuk in [13]. These results
were achieved by methods of arithmetic combinatorics.

The second and third listed authors used character sum machinery to obtain the following
result.

Theorem 2.9. Let A ⊂ F∗
q.

• If |A| > q
1
2
+ 1

2d then A ·A+ . . .+A ·A ⊇ F∗
q .

• If |A| ≥ q
1
2
+ 1

2(2d−1) then |A ·A+ . . .+A ·A| ≥ 1
2q.

In view of Glibichuk’ result ([13]) one may note that Theorem 2.9 is only interesting in the
case d < 8. It follows immediately that in the perhaps the most interesting case d = 2, that
A · A + A · A ⊇ F∗

q for |A| > q
3
4 , and |A · A + A · A| ≥ q

2 for |A| > q
2
3 . One may note that
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if A · A + A · A = F∗
q then only a minimal amount of additional additive structure is needed to

get the zero element. Specifically, if |A| > q
3
4 and B is any subset of Fq with |B| > 1 then

A ·A+A ·A+B = Fq.
Shparlinski ([26]) using multiplicative character sums showed that if |A| ≥ q

2
3 then for any

z ∈ A, |A ·A+ zA| ≥ q
2 .

An immediate implication of Theorem 2.7 is the following which says that if a set A is sufficiently
robust then a large class of linear equations have solutions in A.

Theorem 2.10. Let A ⊂ Fq and z ∈ F∗
q. If |A| ≥ q

d
2d−1 , then there exists a subset A′ ⊂ A with

|A′| & |A| such that for any a1, . . . , ad−1 in A′,

|a1A+ a2A+ · · ·+ ad−1A+ zA| > q

2
where ajA = {aja : a ∈ A}, j = 1, . . . , d− 1.

2.5. k-simplices. Let Pk denote a k-simplex, that is k + 1 points spanning a k dimensional
subspace. Given another k-simplex P ′

k we write P ′
k ∼ Pk if there exists a τ ∈ Fd

q and an O ∈
SOd(Fq), the set of d-by-d orthogonal matrices over Fq such that

P ′
k = O(Pk) + τ.

For E ⊂ Fd
q define

Tk(E) = {Pk ∈ E × · · · × E} / ∼ .

Under this equivalence relation one may specify a simplex by the distances determined by its
vertices. This follows from the following simple lemma from [15].

Lemma 2.11. Let Pk be a simplex with vertices V0, V1, . . . , Vk, Vj ∈ Fd
q . Let P ′ be another

simplex with vertices V ′
0 , V

′
1 , . . . , V

′
k. Suppose that

(2.1) ||Vi − Vj || = ||V ′
i − V ′

j ||

for all i, j. Then there exists τ ∈ Fd
q and O ∈ SOd(Fq) such that τ +O(P ) = P ′.

In this paper the authors will specify simplices by specifying the distances determining them
piece by piece. With this in mind denote a k-star by

Sk(t1, . . . , tk) = {(x, y1 . . . yk) : ‖x− y1‖ = t1, . . . ‖x− yk‖ = tk},

where t1, . . . , tk ∈ Fq.
Define ∆y1,y2,...,yk(E) = {(‖x − y1‖, . . . , ‖x − yk‖) ∈ Fk

q : x ∈ E} where y1, y2,. . . ,yk ∈ E. We
have the following result.

Theorem 2.12. Let E ⊂ Fd
q . If |E| & q

d+k
2 then

1
|E|k

∑
y1,...,yk∈E

|∆y1,...,yk(E)| & qk.

An pigeon-holing argument using Theorem 2.12 will allow us to move from sets of k-stars to
sets of k-simplices.
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Theorem 2.13. Let E ⊂ Fd
q . If |E| & q

d+k
2 , k ≤ d then |Tk(E)| & q(

k+1
2 ), in other words E

determines a positive proportion of all k-simplices.

Similarly, define Πy1,y2,...,yk(E) = {(x·y1, x·y2, . . . , x·yk) ∈ Fk
q : x ∈ E} where y1, y2,. . . ,yk ∈ E.

Then we have the following result.

Theorem 2.14. Let E ⊂ Fd
q . If |E| & q

d+k
2 then

1
|E|k

∑
y1,...,yk∈E

|Πy1,...,yk(E)| ≥ cqk.

If E is subset of a sphere S where S = {x ∈ Fd
q : ‖x‖ = 1} then one has for x, y ∈ E that

‖x − y‖ = 2 − x · y. Therefore in this case determining distances is the same as determining dot
products. Under this assumption on E the proof of Theorem 2.14 may be modified improving the
exponent in Theorem 2.12.

Theorem 2.15. Let E ⊂ S. If |E| & q
d+k−1

2 then

1
|E|k

∑
y1,...,yk∈E

|∆y1,...,yk(E)| & qk.

This in turn yields the following result.

Theorem 2.16. Let E ⊂ S. If |E| & q
d+k−1

2 , k ≤ d − 1 then |Tk(E)| & q(
k+1
2 ), in other words

E determines a positive proportion of all k-simplices.

The proof of this theorem we will omit follows directly that of Theorem 2.13.

3. Finite field Fourier transform

Recall that given a function f : Fd
q → C, the Fourier transform with respect to a non-trivial

additive character χ on Fq is given by the relation

f̂(m) = q−d
∑
x∈Fd

q

χ(−x ·m)f(x).

Also recall that the Fourier inversion theorem is given by

f(x) =
∑

m∈Fd
q

χ(x ·m)f̂(m)

and the Plancherel theorem is given by∑
m∈Fd

q

|f̂(m)|
2

= q−d
∑
x∈Fd

q

|f(x)|2

For a subset E of Fd
q we will use E(x) to denote the indicator function of E.

4. Proof of Theorem 2.2 - Wolff’s exponent

This section contains two subsections. In the first subsection we obtain main lemmas for the
proof of Theorem 2.2. The complete proof of Theorem 2.2 is given in the second subsection.
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4.1. Lemmas for the proof of Theorem 2.2. We begin by defining the counting function,

ν(t) =
∑

‖x−y‖=t

E(x)E(y).

Then we may write
ν(t) =

∑
x,y∈E

St(x− y),

where St is the sphere of radius t, {x ∈ Fd
q : ‖x‖ = t}.

We first obtain some information about ν(t).

Lemma 4.1. Let E ⊂ F2
q . Then we have

∑
t∈Fq

ν2(t) = q6
∑
t∈Fq

(∑
m∈St

|Ê(m)|2
)2

+ q−1|E|4 − q|E|2.

Proof. Using the Fourier inversion theorem of St(x−y) and definition of the Fourier transform,
we have

(4.1) ν(t) =
∑

x,y∈E

St(x− y) = q4
∑

m∈F2
q

|Ê(m)|2Ŝt(m).

It follows that
ν2(t) = q8

∑
m,m′∈F2

q

|Ê(m)|2|Ê(m′)|2Ŝt(m)Ŝt(m′)

= q8|Ê(0, 0)|4|Ŝt(0, 0)|2 + 2q8
∑

m∈F2
q\(0,0)

|Ê(m)|2Ŝt(m)|Ê(0, 0)|2Ŝt(0, 0)

+q8
∑

m,m′∈F2
q\(0,0)

|Ê(m)|2|Ê(m′)|2Ŝt(m)Ŝt(m′) = I(t) + II(t) + III(t).

