
ENERGY GROWTH IN SCHRÖDINGER’S EQUATION WITH
MARKOVIAN FORCING.

M. BURAK ERDOG̃AN, ROWAN KILLIP, WILHELM SCHLAG

Abstract. Schrödinger’s equation is considered on a one-dimensional torus

with time dependent potential v(θ, t) = λV (θ)X(t) where V (θ) is an even
trigonometric polynomial and X(t) is a stationary Markov process. It is shown

that when the coupling constant λ is sufficiently small, the average kinetic

energy grows as the square-root of time. More generally, the Hs norm of the
wave function is shown to behave as t s/4.

1. Introduction

We study the long term behaviour of a quantum mechanical particle moving on
the circle in the presence of a time-dependent potential. The evolution of the wave
function ψ is described by the Schrödinger equation

(1) i
dψ

dt
(θ, t) = −d

2ψ

dθ2
(θ, t) + v(θ, t)ψ(θ, t).

where we regard the circle as R/2πZ. We are interested in how the kinetic energy,

(2)
∫ π

−π

∣∣∂θψ(θ, t)
∣∣2dθ = ‖ψ‖2

H1(dθ)(t)− ‖ψ‖2
L2(dθ)

grows as a function of time. In fact, we will determine the behaviour of all Sobolev
norms. Note that since v will be real, ‖ψ‖L2 is conserved.

In two recent papers ([3, 4] see also [5, Appendix 1]), Bourgain studied the case
where v(θ, t) is analytic/smooth in θ and quasi-periodic/smooth in t. In particular,
he showed [4] that if

sup
θ,t

∣∣∂α
θ ∂

β
t v(θ, t)

∣∣ <∞ for all α, β = 0, 1, . . .,

then for any s, ε > 0, ‖ψ‖Hs = O(tε) as t→∞. (This result holds in any number of
space dimensions.) Conversely, it is shown [3] that energy may grow logarithmically
even for t-almost periodic and θ-smooth choices of v. Bourgain also gave an example
of a random model exhibiting polynomial growth [4], which we will discuss in due
course.

In contradistinction to Bourgain, we are primarily interested in the case where
v(θ, t) is not a smooth function of t. To show that energy growth is a generic
phenomenon, there seems no real alternative than to consider a random model. We
consider

(3) v(θ, t) = λX(t)V (θ)
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where X(t) is a stationary Markov process and V (θ) is an even trigonometric poly-
nomial and show that if the coupling constant λ is sufficiently small then, on av-
erage, the energy grows as the square root of time. One physical interpretation of
this model is as a rigid rotator coupled to a classical heat bath.

Let us describe our requirements for the process X(t). We will also take the
opportunity to introduce some notation.

Hypothesis 1. The process X(t) is a stationary Markov process with state space
S ⊆ R and stationary distribution dµ. It is further assumed that:

(i) the Markov process is generated by a self-adjoint operator B on L2(S; dµ);
(ii) the generator B is positive semi-definite with discrete spectrum;
(iii) zero is a simple eigenvalue of B;
(iv)

∫
x dµ(x) = 0 and

∫
x2 dµ = 1;

(v) the function u(x) = x belongs to the quadratic form domain of B; and
(vi) the co-ordinate operator x : u(x) 7→ xu(x) is relatively B-bounded with relative

bound 0.
Expectation with respect to this process will be denoted by E, the eigenvalues of B
by 0 = κ0 < κ1 ≤ · · · ≤ κN ≤ · · · (repeated according to multiplicity) and the
corresponding eigenvectors by uN . Of necessity, u0(x) ≡ 1.

Remarks: 1. By ‘generator of the Markov process’ we mean the operator associated
with the forward Kolmogorov equation. Many probability books use the generator
associated with the backward equation. As the two operators are the adjoints of
one another and we assume that B is self-adjoint, the distinction is moot here.