Since Ê(0, 0) = q−2|E| and Ŝt(0, 0) = q−2|St|, we obtain

(4.2)
∑
t∈Fq

I(t) = q−4|E|4
∑
t∈Fq

|St|2.

We will need the following lemma which we will delay proving until the last section.

Lemma 4.2. Let St ⊂ Fd
q . Then we have∑

t∈Fq

|St|2 = q2d−1 + qd − qd−1,

and also for m ∈ Fd
q \ {0, . . . , 0), ∑

t∈Fq

|Ŝt(m)|2 = q−d − q−d−1,

and ∑
t∈Fq

|St|Ŝt(m) ≤ 1− q−1.
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The first part of Lemma 4.2 together with (4.2) yields the following equality:

(4.3)
∑
t∈Fq

I(t) = |E|4(q−1 + q−2 − q−3).

Now we compute the
∑

t∈Fq
II(t). It follows that

(4.4)
∑
t∈Fq

II(t) = 2q2|E|2
∑

m6=(0,0)

|Ê(m)|2
∑
t∈Fq

|St|Ŝt(m).

We claim that if the dimension d is even, St ⊂ Fd
q , and m ∈ Fd

q \ (0, . . . , 0), then we have∑
t∈Fq

|St|Ŝt(m) = q(−d−2)/2ψ
(
(−1)d/2

)
Gd

1(ψ, χ)
∑
s 6=0

χ

(
‖m‖
4s

)
,

where ψ is the quadratic character of order two and G1(ψ, χ) is the Gauss sum given by G1(ψ, χ) =∑
s 6=0 ψ(s)χ(s). The claim follows from the proof of the third part of Lemma 4.2 (see the proof of

Lemma 4.2 in the last section). We also need the following theorem .

Theorem 4.3 (Theorem 5.15 in [22]). Let Fq be a finite field with q = pl, where p is an odd
prime and l ∈ N. Let ψ be the quadratic character of Fq and let χ be the canonical additive character
of Fq. Then we have

G1(η, χ) =

{
(−1)l−1q

1
2 if p = 1 (mod 4)

(−1)l−1ilq
1
2 if p = 3 (mod 4).

Using Theorem 4.3, we see that if d is even, then ψ
(
(−1)d/2

)
Gd

1(ψ, χ) = qd/2, because ψ(−1) =
1 if q ≡ 1 (mod 4) and ψ(−1) = −1 if q = 3 (mod 4). Thus if d = 2 and m 6= (0, 0), we have∑

t∈Fq

|St|Ŝt(m) = q−1
∑
s 6=0

χ

(
‖m‖
4s

)
.

Plugging this into (4.4), we have∑
t∈Fq

II(t) = 2q|E|2
∑

m6=(0,0)

|Ê(m)|2
∑
s 6=0

χ

(
‖m‖
4s

)

= 2q|E|2
 ∑

m6=(0,0):‖m‖=0

|Ê(m)|2(q − 1) +
∑

m6=(0,0):‖m‖6=0

(−1)|Ê(m)|2


= 2q|E|2
q ∑

m6=(0,0):‖m‖=0

|Ê(m)|2 −
∑

m6=(0,0)

|Ê(m)|2
 .

Now Replacing
∑

m6=(0,0):‖m‖=0 |Ê(m)|2 by
∑

‖m‖=0 |Ê(m)|2 − |Ê(0, 0)|2 and observing by the

Plancherel theorem that
∑

m6=(0,0) |Ê(m)|2 =
∑

m∈F2
q
|Ê(m)|2 − |Ê(0, 0)|2 = q−2|E| − q−4|E|2, we

obtain

(4.5)
∑
t∈Fq

II(t) = 2q2|E|2
∑

‖m‖=0

|Ê(m)|2 − 2q−1|E|3 − 2q−2|E|4 + 2q−3|E|4.

11



Finally, we estimate the
∑

t∈Fq
III(t) which is given by

(4.6)
∑
t∈Fq

III(t) = q8
∑

m,m′ 6=(0,0)

|Ê(m)|2|Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝt(m′).

In [19], the Fourier transform of St was given by the formula

(4.7) Ŝt(m) = q−1δ0(m) + q−d−1ψd(−1)Gd
1(ψ, χ)

∑
s 6=0

χ

(
‖m‖
4s

+ st

)
ψd(s),

where δ0(m) = 1 if m = (0, . . . , 0) and δ0(m) = 0 if m 6= (0, . . . , 0). Using this formula and
the orthogonality relation of the non-trivial additive character χ in t-variables, we see that for
m,m′ ∈ F2

q \ (0, 0), ∑
t∈Fq

Ŝt(m)Ŝt(m′) = q−3
∑
s 6=0

χ

(
‖m‖ − ‖m′‖

4s

)
.

Plugging this into (4.6), we have∑
t∈Fq

III(t) = q5
∑

m,m′ 6=(0,0)

|Ê(m)|2|Ê(m′)|2
∑
s 6=0

χ

(
‖m‖ − ‖m′‖

4s

)
.

Using a change of variables, 1/(4s) → s, and the properties of the summation notation, we have

∑
t∈Fq

III(t) = q5
∑

m,m′ 6=(0,0)

|Ê(m)|2|Ê(m′)|2
−1 +

∑
s∈Fq

χ(s(‖m‖ − ‖m′‖))


= q6

∑
m,m′ 6=(0,0):‖m‖=‖m′‖

|Ê(m)|2|Ê(m′)|2 − q5
∑

m,m′ 6=(0,0)

|Ê(m)|2|Ê(m′)|2

= q6
∑
t∈Fq

 ∑
m6=(0,0):‖m‖=t

|Ê(m)|2
2

− q5

 ∑
m6=(0,0)

|Ê(m)|2
2

= q6

 ∑
m6=(0,0):‖m‖=0

|Ê(m)|2
2

+ q6
∑
t6=0

 ∑
m6=(0,0):‖m‖=t

|Ê(m)|2
2

− q5
(
q−2|E| − q−4|E|2

)2
.

Since
∑

m6=(0,0):‖m‖=0 |Ê(m)|2 =
∑

‖m‖=0 |Ê(m)|2 − |Ê(0, 0)|2, and Ê(0, 0) = q−2|E|, a direct
calculation yields
(4.8)∑
t∈Fq

III(t) = q6
∑
t∈Fq

(∑
m∈St

|Ê(m)|2
)2

−2q2|E|2
∑

m∈S0

|Ê(m)|2+q−2|E|4+2q−1|E|3−q|E|2−q−3|E|4.

From (4.3),(4.5), and (4.8), the proof of Lemma 4.1 is complete. �

We now introduce and prove the second key lemma for the proof of Theorem 2.2. The following
lemma was implicitly given in [18] and we shall follow the outline in [18] to get the following lemma.
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Lemma 4.4. If E is a subset of F2
q , then it follows that

max
t∈Fq\{0}

∑
m∈St

|Ê(m)|2 ≤
√

3|E|3/2

q3
.

Proof. The proof is based on the extension theorem related to circles in F2
q . In [18], it was

proved that the extension operator for the circle with non-zero radius is bounded from L2 to L4

and the mapping property is sharp. However, the operator norm was not given in the explicit form.
Here, we shall observe the explicit operator norm and derive Lemma 4.4. We begin by recalling the
meaning of norms and Fourier analysis machinery. We are working in the space (F2

q , dx) which we
endow with the normalized counting measure. Thus if f is defined on the space, then the Lp-norm
is given by

‖f‖Lp(F2
q ,dx) =

q−2
∑
x∈F2

q

|f(x)|p
1/p

,

where q2 is the number of elements of F2
q . Recall that the Fourier transform of the function f is

actually defined on the dual space of (F2
q , dx). We denote by (F2

q , dm) the dual space, which is
endowed with the counting measure dm. For a non-trivial additive character χ of Fq, we therefore
define the Fourier transform of the function f on (F2

q , dx) by the formula

f̂(m) = q−2
∑
x∈F2

q

χ(−x ·m)f(x),

where m is considered as an element of the dual space (F2
q , dm). Taking the different measures

between the function space and the dual space, we obtain the Plancherel theorem, that is

‖f̂‖L2(F2
q ,dm) = ‖f‖L2(F2

q ,dx).

Note that this means the following:∑
m∈F2

q

|f̂(m)|2 = q−2
∑
x∈F2

q

|f(x)|2,

where f is a function on (F2
q , dx) and f̂ is a function on (F2

q , dm). We now introduce the normalized
curve measure dσ on the circle St in (F2

q , dx). The measure dσ is defined by the relation

f̂dσ(m) = |St|−1
∑
x∈St

χ(−x ·m)f(x),

where f is a function on (F2
q , dx). In fact, the measure σ can be considered as the following function

on (F2
q , dx):

σ(x) = q2|St|−1St(x),

where St(x) means the characteristic function on St.

Using Plancherel, we first observe that

‖f̂dσ‖4
L4(F2

q ,dm) = ‖fdσ ∗ fdσ‖2
L2(F2

q ,dx),
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which is
= q−2|fdσ ∗ fdσ(0, 0)|2 + q−2

∑
x∈F2

q\(0,0)

|fdσ ∗ fdσ(x)|2 = I + II.

To estimate the term I, we note that

|fdσ ∗ fdσ(0, 0)| ≤
∑

m∈F2
q

|f̂dσ(m)|2 = q2|St|−1‖f‖2
L2(St,dσ).

Thus the term I is estimated by

(4.9) I ≤ q2|St|−2‖f‖4
L2(St,dσ).

Using Hölder’s inequality, we have

II =q−2
∑

x∈F2
q\(0,0)

|fdσ ∗ fdσ(x)|2

≤‖dσ ∗ dσ‖L∞(F2
q\(0,0),dx)‖f‖

4
L2(St,dσ)

=

 max
x 6=(0,0)

q2|St|−2
∑

(α,β)∈St×St:α+β=x

1

 · ‖f‖4
L2(St,dσ).(4.10)

From (4.1), (4.9), and (4.10), we obtain the following:

‖f̂dσ‖L4(F2
q ,dm) ≤

q2|St|−2 + q2|St|−2 max
x 6=(0,0)

∑
(α,β)∈St×St:α+β=x

1

1/4

‖f‖L2(St,dσ)

≤
(
3q2|St|−2

)1/4 ‖f‖L2(St,dσ),

By duality, we have the following restriction estimate: for all complex-valued function g on F2
q ,

(4.11) ‖ĝ‖L2(St,dσ) ≤
(
3q2|St|−2

)1/4 ‖g‖L4/3(F2
q ,dm).

Since the function g above is defined on (F2
q , dm) with a counting measure dm, the Fourier transform

of g is given
ĝ(x) =

∑
m∈F2

q

χ(−x ·m)g(m).

Moreover, since dσ is a normalized curve measure on the circle St, we have

‖ĝ‖L2(St,dσ) =

(
|St|−1

∑
x∈St

|ĝ(x)|2
)1/2

.

After taking g as a characteristic function on the set E ⊂ (F2
q , dm) and identifying the space

(F2
q , dx) with the dual space (F2

q , dm), the conclusion in Theorem (4.4) immediately follows from
the inequality (4.11). �
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4.2. The complete proof of Theorem 2.2. We first prove the first part of Theorem 2.2.
Applying the Cauchy-Schwarz inequality, we see that

|E|4 =

∑
t∈Fq

ν(t)

2

≤ |∆(E)|
∑
t∈Fq

ν2(t).

It follows that

(4.12) |∆(E)| ≥ |E|4∑
t∈Fq

ν2(t)
.

Thus our main work is to find the good upper bound of
∑

t∈Fq
ν2(t). If q ≡ 3 (mod 4), then the

circle S0 with zero radius only contains the origin. From Lemma 4.1 and Lemma 4.4, we therefore
obtain the following :∑

t∈Fq

ν2(t) ≤q6|Ê(0, 0)|4 + q6

(
max
t6=0

∑
m∈St

|Ê(m)|2
)
·
∑

m6=(0,0)

|Ê(m)|2 + q−1|E|4 − q|E|2

≤q6q−8|E|4 + q6
√

3|E|3/2

q3
(q−2|E| − q−4|E|2) + q−1|E|4 − q|E|2

=q−1|E|4 + q−2|E|4 − q|E|2 +
√

3|E|5/2
(
q − q−1|E|

)
.

If we assume that q4/3 ≤ |E| ≤ q3/2, then it is clear that the last term above is less than the value
(1 +

√
3)q−1|E|4. Thus we conclude that for every q4/3 ≤ |E| ≤ q3/2,

(4.13) |∆(E)| > q

1 +
√

3
.

For |E| > q3/2, the inequality (4.13) is clear, because |∆(E′)| ≤ |∆(E)| if E′ ⊂ E. Thus we complete
the proof of the first part of Theorem 2.2.

We now prove the second part of Theorem 2.2. We assume that q ≡ 1 (mod 4). Applying the
Cauchy-Schwarz inequality, we have

(|E|2 − ν(0))2 =

 ∑
t∈Fq\{0}

ν(t)

2

≤

 ∑
t6=0:t∈∆(E)

1

 ·

∑
t6=0

ν2(t)


= (|∆(E)| − 1)

∑
t6=0

ν2(t)

 .

It follows that

(4.14) |∆(E)| ≥ 1 +
(|E|2 − ν(0))2(∑
t∈Fq

ν2(t)
)
− ν2(0)

.
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Let us estimate ν(0). From (4.1) and (4.7), we have

ν(0) = q4
∑

m∈F2
q

|Ê(m)|2
q−1δ0(m) + q−3G2

1(ψ, χ)
∑
s 6=0

χ

(
‖m‖
4s

) .

Recall that Ê(0, 0) = q−2|E|, and observe from Theorem 4.3 that G2
1(ψ, χ) = q for q ≡ 1 (mod 4).

Then we see that

ν(0) = q−1|E|2 + q2
∑

m∈F2
q

|Ê(m)|2
∑
s 6=0

χ

(
‖m‖
4s

)
.

Writing
∑

m∈F2
q

=
∑

‖m‖=0 +
∑

‖m‖6=0 and calculating the sum over s 6= 0, we see

ν(0) = q−1|E|2 + q2
∑

‖m‖=0

|Ê(m)|2(q − 1)− q2
∑

‖m‖6=0

|Ê(m)|2.

Putting together the sums and applying the Plancherel theorem, we have

(4.15) ν(0) = q−1|E|2 + q3
∑

‖m‖=0

|Ê(m)|2 − |E|.