The meaning of B and µ is perhaps best described with a sample calculation (see
also (10) below). The probability thatX(t) ∈ A is equal to µ(A) and the probability
density (with respect to µ) for X(t) given that X(t) ∈ A is χA(x)

/
µ(A). For s > t,

the probability density for X(s) given that X(t) ∈ A is
[
e−B(s−t)χA

]
(x)/µ(A) and

so the probability that the process passes through the sets A1, A2 at times t1 < t2
is ∫

χA2(x)
[
e−B(t2−t1)χA1

]
(x)dµ(x).

2. Regarding (ii) and (iii), the existence of a spectral gap (i.e., that zero is at an
isolated point in the spectrum) is essential both for our analysis and, we believe,
for the result. However, while ample for our interests, the assumption that the
spectrum is discrete is presumably unnecessary.

3. Our arguments remain valid if one chooses X(t) to be the projection under
a suitable map of a stationary Markov process on a more general state space. The
simplest such modification is to retain the state space S but consider Y (t) = f(X(t))
for some f :R → R. Such a change would not affect the arguments presented here
provided the analogues of (iv), (v), and (vi) held. That is, provided

∫
f dµ = 0,∫

f2 dµ = 1, f belongs to the quadratic form domain of B, and u(x) 7→ f(x)u(x)
is a relatively B-bounded operator with relative bound zero. Some remarks about
the possibility of treating other functions f are offered at the end of this section.

4. Condition (iv) says that X(t) has mean zero and unit variance.
5. The requirement, (v), that u(x) = x be in the quadratic form domain of B

ensures that sample paths of the process are not too rough. Specifically, it controls
the high-frequency asymptotics of the power spectrum (see below). Exactly how
this enters our analysis is described at the end of Subsection 3.1.
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6. The last condition, (vi), has been chosen to obviate functional analytic minu-
tiae in the definition of Lλ in (14) below. Since λ will later be chosen small, merely
assuming x is relatively B-bounded (with any bound) would permit the same ele-
mentary analysis.

The most basic example is the following: take S = {−1, 1} and

B =
[

1 −1
−1 1

]
in the natural basis for `2(S). With these definitions, X(t) flips between +1,−1
with exponential waiting times.

The Ornstein-Uhlenbeck process also obeys Hypothesis 1. Here S = R and

B = −∂
2

∂x2
+ x

∂

∂x

The stationary distribution is dµ = (2π)−1/2 exp{−x2/2} dx, the standardized
Gaussian. The eigenvalues are κN = N with corresponding eigenvectors uN (x) =
(N !)−1/2HeN (x), the L2-normalized Hermite polynomials (our notation is that of
Abramowitz and Stegun [1]). The three term recurrence for these polynomials,

(4) xuN (x) =
√
N uN−1(x) +

√
N + 1uN+1(x),

shows that x is indeed relatively bounded with bound zero.
Theorem. Let X(t) be a process obeying Hypothesis 1 and let V (θ) be an even
trigonometric polynomial. If the coupling constant λ is sufficiently small then for
any initial wave-function ψ0 ∈ Hs,

(5) 1
T

∫ ∞

0

e−t/T E
{
‖ψ(·, t)‖2

Hs

}
dt � λsT s/2‖ψ0‖2

L2 + ‖ψ0‖2
Hs

as T →∞. The expectation is over possible trajectories of the Markov process X(t).
In particular, the energy grows on average as the square-root of time.
Remarks: 1. We write x � y if and only if x . y and y . x. The notation x . y
means that there exists C > 0 so that x ≤ Cy.

2. Since adding a constant (even if time-dependent) to the Hamiltonian has no
physical effect—it just changes the phase of the wave function—we may assume
that

∫
V (θ) dθ = 0.

3. In the interest of clarity, we will not prove the theorem in this generality, but
rather in the special case that V (θ) = cos(θ) and X(t) is the Ornstein–Uhlenbeck
process. This simplifying assumption will be invoked at the beginning of Section 3,
where the computational part of the proof begins. Some further remarks on the
general case are given at the end of Subsection 3.1.

4. Extending the method we present to arbitrary (i.e., not necessarily even)
trigonometric polynomials, V , however, requires more than just computational
stamina; in this setting, the operator H introduced in Section 3 is no longer a
finite difference operator.