We now estimate
∑

t∈Fq
ν2(t). From Lemma 4.1 and Lemma 4.4, we have

∑
t∈Fq

ν2(t) =q6

∑
m∈S0

|Ê(m)|2
2

+ q6
∑
t6=0

(∑
m∈St

|Ê(m)|2
)2

+ q−1|E|4 − q|E|2

≤q6
∑

m∈S0

|Ê(m)|2
2

+ q6

(
max
t6=0

∑
m∈St

|Ê(m)|2
)
·

 ∑
‖m‖6=0

|Ê(m)|2
+ q−1|E|4 − q|E|2

≤q6
∑

m∈S0

|Ê(m)|2
2

+ q6
√

3|E|3/2

q3

q−2|E| −
∑

‖m‖=0

|Ê(m)|2
+ q−1|E|4 − q|E|2.(4.16)

Letting Ω(E) =
∑

‖m‖=0 |Ê(m)|2, and R(E) = q−1|E|4− q−2|E|4 +2q−1|E|3 +
√

3q|E|5/2− q|E|2−
|E|2 and plugging (4.15) and (4.16) into the formula (4.14), we have

(4.17) |∆(E)| ≥ 1 +

(
|E|2 − q−1|E|2 + |E| − q3Ω(E)

)2
(−2q2|E|2 −

√
3q3|E|3/2 + 2q3|E|)Ω(E) +R(E)

.

We aim to find the lower bound of the right-hand side in (4.17). Since |E| ≥ q4/3 and |E| is a
positive integer, it suffices to show that the second part of Theorem 2.2 holds for all E ⊂ F2

q with
|E| = qα where α > 0 is the minimum value such that qα is an integer and qα ≥ q4/3. The general
case follows from the simple fact that |∆(E′)| ≤ |∆(E)| if E′ ⊂ E. Whenever we choose such a
set E, Ω(E) is just a constant but we don’t know the exact value for Ω(E). However, the range of
Ω(E) takes the following:

q−4|E|2 ≤ Ω(E) ≤ q−2|E|,

because |Ê(0, 0)|2 ≤ Ω(E) ≤
∑

m∈F2
q
|Ê(m)|2. For a fixed E and q, we shall consider the right-hand

side of (4.17) as a function in terms of Ω(E). If we put Ω(E) = x, a = |E|2 − q−1|E|2 + |E|, b =
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−2q2|E|2−
√

3q3|E|3/2 +2q3|E|, and R(E) = c, then a lower bound of the right-hand side of (4.17)
is given by the minimum value of the following function:

(4.18) f(x) =
(a− q3x)2

bx+ c
for q−4|E|2 ≤ x ≤ q−2|E|.

If |E| = qα is the smallest integer such that α ≥ 4/3, then we claim that the minimum of the
function f on q−4|E|2 ≤ x ≤ q−2|E| happens at x = q−4|E|2 if q is sufficiently large ( with the help
of a calculator, q > 9). To see this, note that x = x0 = −b−1c is the vertical asymptote and the
critical points of the function f are given by x1 = aq−3 and x2 = −q−3b−1(2q3c+ ab). In addition,
observe that a > 0, b < 0 and c > 0. Thus, if q is sufficiently large, then a routine calculation shows
that x2 ≤ q−4|E|2 ≤ q−2|E| ≤ x0 ≤ x1, and the local minimum and maximum happen at x2 and
x1 respectively. Thus, our claim is justified . When we replace Ω(E) in (4.17) by q−4|E|2, we have

(4.19) |∆(E)| > q (g(E))2

h(E)
,

where
g(E) = |E|2 − 2q−1|E|2 + |E|

and
h(E) = −3q−1|E|4 −

√
3|E|7/2 + 4|E|3 + |E|4 +

√
3q2|E|5/2 − q2|E|2 − q|E|2.

Recall that, without loss of generality, we have assumed that the number of elements of |E| is
an integer qα where α ≥ 4/3 is the smallest real number such that qα ≥ q4/3. Thus, we see that
h(E) ≤ |E|4 +

√
3q2|E|5/2−

√
3|E|7/2. Moreover, it is clear that g(E) ≥ (1−2q−1)|E|2. From (4.19),

it therefore follows that

|∆(E)| >
q
(
1− 2q−1

)2
K(|E|)

,

where K(|E|) = 1 +
√

3q2|E|−3/2 −
√

3|E|−1/2. If we consider the K(|E|) as a function in terms of
|E|, then we can easily see that K(|E|) ≤ K(q4/3), because q4/3 ≤ |E| ≤ q2 and the function K is
decreasing on the interval. Thus, the proof of the second part of Theorem 2.2 is complete.

5. Proof of Theorem 2.3 - Pinned distance sets

We begin by defining the counting function,

νy(t) =
∑

‖x−y‖=t

E(x).

Squaring νy(t), we have
ν2

y(t) =
∑

‖x−y‖=‖x′−y‖=t

E(x)E(x′).

Summing in y ∈ E and t ∈ Fq, we see∑
y∈E

∑
t∈Fq

ν2
y(t) =

∑
‖x−y‖=‖x′−y‖

E(y)E(x)E(x′),
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applying orthogonality,

= q−1
∑
s∈Fq

∑
y,x,x′∈Fd

q

χ(s(||x− y|| − ||x′ − y||))E(y)E(x)E(x′),

and extracting the s = 0 term,

= q−1|E|3 + q−1
∑
s 6=0

∑
y,x,x′∈Fd

q

χ(s(||x− y|| − ||x′ − y||))E(y)E(x)E(x′) = I + II.

Here

II = q−1
∑
s 6=0

∑
y∈E

∣∣∣∣∣∑
x∈E

χ(s(||x|| − 2y · x))

∣∣∣∣∣
2

,

since
‖x− y‖ − ‖x′ − y‖ = (||x|| − 2y · x)− (||x′|| − 2y · x′).

It follows by extending the sum over y ∈ E to over y ∈ Fd
q that

0 ≤ II ≤ q−1
∑
s 6=0

∑
y∈Fd

q

∑
x,x′∈E

χ(−2sy · (x− x′))χ(s(||x|| − ||x′||)),

and from orthogonality in the variable y ∈ Fd
q ,

= qd−1
∑
s 6=0

∑
x∈E

1,

which is less than the quantity qd|E|. It therefore follows that

(5.1)
∑
y∈E

∑
t∈Fq

ν2
y(t) = I + II < q−1|E|3 + qd|E|.

Now, by the Cauchy-Schwarz inequality and above estimation, we obtain that

|E|3 = |E|−1

∑
y∈E

∑
t

νy(t)

2

< |E|−1
∑
y∈E

|∆y(E)| · (q−1|E|3 + qd|E|),

which means that

|E|−1
∑
y∈E

|∆y(E)| > |E|3

q−1|E|3 + qd|E|
≥ q

2

provided that |E| ≥ q(d+1)/2, which completes the proof of Theorem 2.3.

6. Proof of Theorem 2.4 - Pinned dot product sets

Here we define the function ηy(s) by the relation∑
s∈Fq

g(s)ηy(s) =
∑
x∈E

g(x · y)E(x).

Taking g(s) = q−1χ(−ts), we see that

η̂y(t) = qd−1Ê(ty).
18



It follows that ∑
t∈Fq

∑
y∈E

|η̂y(t)|2 = q2(d−1)
∑
t∈Fq

∑
y∈E

|Ê(ty)|
2
,

and extracting t = 0 we have that∑
t∈Fq

∑
y∈E

|η̂y(t)|2 = |E|3q−2 + q2(d−1)
∑
t6=0

∑
y∈E

|Ê(ty)|
2
,

which after changing variables∑
t∈Fq

∑
y∈E

|η̂y(t)|2 = |E|3q−2 + q2(d−1)
∑
x∈Fd

q

|Ê(x)|
2
·
∑
t6=0

E(
x

t
).

Since
∑

t6=0E(x
t ) ≤ (q − 1), it follows by the Plancherel theorem that∑

t∈Fq

∑
y∈E

|η̂y(t)|2 ≤ |E|3q−2 + q2(d−1)(q − 1)(|E|q−d) = |E|3q−2 + qd−1|E| − qd−2|E|,

and applying the Plancherel theorem once again, we see that

(6.1) q
∑
t∈Fq

∑
y∈E

|η̂y(t)|2 =
∑
s∈Fq

∑
y∈E

η2
y(s) ≤ |E|3q−1 + qd|E| − qd−1|E|.

The Cauchy-Schwarz inequality and this estimation implies that

|E|3 = |E|−1

∑
y∈E

∑
s∈Fq

ηy(s)

2

< |E|−1
∑
y∈E

|Πy(E)| · (|E|3q−1 + qd|E|),

which means that
|E|−1

∑
y∈E

|Πy(E)| > q

1 + qd+1|E|−2 ≥
q

2
,

provided that |E| ≥ q
d+1
2 , which completes the proof of Theorem 2.4.

7. Proof of Theorem 2.5 - Distance sets of cartesian products

For a fixed z ∈ Fq, we denote ỹ = (π(y), z) where y ∈ Fd
q . Given ỹ ∈ Ez, we define

νỹ(t) =
∑

‖x−ỹ‖=t

E(x),

where Ez was defined in Section 2.3. Squaring and summing in ỹ and t,∑
ỹ∈Ez

∑
t∈Fq

ν2
ỹ(t) =

∑
‖x−ỹ‖=‖x′−ỹ‖

Ez(ỹ)E(x)E(x′),

applying orthogonality,

= q−1
∑
s∈Fq

∑
ỹ,x,x′∈Fd

q

χ(s(||x− ỹ|| − ||x′ − ỹ||))Ez(ỹ)E(x)E(x′),
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and extracting the s = 0 term,

= q−1|Ez||E|2 + q−1
∑
s 6=0

∑
ỹ,x,x′∈Fd

q

χ(s(||x− ỹ|| − ||x′ − ỹ||))Ez(ỹ)E(x)E(x′) = I + II.

Here

II = q−1
∑
s 6=0

∑
ỹ∈Ez

∣∣∣∣∣∑
x∈E

χ(s(||x|| − 2ỹ · x))

∣∣∣∣∣
2

,

since
‖x− ỹ‖ − ‖x′ − ỹ‖ = (||x|| − 2ỹ · x)− (||x′|| − 2ỹ · x′).

It follows by extending the sum over ỹ ∈ Ez to over ỹ ∈ Fd−1
q × {z} that

0 ≤ II ≤ q−1
∑
s 6=0

∑
ỹ∈Fd−1

q ×{z}

∑
x,x′∈E

χ(−2sỹ · (x− x′))χ(s(||x|| − ||x′||)),

and from orthogonality in the variables π(ỹ) ∈ Fd−1
q ,

= qd−2
∑
s 6=0

∑
π(x)=π(x′)

E(x)E(x′)χ(−2sz(xd − x′d))χ(s(x2
d − x′d

2)),

which may be rewritten

= qd−2
∑
s∈Fq

∑
π(x)=π(x′)

E(x)E(x′)χ(−2sz(xd − x′d))χ(s(x2
d − x′d

2))− qd−2
∑

π(x)=π(x′)

E(x)E(x′).

Now since the second term is always negative,

< qd−2
∑
s∈Fq

∑
π(x)=π(x′)

E(x)E(x′)χ(−2sz(xd − x′d))χ(s(x2
d − x′d

2)).

Then we may apply orthogonality in s to show that this expression is equal to

qd−1
∑

2z(xd−x′d)=x2
d−x′d

2;π(x)=π(x′)

E(x)E(x′),

and dividing out,

= qd−1
∑

2z=xd+x′d;xd 6=x′d;π(x)=π(x′)

E(x)E(x′) + qd−1
∑
x=x′

E(x)E(x′),

which gives the final bound
II < 2qd−1|E|.

Now, by the Cauchy-Schwarz inequality and above estimations, we obtain that

|E|2|Ez| = |Ez|−1

∑
ỹ∈Ez

∑
t

νỹ(t)

2

< |Ez|−1
∑
ỹ∈Ez

|∆(z)
y (E)| · (|E|2|Ez|q−1 + 2qd−1|E|),

which means that
|Ez|−1

∑
ỹ∈Ez

|∆(z)
y (E)| > q

1 + 2qd|E|−1|Ez|−1
≥ q

3
,
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provided that |E||Ez| ≥ qd, which completes the proof of Theorem 2.5.

8. Proof of Theorem 2.7 - Dot product sets of cartesian products

The proof here will follow same basic outline of the proof of Theorem 2.5. Let z ∈ F∗
q . Given

ỹ ∈ Ez, we first define
νỹ(t) =

∑
x·ỹ=t

E(x).

Then ν2
ỹ(t) =

∑
x·ỹ=x·ỹ=tE(x)E(x′). If we sum in ỹ ∈ Ez ⊂ Fd

q and t ∈ Fq, then we have∑
ỹ∈Ez

∑
t∈Fq

ν2
ỹ(t) =

∑
x·ỹ=x′·ỹ

Ez(ỹ)E(x)E(x′).

Then applying orthogonality in s ∈ Fq and extracting s = 0, we obtain

∑
ỹ∈Ez

∑
t∈Fq

ν2
ỹ(t) = |Ez||E|2q−1 + q−1

∑
s 6=0

∑
ỹ∈Ez

x,x′∈E

χ(sỹ · (x− x′)) = I + II.

Now, for z ∈ F∗
q , we have

II = q−1
∑
s 6=0

∑
ỹ∈Ez

∣∣∣∣∣∑
x∈E

χ(sx · ỹ)

∣∣∣∣∣
2

,

and by extending the sum over Ez to over Fd−1
q we have that this quantity is

≤ q−1
∑
s 6=0

∑
ỹ∈Fd−1

q ×{z}

∣∣∣∣∣∑
x∈E

χ(sx · ỹ)

∣∣∣∣∣
2

.

Then applying orthogonality in the variable π(ỹ) we have that

II ≤ qd−2
∑
s 6=0

∑
π(x)=π(x′)

χ(sz(xd − x′d))E(x)E(x′),

and extracting the term xd = x′d gives

= qd−2
∑
s 6=0

∑
π(x)=π(x′);xd=x′d

E(x)E(x′)

+qd−2
∑
s 6=0

∑
π(x)=π(x′);xd 6=x′d

χ(sz(xd − x′d))E(x)E(x′)

= qd−2(q − 1)|E| − qd−2
∑

π(x)=π(x′);xd 6=x′d

E(x)E(x′)

< qd−1|E|.