For heuristic reasons that we will describe in a moment, it is natural to believe
that the rate of energy growth is determined by the power spectrum of the forcing
process. The power spectrum is the non-random function

(6) S(ω) = lim
T→∞

1
4T

∣∣∣ ∫ T

−T

eiωtX(t) dt
∣∣∣2 ω ∈ R.
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The limit is in the following sense: for any continuous function φ of compact support

1
4T

∫ ∣∣∣ ∫ T

−T

eiωtX(t) dt
∣∣∣2φ(ω) dω →

∫
φ(ω)S(ω) dω

almost surely [9, §X·7].
By the Wiener–Khinchin Theorem, S is the Fourier transform of the two-time

correlation function E
(
X(t)X(t+ τ)

)
so it is easy to show that

(7) S(ω) =
∑
N

|x̂N |2
κN

ω2 + κ2
N

where x̂N are the Fourier coefficients of x with respect to the B eigenfunctions:
x̂N =

∫
xuN (x) dµ. This means that S(ω) � |ω|−2 as |ω| → ∞. (In fact, ω2S(ω) →

〈x|B|x〉 which is finite by (v) of Hypothesis 1.)
At small coupling, λ, significant energy growth can only occur as the result of

a cumulative effect over a long time period. A particle of unit mass and momen-
tum p experiences a cosine potential as being time-dependent with typical angular
frequency ω = p. Now if the potential has a time dependent coupling constant
given by a process X(t), only the part of that process with characteristic frequency
ω will have a cumulative effect—the effect of the parts at other frequencies will
average out to zero, at leading order. In this way, it is natural to intuit that the
rate at which the particle gains energy is proportional to the amount of power in
the process at that frequency. As energy is proportional to momentum squared we
expect

d

dt
p2 ∝ S(p) � p−2

which implies ṗ � p−3. This leads to p � t1/4 and so the prediction that energy
should grow as the square-root of time.

More generally, the argument of the preceding paragraph suggests that processes
with S(ω) � |ω|−γ give rise to p � t1/(2+γ). T. Spencer informed us that V. Za-
kharov predicted such behaviour during a private discussion of this problem. We
are not privy to his reasoning.

Bourgain’s random model [4, Part II] is far from being stationary. In essence,
his model may be described by V (θ) = cos(θ) and X(t) by

∑
gjγj(t) where gj

are normalized Gaussian random variables and γj are disjointly supported bump
functions. Although the functions γj are all of approximately unit norm in Hs, they
are not evenly spaced. Indeed, for s = 1, supp(γj) is approximately [j4/5, (j+1)4/5].
This means that X(t) is not uniformly locally Hs. Consequently, it doesn’t offer a
very clear view, to our eyes at least, of the role of temporal smoothness in the rate
of energy growth.

However, it is possible to fit Bourgain’s result into the heuristic described above
by introducing a local power spectrum

S(x, t) = E
∣∣∣∣∫ X(t+ τ)eiωτφ(τ) dτ

∣∣∣∣2
where φ is positive, C∞, supported by [−2, 2], and equal to 1 on [−1, 1]. For the
model under discussion, one finds that there are � t1/(2+2s) many γj ’s supported
in a unit neighbourhood of t and that each |γ̂(ω)|2 is of size t−(2s+1)/(2s+2) over
the interval [−t1/(2s+2),+t1/(2s+2)] and essentially zero outside this interval. By
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modifying the above argument to say pṗ ∝ S(p, t) we find that pṗ � t−s/(s+1) and
so ‖ψ′‖ � t1/(2s+2) as proved by Bourgain.

Earlier we mentioned that the model under consideration may be interpreted as
a rigid rotator coupled to a classical heat bath. We should say that for the case
we treat, the bath is at an infinite temperature and so it is reasonable to expect
that the energy increases indefinitely. The power spectrum of a finite temperature
bath would have exponential tails. (For example, the well known Planck law:
S(ω) ∝ ω3/(eω/T − 1) where T denotes the temperature.) This leads us to ask
what would happen in the presence of a finite temperature heat bath.

A finite temperature bath may be modelled by a stationary mixing process
all of whose sample paths are analytic in the strip R + i[−α, α]. (For example,
X(t) =

∫
Y (t+s)(s2+1)−1 ds where Y (t) is the two-state process described above.)

Naive physical intuition suggests that thermal equilibrium might be achieved and
in particular, that while there may be rare excursions to high energy the energy
should remain bounded on average. We believe that this is not the case and that
in fact, the energy tends to infinity with probability one. This is what the heuristic
given above predicts.

The paper is arranged as follows: in the next section, we show that the combined
evolution of the wave-function and the stochastic process is governed by a semigroup
and derive an explicit expression for its generator, Lλ. It is further shown that the
time averaged quantity discussed in the theorem admits a simple expression in
terms of the resolvent of this generator.

In Section 3 we study the properties of the resolvent of Lλ and, in particular,
show that to leading order in λ it is given by the resolvent of a certain finite
difference operator, H. It turns out that H is the generator of a continuous time
random walk and so, at leading order in λ, the evolution may be described as a
random walk in momentum space (c.f. the first remark after Lemma 3.4). Note
however that the hopping rate decays as the reciprocal of momentum squared.

The main technical parts of the paper are the study of the long-term properties of
the random walk with generator H and the derivation of estimates which permit us
to control the discrepancy between this and the true evolution, which is generated
by Lλ. The method we employ to achieve the former goal appears to be new and
may be of interest to those studying random walks or diffusion.

The division of this technical material between the final two sections, 4 and 5,
is not by ‘random walk’ vs. ‘discrepancy estimates’ but rather by the nature of the
estimates involved. This is more natural in terms of the proofs.

Section 4 derives weighted-norm inequalities for the resolvent ofH (Corollary 4.3)
and for the difference between this and the resolvent of Lλ (Corollary 4.4). Sec-
tion 5 uses these norm estimates to obtain the pointwise estimates necessary to
prove the theorem. The section closes by restating the theorem and finishing its
proof.

The material of Section 2 and of the beginning of Section 3 is is essentially
standard fare. However, it particularly parallels the work of Tcheremchantsev [12,
13, 14] since, in a crude sense, his model resembles the Fourier transform of ours.

The question we address is by no means the only interesting problem of its type.
It is natural to ask to what extent the heuristic described above gives the correct
behaviour and, in particular, whether Zakharov’s prediction is true. While it is
presumably impossible to give lower bounds for energy growth purely in terms of
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the smoothness properties of V (x, t), one might hope that such deterministic upper
bounds are possible.

It seems that the methods presented here could be extended to cover certain pro-
cesses with rougher time dependence; see below. Treating processes with smoother
time dependence would necessitate giving up the assumption of the existence of a
spectral gap. This is a rather daunting proposition. For the analogous problem on
Rn/Zn, n ≥ 2, the operator corresponding to H is rather complicated. (Even its
domain, the kernel of L0, is not simple; it depends on the number of ways an integer
can be represented as a sum of n squares.) Studying the behaviour of its Green
function would require a better understanding of its structure than we currently
possess. Even more difficult is the corresponding problem in Rn. In the case that
the potential is supported inside a compact time-independent interval, Bourgain [6]
has shown that as a result of dispersion, the energy can be bounded by tε, ε > 0
no matter how rough the time dependence of the potential.

We now wish to offer a few remarks about possibility of treating processes of the
form f(X(t)) when f is rather rough. Please note that these remarks are somewhat
conjectural. Pursuing them would necessitate a considerable enterprise; one that
we do not intend to undertake in the foreseeable future.