Thus it follows that for each z ∈ F∗
q ,∑

ỹ∈Ez

∑
t∈Fq

ν2
ỹ(t) < |Ez||E|2q−1 + qd−1|E|.
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Now, by the Cauchy-Schwarz inequality and this estimation, we have

|E|2|Ez| = |Ez|−1

∑
ỹ∈Ez

∑
t∈Fq

νỹ(t)

2

< |Ez|−1
∑
ỹ∈Ez

|Π(z)
y (E)| · (|E|2|Ez|q−1 + qd−1|E|),

which means that
|Ez|−1

∑
ỹ∈Ez

|Π(z)
y (E)| > q

1 + qd|E|−1|Ez|−1 ≥
q

2
,

provided that |E||Ez| ≥ qd. Thus the proof of Theorem 2.7 is complete.

9. Proof of Theorem 2.12 - k-star distance sets

We begin by defining the counting function,

νy1,...,yk(t1, . . . , tk) =
∑

‖x−y1‖=t1,...,‖x−yk‖=tk

E(x).

The proof of Theorem 2.12 is based on the following lemma.

Lemma 9.1. Let E ⊂ Fd
q . Then∑

y1,...,yk∈E

∑
t1,t2,...,tk∈Fq

|νy1,y2,...,yk(t1, t2, . . . , tk)|2 .
|E|k+2

qk
+ qd|E|k.

Proof. We proceed by induction. The initial case follows from the estimation (5.1). Suppose
that ∑

y1,...,yk−1∈E

∑
t1,...,tk−1∈Fq

ν2
y1,...,yk−1(t1, . . . , tk−1) .

|E|k+1

qk−1
+ qd|E|k−1.

Now ∑
y1,...,yk−1,yk∈E

∑
t1,...,tk∈Fq

ν2
y1,...,yk−1,yk(t1, . . . , tk) =

∑
· · ·
∑

‖x−y1‖=‖x′−y1‖,...,‖x−yk−1‖=‖x′−yk−1‖
‖x−yk‖=‖x′−yk‖

E(y1) . . . E(yk−1)E(yk)E(x)E(x′).

Then applying orthogonality,

= q−1
∑
s∈Fq

∑
· · ·
∑

‖x−y1‖=‖x′−y1‖,...,‖x−yk−1‖=‖x′−yk−1‖
x,x′,y1,...,yk−1,yk∈E

χ(s(||x|| − 2yk · x))χ(−s(||x′|| − 2yk · x′)).

since
‖x− yk‖ − ‖x′ − yk‖ = (||x|| − 2yk · x)− (||x′|| − 2yk · x′).

Extracting the s = 0 term and applying the induction hypothesis gives

.
|E|k+2

qk
+ qd−1|E|k +R,
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where

R = q−1
∑
s∈F∗q

∑
· · ·
∑

‖x−y1‖=‖x′−y1‖,...,‖x−yk−1‖=‖x′−yk−1‖
x,x′,y1,...,yk−1,yk∈E

χ(s(||x|| − 2yk · x))χ(−s(||x′|| − 2yk · x′)).

Then R may be expressed as

q−1
∑
s∈F∗q

∑
t1,...,tk−1∈Fq

∑
y1,...yk−1∈E

yk∈E

∣∣∣∣∣∣∣∣
∑

· · ·
∑

‖x−y1‖=t1,...,‖x−yk−1‖=tk−1
x∈E

χ(s(||x|| − 2yk · x))

∣∣∣∣∣∣∣∣
2

.

Then extending sum over yk ∈ E to over yk ∈ Fd
q , expanding the square, and applying orthogonality

in yk gives
R ≤ qd−1

∑
s∈F∗q

∑
y1,...yk−1,x∈E

1

which in turn is less than qd|E|k.
Therefore we have ∑

y1,...,yk∈E

∑
t1,...,tk∈Fq

ν2
y1,...,yk(t1, . . . , tk) .

|E|k+2

qk
+ qd|E|k,

which completes the proof of Lemma 9.1. �

We are ready to complete the proof of Theorem 2.12. By the Cauchy-Schwarz inequality, we
have

|E|2k+2 =

 ∑
y1,...,yk∈E

∑
t1,t2,...,tk∈Fq

νy1,y2,...,yk(t1, t2, . . . , tk)

2

≤
∑

y1,...,yk∈E

|∆y1,y2,...,yk(E)| ·
∑

y1,...,yk∈E

∑
t1,t2,...,tk∈Fq

|νy1,y2,...,yk(t1, t2, . . . , tk)|2.

By Lemma 9.1 it follows that

|E|2k+2 .
∑

y1,...,yk∈E

|∆y1,y2,...,yk(E)| ·
(
|E|k+2

qk
+ qd|E|k

)
.

Therefore, ∑
y1,...,yk∈E

|∆y1,y2,...,yk(E)| & |E|2k+2

|E|k+2

qk + qd|E|k
.

Normalize to obtain
1

|E|k
∑

y1,...,yk∈E

|∆y1,y2,...,yk(E)| & |E|k+2

|E|k+2

qk + qd|E|k
,

which for |E| & q
d+k
2 gives

1
|E|k

∑
y1,...,yk∈E

|∆y1,y2,...,yk(E)| & qk.
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Thus the proof of Theorem 2.12 is complete.

10. Proof of Theorem 2.13 - k-simplices

If k = 1, then the statement of Theorem 2.13 immediately follows from Theorem 2.3. We
therefore assume that k ≥ 2. As stated in the introduction in order to specify a k-simplex up to
isometry it is enough to specify the distances determined by the points. Here we will specify our
k-simplices using Theorem 2.12 as one set of distances at a time. In addition, we need the following
theorem which is more general version of Theorem 2.12.

Theorem 10.1. Given E ⊂ Fd
q , let E ⊂ E × · · · × E = Es, s ≥ 2, with |E| ∼ |E|s. Define

E ′ = {(y1, . . . , ys−1) ∈ Es−1 : (y1, . . . , ys−1, ys) ∈ E for some ys ∈ E}.

In addition, for each (y1, . . . , ys−1) ∈ E ′ we define

E(y1, . . . , ys−1) = {ys ∈ E : (y1, . . . , ys−1, ys) ∈ E}.

If |E| & q
d+s−1

2 , then we have

(10.1)
1
|E ′|

∑
(y1,...,ys−1)∈E ′

∣∣∆y1,...,ys−1

(
E(y1, . . . , ys−1)

)∣∣ & qs−1,

where

∆y1,...,ys−1

(
E(y1, . . . , ys−1)

)
= {
(
‖ys − y1‖, . . . , ‖ys − ys−1‖

)
∈ (Fq)s−1 : ys ∈ E(y1, . . . , ys−1)}.

Proof. For each t1, . . . , ts ∈ Fq, the incidence function on ∆y1,...,ys−1(E(y1, . . . , ys−1)) is given
by

ν
E(y1,...,ys−1)
y1,...,ys−1 (t1, . . . , ts−1) = |{ys ∈ E(y1, . . . , ys−1) : ‖ys − y1‖ = t1, . . . , ‖ys − ys−1‖ = ts−1}|.