Let X(t) be the Ornstein-Uhlenbeck process and consider Y (t) = f(X(t)) for
some measurable function f : R → R that is not too large at infinity, say f ∈
L∞(dµ). It is not difficult to show that the power spectrum of Y (t) is given by

S(ω) =
∞∑

N=0

∣∣f̂(N)
∣∣2 N

N2 + ω2

where f̂(N) = 〈uN |f〉 (c.f. (7)). If f is in the quadratic form domain of B then∑
N |f̂(N)|2 <∞ and S(ω) � ω−2. As promised in Remark 3 after Hypothesis 1,

the analysis doesn’t change.
If f is rough then it will not belong to the quadratic form domain of B (a second-

order elliptic differential operator) and so the sum above will not converge. In the
simplest case, V (θ) = cos(θ), this affects the analysis in the following way: the
off-diagonal coefficients of the operator H are given by

an = 2λ2
∑
N≥1

(N + β)|f̂(N)|2

(N + β)2 + (2n+ 1)2
∼ 2λ2S(2n+ 1)

(c.f. (40)). If f̂(N) � N−α with α ∈ (1/2, 1), then S(ω) � ω−2α and so an � n−2α.
This means that the large-n hopping rate is enhanced relative to the case where
f is in the quadratic form domain of B (in that case, an � n−2). Proceeding
formally, we infer that the weight ρ in Sections 4 and 5 should be changed to
cmin{n,

√
βλ−1n1+α} and so ultimately that, on average, the kinetic energy grows

as tσ with σ = 1/(1 + α). This is exactly the exponent one would predict from the
power spectrum asymptotics by the heuristic given above.

Acknowledgements: The authors are grateful to the Institute for Advanced
Study (Princeton), where this work was commenced, and in particular, to Thomas
Spencer for his interest in this problem. B.E. and R.K. were supported, in part, by
NSF Grant DMS-9729992, W.S. was supported by NSF Grant DMS 0070538 and
a Sloan fellowship.
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2. Reformulation

Just as classical probability distributions are described by normalized positive
measures, i.e., normalized positive linear functionals on random variables, so quan-
tum mechanical distributions are described by normalized positive linear functionals
on the space of observables (bounded linear operators). These are called density
matrices, they are the positive trace-class operators and are normalized to have
trace equal to one. The expected value of an observable A is given by tr(Aρ). For
example, a system in the quantum state |ψ〉 is described by ρ = |ψ〉〈ψ|, the projec-
tion on to the linear space spanned by |ψ〉. More generally, a system in states |ψi〉
with probabilities pi is described by ρ =

∑
i pi|ψi〉〈ψi|. Notice that the expected

value of an observable A is given by tr(Aρ) =
∑

i pi〈ψi|A|ψi〉. The only natural
choice!

As is usual in this business, we consider the space of density matrices as a subset
of the space of Hilbert–Schmidt operators. This affords us the pleasure of working
in a Hilbert Space (the inner product is given by 〈ρ|σ〉 = tr(ρ†σ)). We will denote
the space of Hilbert–Schmidt operators on L2(R/2πZ) by I2

(
L2(R/2πZ)

)
or, more

often, I2 for short.
The state of the Markov process X is described by its probability density u(x), a

non-negative function in L2(S; dµ) with
∫
u(x) dµ = 1. While the quantum system

is described by its density matrix ρ, a non-negative operator in I2 with tr(ρ) = 1
(in particular, ρ ∈ I1). The state of the combined system of the Markov process
and the quantum particle at any time t is described by an element of the Hilbert
space L2(S; dµ)⊗ I2. We will denote this element by P(t). For example, when the
process and quantum system are independent of one another, P = u⊗ ρ. The most
general P is the limit of convex combinations of tensor products.

A particular case is when the quantum system is in an initial state ψ0 and the
process X is in its stationary distribution. This is represented by

P(t = 0) = u0 ⊗ ρ0 where ρ0 = |ψ0〉〈ψ0| and u0(x) ≡ 1.

Note that at positive times, P need no longer be a tensor product. This is because
of the states of quantum particle and the forcing process become correlated.