Observe that

ν
E(y1,...,ys−1)
y1,...,ys−1 (t1, . . . , ts−1) ≤ νy1,...,ys−1(t1, . . . , ts−1) = |{(ys ∈ E : ||ys−y1|| = t1, . . . , ||ys−ys−1|| = ts−1}|.

By the Cauchy-Schwarz inequality, we have

|E|2 =

 ∑
(y1,...,ys−1)∈E ′

∑
t1...,ts−1∈Fq

ν
E(y1,...,ys−1)
y1,...,ys−1 (t1, . . . , ts−1)

2

≤

 ∑
(y1,...,ys−1)∈E′

|∆y1,...,ys−1(E(y1, . . . , ys−1))|

 ·

 ∑
y1,...,ys−1∈E

∑
t1,...,ts−1∈Fq

|νy1,...,ys−1(t1, . . . , ts−1)|2
 .

Using Lemma 9.1, we therefore have

|E|2 ≤
∑

(y1,...,ys−1)∈E′
|∆y1,...,ys−1

(
E(y1, . . . , ys−1)

)
| ·
(
|E|s+1

qs−1
+ qd|E|s−1

)
.
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Observe that |E ′| ∼ |E|s−1 because otherwise |E| ≤ |E ′||E| << |E|s which contradicts |E| ∼ |E|s. Therefore,
if |E| & q(d+s−1)/2, then it follows that

1
|E ′|

∑
(y1,...,ys−1)∈E′

∣∣∆y1,...,ys−1

(
E(y1, . . . , ys−1)

)∣∣ & qs−1.

Thus the proof of Theorem 10.1 is complete. �

When a pigeon-holing argument is applied to the inequality (10.1) in Theorem 10.1, the following
corollary immediately follows.

Corollary 10.2. Let E ⊂ Fd
q and E ⊂ E×· · ·×E = Es, s ≥ 2, with |E| ∼ |E|s. If |E| & q

d+s−1
2 ,

then there exists E(1) ⊂ E ′ ⊂ Es−1 with |E(1)| ∼ |E ′| ∼ |E|s−1 such that for every (y1, . . . , ys−1) ∈
E(1), ∣∣∆y1,...,ys−1(E(y1, . . . , ys−1))

∣∣ & qs−1.

Namely, the elements in E determines a positive proportion of all (s− 1)-simplices whose bases are
fixed as a (s− 2)-simplex given by any element (y1, . . . , ys−1) ∈ E(1).

We are now ready to prove Theorem 2.13. First, using a pigeon-holing argument together with
Theorem 2.12, we see that for |E| & q

d+k
2 , there exists a set E ⊂ E × · · · ×E = Ek with |E| & |E|k

such that for every (y1, . . . , yk) ∈ E , we have

|∆y1,...,yk(E)| = |{(‖y0 − yj‖)1≤j≤k ∈ (Fq)k : y0 ∈ E}| & qk.

Notice that this implies that if |E| & q
d+k
2 , then the set E determines a positive proportion of all

k-simplices whose bases are given by any fixed (k − 1)−simplex determined by (y1, . . . , yk) ∈ E . It
therefore suffices to show that a positive proportion of all (k − 1)-simplices can be constructed by
the elements of E . Since |E| & q

d+k
2 & q

d+k−1
2 and |E| ∼ |E|k, we can apply Corollary 10.2 where s

is replaced by k. Then we see that there exists a set E(1) ⊂ E ′ with |E(1)| ∼ |E ′| ∼ |E|k−1 such that
for every (y1, . . . , yk−1) ∈ E(1), we have∣∣∣∆y1,...,yk−1(E(y1, . . . , yk−1))

∣∣∣ & qk−1.

Observe that this estimation implies that the elements in E determines a positive proportion
of all possible (k − 1)-simplices where their bases are fixed by a (k − 2)−simplex given by any
(y1, . . . , yk−1) ∈ E(1). Thus, it is enough to show that the elements in E(1) can determine a pos-
itive proportion of all (k − 2)−simplices. Putting E(0) = E and using Corollary 10.2, if we re-
peat above process p-times, then we see that there exists a set E(p) ⊂

(
E(p−1)

)′ ⊂ Ek−p with
|E(p)| ∼ |

(
E(p−1)

)′ | ∼ |E|k−p such that for each (y1, . . . , yk−p) ∈ E(p), we have∣∣∣∆y1,...,yk−p(E(p−1)(y1, . . . , yk−p))
∣∣∣ & qk−p,

and so it suffices to show that the elements in E(p) ⊂ Ek−p determine a positive proportion of all
(k − p − 1)−simplices. Taking p = k − 2, we reduce our problem to showing that the elements
in E(k−2) ⊂ E × E determine a positive proportion of all 1−simplices. However, it is clear by
applying Corollary 10.2 after setting s = 2, E = E(k−2). To see this, first notice from our repeated
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process that E(k−2) ⊂ E × E and |E(k−2)| ∼ |E|2. Since |E| & q
d+k
2 & q

d+1
2 , Corollary 10.2 yields

the desirable result. Therefore, we complete the proof of Theorem 2.13.

11. Proof of Theorem 2.14 - k-star dot product sets

Define ηy1,y2,...,yk(s1, s2, . . . , sk) by the relation∑
s1,s2,...,sk∈Fq

g(s1, s2, . . . , sk)ηy1,y2,...,yk(s1, s2, . . . , sk) =
∑
x∈Fd

q

g(x · y1, x · y2, . . . , x · yk)E(x),

where g is a complex-valued function on Fk
q , and yj ∈ Fd

q for j = 1, 2, . . . , k. The proof of Theorem
2.14 is based on the following lemma.

Lemma 11.1. Let E ⊂ Fd
q . Then∑

y1,...,yk∈E

∑
s1,s2,...,sk∈Fq

|ηy1,y2,...,yk(s1, s2, . . . , sk)|2 .
|E|k+2

qk
+ qd|E|k.

Proof. We proceed by induction. The initial case follows from equation (6.1). Suppose that∑
y1,...,yk−1∈E

∑
s1,s2,...,sk−1∈Fq

|ηy1,y2,...,yk−1(s1, s2, . . . , sk−1)|2 .
|E|k+1

qk−1
+ qd|E|k−1.

Let g(s1, s2, . . . , sk) = q−kχ(−s1t1 − s2t2 − · · · − sktk). It follows that

η̂y1,y2,...,yk(t1, t2, . . . , tk) = qd−kÊ(t1y1 + t2y
2 + · · ·+ tky

k).