To help explain the meaning of P we now describe how to calculate expectations.
A natural class of random variables/observables is f(X)A for some f ∈ L2(dµ)

and A ∈ I2. In the independent case, P = u⊗ ρ, it is clear that the average value
of f(X)A is given by∫

f(x)u(x) dµ(x) · tr
(
Aρ

)
=

〈
f̄ ⊗A†

∣∣P〉
L2(dµ)⊗I2

Linearity then forces the same choice for general P, namely

(8) E
{
f(X(t))〈ψ(t)|A|ψ(t)〉

}
=

〈
f̄ ⊗A†

∣∣P (t)
〉

L2(µ)⊗I2

Similarly, the average value of more complicated observables such as
∑

j fj(X)Aj

is determined by linearity.
Of course, we are mainly interested in observables that are not Hilbert–Schmidt;

for example, the kinetic energy. These can be dealt with using a simple approxi-
mation argument.

To determine the evolution equation for P, we perform the following calculation:
let f ∈ L2(dµ) be from the domain of B and let A ∈ I2 be such that [H0, A] ∈ I2,
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then
d

dt
E

{
f
(
X(t)

)〈
ψ(t)

∣∣A∣∣ψ(t)
〉}

(9)

= E
{
− [Bf ]

(
X(t)

)〈
ψ

∣∣A∣∣ψ〉
+ f

(
X(t)

)〈
ψ̇

∣∣A∣∣ψ〉
+ f

(
X(t)

)〈
ψ

∣∣A∣∣ψ̇〉}
= E

{
− [Bf ]

(
X(t)

)〈
ψ

∣∣A∣∣ψ〉
+ if

(
X(t)

)〈
ψ

∣∣(H0 + λX(t)V )A
∣∣ψ〉

− if
(
X(t)

)〈
ψ

∣∣A(H0 + λX(t)V )
∣∣ψ〉}

= E
{
− [Bf ]

(
X(t)

)〈
ψ

∣∣A∣∣ψ〉
+ if

(
X(t)

)〈
ψ

∣∣[H0, A]
∣∣ψ〉

+ iλX(t)f
(
X(t)

)〈
ψ

∣∣[V,A]
∣∣ψ〉}

where we have used a dot to denote the time derivative, H0 to denote the free
Hamiltonian (the Laplacian, − d2

dθ2 ) and V represents the operator of multiplication
by the spatial part of the potential, V (θ) = cos(θ). Also, [A,C] = AC−CA denotes
the commutator of the operators A,C. In the first equation we used the fact that
∂t E{f(X(t))} = −E{[Bf ](X(t))}. Strictly speaking, this should be B† since

d

dt

∫
f(x)u(x, t) dµ(x) =

∫
f(x)

∂u

∂t
(x, t) dµ(x)(10)

= −
∫
f(x)[Bu](x, t) dµ(x)

= −
∫

[B†f ](x)u(x, t) dµ(x)

However, we assumed B to be self-adjoint so there is no need to distinguish.
Equation (9) shows that the time derivative of the average value of an observable

f(X)A is given by the average value of another observable,

−[Bf ](X)A+ if(X)[H0, A] + iλXf(X)[V,A].

In order that we obtain the same relation when calculating averages with P, as
described in (8), we must have〈

f̄ ⊗A†
∣∣∣d
dt

P
〉

=
〈
− (Bf̄)⊗A† − if̄ ⊗ [H0, A]† − iλ(xf̄)⊗ [V,A]†

∣∣∣P〉
=

〈
− (Bf̄)⊗A† + if̄ ⊗ [H0, A

†] + iλ(xf̄)⊗ [V,A†]
∣∣∣P〉

.(11)

Taking adjoints in L2(dµ)⊗I2 and then choosing f ⊗A from a dense subset of this
space, we find that

d

dt
P = −

{
B ⊗ I + iI ⊗ [H0, · ] + iλx⊗ [V, · ]

}
P(12)

where x denotes the operator u(x) 7→ xu(x) in L2(dµ). In passing from (11) to (12)
we used the following observation: For any operator C on L2(R/2πZ) the adjoint
of map ρ 7→ [C, ρ] on I2 is given by ρ 7→ [C†, ρ]. The demonstration of this is
simple:

(13) 〈σ|[C, ρ]〉 = tr{σ†(Cρ− ρC)} = tr{(σ†C − Cσ†)ρ} = 〈[C†, σ]|ρ〉.
In particular, if C is self-adjoint on L2 then [C, ·] is self-adjoint on I2.