Then substituting in, ∑
t1,...,tk∈Fq

∑
y1,...,yk∈E

|η̂y1,y2,...,yk(t1, t2, . . . , tk)|2

= q2(d−k)
∑

t1,...,tk∈Fq

∑
y1,...,yk∈E

|Ê(t1y1 + t2y
2 + · · ·+ tky

k)|2,

and extracting the case when tk = 0 we have

q2(d−k)|E|
∑

t1,...,tk−1∈Fq

∑
y1,...,yk−1∈E

|Ê(t1y1 + t2y
2 + · · ·+ tk−1y

k−1)|2

+q2(d−k)
∑

t1,...,tk−1∈Fq

tk 6=0

∑
y1,...,yk∈E

|Ê(t1y1 + t2y
2 + · · ·+ tky

k)|2 = I + II

For the first term we apply Plancherel and the induction hypothesis to get

I .
|E|k+2

q2k
+ qd−k−1|E|k.
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For the second term we write,

II = q2(d−k)
∑

t1,...,tk−1∈Fq

tk 6=0

∑
y1,...,yk∈E

|Ê(t1y1 + t2y
2 + · · ·+ tky

k)|2

= q2(d−k)
∑

y1,...,yk−1∈E

∑
t1,...,tk−1∈Fq

tk 6=0

 ∑
yk∈Fd

q

E(yk)|Ê(t1y1 + t2y
2 + · · ·+ tky

k)|2
 ,

and and changing variables gives

. q2(d−k)
∑

y1,...,yk−1∈E

∑
t1,...,tk−1∈Fq

tk 6=0

∑
m∈Fd

q

|Ê(m)|2E(t1y1 + . . . tk−1y
k−1 +mt−1

k ),

which summing in t1, . . . , tk gives

(11.1) = q2(d−k)
∑

y1,...,yk−1∈E

∑
m∈Fd

q

|Ê(m)|2|E ∩Hy1,...,yk−1,m|,

where Hy1,...,yk−1,m is k dimensional hyperplane running through the origin. Since |E∩Hy1,...,yk−1 | ≤
qk−1,

. q2(d−k)|E|k−1qk
∑

m∈Fd
q

|Ê(m)|2 = qd−k|E|k.

Therefore we have that

∑
t1,...,tk∈Fq

∑
y1,...,yk∈E

|η̂y1,y2,...,yk(t1, t2, . . . , tk)|2 .
|E|k+2

q2k
+ qd−k|E|k.

Applying Plancherel in t1, . . . , tk we obtain

∑
y1,...,yk∈E

∑
s1,s2,...,sk∈Fq

|ηy1,y2,...,yk(s1, s2, . . . , sk)|2 .
|E|k+2

qk
+ qd|E|k.

�

We are ready to complete the proof of Theorem 2.14 . By the Cauchy-Schwarz inequality, we
have

|E|2(k+1) =

 ∑
y1,...,yk∈E

∑
s1,s2,...,sk∈Fq

ηy1,y2,...,yk(s1, s2, . . . , sk)

2

.
∑

y1,...,yk∈E

|Πy1,y2,...,yk(E)| ·
∑

y1,...,yk∈E

∑
s1,s2,...,sk∈Fq

|ηy1,y2,...,yk(s1, s2, . . . , sk)|2.

By Lemma 11.1 it follows that

|E|2k+2 .
∑

y1,...,yk∈E

|Πy1,y2,...,yk(E)| ·
(
|E|k+2

qk
+ qd|E|k

)
.
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Therefore, ∑
y1,...,yk∈E

|Πy1,y2,...,yk(E)| & |E|2k+2

|E|k+2

qk + qd|E|k
.

Normalize to obtain
1

|E|k
∑

y1,...,yk∈E

|Πy1,y2,...,yk(E)| & |E|k+2

|E|k+2

qk + qd|E|k
,

which for |E| & q
d+k
2 gives

1
|E|k

∑
y1,...,yk∈E

|Πy1,y2,...,yk(E)| & qk.

Thus the proof of Theorem 2.14 is complete.

12. Proof of Theorem 2.15 - k-star distance sets on a sphere

Here we only need to prove the following lemma whose proof we will briefly sketch.

Lemma 12.1. Let E ⊂ S. Then∑
y1,...,yk∈E

∑
s1,s2,...,sk∈Fq

|νy1,y2,...,yk(s1, s2, . . . , sk)|2 .
|E|k+2

qk
+ qd−1|E|k.

Since E is a subset of a sphere counting distances is equivalent to dot products. There-
fore we return to the proof of Lemma 11.1. Recall the equation (11.1) is specifically given by
q2(d−k)

∑
y1,...,yk−1∈E

∑
m |Ê(m)|2|E ∩ Hy1,...,yk−1,m|. Since E is a subset of a sphere, we see that

|E ∩Hy1,...,yk−1,m| . qk−1. The rest of the proof is similar to the proof of Theorem 2.14.

13. Proof of Lemma 4.2: Gauss sums and the sphere

Let χ be a canonical additive character of Fq and ψ a quadratic character of Fq. Recall that
ψ(0) = 0, ψ(t) = 1 if t is a square in Fq, and ψ(t) = −1 if t is not a square number in Fq. For each
a ∈ Fq, the Gauss sum Ga(ψ, χ) is defined by

Ga(ψ, χ) =
∑
s∈F∗q

ψ(s)χ(as).

The magnitude of the Gauss sum is given by the relation

|Ga(ψ, χ)| =

{
q

1
2 if a 6= 0

0 if a = 0.

We appeal to the following expression (see Theorem 6.26 and Theorem 6.27 in [22]):

|St| =

 qd−1 + q(d−1)/2ψ
(
(−1)

d−1
2 t
)

if d is odd

qd−1 + µ(t)q
d−2
2 ψ

(
(−1)

d
2

)
if d is even,

where µ(t) = q − 1 if t = 0, and µ(t) = −1 if t ∈ F∗
q .
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We also need the following estimate of the Fourier transform of spheres (see [19]): for each
m 6= (0, . . . , 0), we have

Ŝt(m) =q−d−1ψd(−1)(G1(ψ, χ))d
∑
s 6=0

χ

(
||m||
4s

+ st

)
ψd(s).

Using the explicit formula for |St| and observing that
∑

t∈Fq
µ(t) = 0 =

∑
t∈Fq

ψ(t),
∑

t∈Fq
µ2(t) =

(q − 1)2 + (q − 1), and
∑

t∈Fq
ψ2
(
(−1)

d−1
2 t
)

= (q − 1), we can easily see that∑
t∈Fq

|St|2 = q2d−1 + qd − qd−1,

which proves the first formula in Lemma 4.2.
For m 6= (0, · · · , 0), apply orthogonality in t, and then we have∑

t∈Fq

|Ŝt(m)|2 = q−d−2
∑
t∈Fq

∑
s,s′ 6=0

χ

(
‖m‖

4
(
1
s
− 1
s′

)
)
χ(t(s− s′))ψd(ss′−1) = q−d − q−d−1,

which completes the proof of the second formula in 4.2.
Finally, again from orthogonality in t, we see

∑
t∈Fq

|St|Ŝt(m) =


q
−d−3

2 ψ
(
(−1)

d+1
2

)
(G1(ψ, χ))d

∑
s 6=0

ψ(s)χ
(
‖m‖
4s

) ∑
t∈Fq

ψ(t)χ(st) for d odd

q
−d−4

2 ψ
(
(−1)

d
2

)
(G1(ψ, χ))d

∑
s 6=0

χ
(
‖m‖
4s

) ∑
t∈Fq

µ(t)χ(st), for d even

where we used that for each s 6= 0, ψd(s) = ψ(s) for d odd, and ψd(s) = 1 for d even. Since∑
t∈Fq

ψ(t)χ(st) = ψ(s−1)G1(ψ, χ) and
∑

t∈Fq
µ(t)χ(st) = q for each s 6= 0, using the estimation of

Gauss sums, we conclude that ∑
t

|St|Ŝt(m) ≤ 1− q−1,

where we also used that
∑
r 6=0

χ
(
‖m‖
4r

)
≤ (q − 1). Thus the proof of Lemma 4.2 is complete.
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