A more general derivation of the master equation, (12), for a quantum system
subjected to Markovian forcing is given in [11]. It is natural to call this a master
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equation from its similarity to the purely classical and purely quantum mechanical
equations of the same name. For a highly readable account of both classical and
quantum mechanical stochastic processes with a strong physical motivation, we
recommend [10].

To simplify notation, we rewrite the evolution of P as

d

dt
P = −LλP where Lλ = B ⊗ I + iI ⊗ [H0, · ] + iλx⊗ [V, · ].(14)

The linear operator Lλ so defined is m-accretive and has domain D(B) ⊗ H2. In
fact, it is the sum of a non-negative operator, B⊗I, and a skew-adjoint (A† = −A)
operator,

iI ⊗ [H0, · ] + iλx⊗ [V, · ].
Maximality follows from (vi) of Hypothesis 1. This said, we see that Lλ generates
a contraction semigroup so we can write

P(t) = e−tLλP(0).

Combining the equation above with (8) we infer that for any Hilbert–Schmidt
observable A,

1
T

∫ ∞

0

e−t/T E
{
〈ψ(t)|A|ψ(t)〉

}
dt

= 1
T

∫ ∞

0

e−t/T
〈
u0 ⊗A†

∣∣P(t)
〉
dt

= 1
T

∫ ∞

0

e−t/T
〈
u0 ⊗A†

∣∣ e−tLλ
∣∣P(0)

〉
dt

=
〈
u0 ⊗A†

∣∣∣ β

Lλ + β

∣∣∣P(0)
〉

(15)

where β = 1
T . (Accretiveness ensures that Lλ + β is invertible.) This trick, which

is standard, is behind our choice of time averaging.
As it diagonalizes the Laplacian, it is only natural that we choose to work in a

Fourier basis. It will also simplify the study of the Hs norms. Because V (θ) is as-
sumed even, the Hamiltonian is symmetric under the reflection θ 7→ −θ. Therefore,
the natural choice of orthonormal basis for L2(R/2πZ) is

(16) |n〉 =


(2π)−1/2 : n = 0
π−1/2 cos(nθ) : n = 1, 2, . . .
π−1/2 sin(|n|θ) : n = −1,−2, . . .

The reflection symmetry of the Hamiltonian actually means that the odd and even
subspaces are invariant under the evolution. This is at the origin of the invariant
subspaces described in Lemma 3.1 below.

The natural basis for B is in terms of its eigenfunctions uN , N = 0, 1, . . . . There-
fore, we introduce the following orthonormal basis for the Hilbert space L2(µ)⊗I2:

(17) |N,n,m〉 = uN (x)⊗ |n〉〈m| for n,m ∈ Z and N = 0, 1, . . .

with |n〉 and 〈m| defined as in (16).
With this notation, we can now reformulate the behaviour of Hs norms in terms

of the operator Lλ:
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Proposition 2.1. For a quantum particle initially in the state ψ(t = 0) = ψ0 ∈ Hs

and for X(t = 0) chosen independently according to the stationary distribution,

(18) β

∫ ∞

0

e−βt E
∥∥ψ(t)

∥∥2

Hs dt =
∑

n

(1 + |n|2s)
〈
0, n, n

∣∣∣ β

Lλ + β

∣∣∣P(0)
〉
.

where P(0) = u0 ⊗ |ψ0〉〈ψ0|. Note that β plays the role of 1
T in the Theorem.

Proof. This follows immediately from (15): For N > 0, let

A =
N∑

n=−N

(1 + |n|2s) |0, n, n〉〈0, n, n|

and then use the monotone convergence theorem to take N →∞. �

3. The operator Lλ

In the previous section, we reduced the study of the average behaviour of Hs

norms to the consideration of the resolvent of the operator Lλ. The purpose of
this section is to isolate the dominant terms in this resolvent; the main technical
estimates appear in the next two sections.

For expository reasons, we make the following:

Hypothesis. For the remainder of this paper we shall consider only the case where
V (θ) = cos(θ) and X(t) is the Ornstein–Uhlenbeck process.

Some remarks about the general case are given after Lemma 3.4.
To a first approximation, we will treat Lλ as a perturbation of L0, (that is, Lλ

with λ = 0). For this reason, we introduce the notation

(19) J = 1
iλ

(
Lλ − L0

)
= x⊗ [V, · ] which implies Lλ = L0 + iλJ.

Notice that J is a self-adjoint operator. For convenience, we will always take λ ≥ 0.

Lemma 3.1. The basis |N,n,m〉 of (17) diagonalizes the operator L0. Specifically,

L0|N,n,m〉 =
{
B ⊗ I + iI ⊗ [H0, · ]

}
|N,n,m〉(20)

=
{
N + i(n2 −m2)

}
|N,n,m〉.

Also, each of the four subspaces

span{|N,n,m〉 : N ≥ 0, n,m ≥ 0}, span{|N,n,m〉 : N ≥ 0, n ≥ 0,m < 0},
span{|N,n,m〉 : N ≥ 0, n,m < 0}, span{|N,n,m〉 : N ≥ 0, n < 0,m ≥ 0}

is invariant under J and hence also under Lλ = L0 + iλJ .

Proof. The first part is self-evident (recall κN = N for Ornstein-Uhlenbeck). The
second is a reflection of the fact that because V (θ) is even, V |n〉 and |n〉 have the
same parity: even if n ≥ 0 and odd if n < 0. �

As we are interested in Hs norms, Proposition 2.1 shows that we need only
consider how Lλ acts in two of these invariant subspaces, namely span{|N,n,m〉 :
N ≥ 0, n,m ≥ 0}, which corresponds to the even part of the wave function, and
span{|N,n,m〉 : N ≥ 0, n,m < 0}, which corresponds to the odd part.
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In calculating (Lλ + β)−1 in each of these subspaces, a major role is played by
the kernel of L0. This is given by span{|0, n, n〉 : n ∈ Z}. To isolate this part we
define projections

P onto span{|0, n, n〉 : n ≥ 0},

P⊥ onto span{|N,n,m〉 : n,m ≥ 0 and either N > 0 or n 6= m},
Q onto span{|0, n, n〉 : n < 0}, and

Q⊥ onto span{|N,n,m〉 : n,m < 0 and either N > 0 or n 6= m}.

Notice that PP⊥ = 0 and P + P⊥ is the projection onto span{|N,n,m〉 : N ≥
0, n,m ≥ 0}, the invariant subspace associated with the even part of the wave
function. Similarly, QQ⊥ = 0 and Q + Q⊥ projects onto span{|N,n,m〉 : N ≥
0, n,m < 0}. Further note that the ranges of both P and Q lie within the kernel
of L0.

It is now easier to treat the two parts of Lλ separately. We begin with the ‘even’
part that is, the part invariant under P + P⊥. This is followed by a parallel but
abbreviated discussion of the ‘odd’ part.

3.1. Even. On the range of P + P⊥, we can write Lλ in block form

(21)
[

0 iλPJP⊥

iλP⊥JP P⊥LλP
⊥

]
where we noted that since

∫
V (θ) dθ = 0, PJP = 0. (This may also be derived

from the fact that
∫
x dµ = 0.) Of course, L0P is also zero since P is a projection

onto a subset of the kernel of L0.
By the well-know formulae for block inversion,

P (Lλ + β)−1P =
{
β + λ2PJP⊥R⊥λ (β)P⊥JP

}−1

(22)

where R⊥λ (β) = (P⊥LλP
⊥ + β)−1 is the resolvent of the operator appearing in the

bottom right corner. Here, as elsewhere in this section, we regard the operator
inside the braces on the right hand side of (22) as an operator acting on the range
of P for the purposes of inversion. Similarly, Rλ is the inverse of an operator acting
on the range of P⊥.

The formulae for block inversion also show that

P (Lλ + β)−1P⊥ = −iλ
{
β + λ2PJP⊥R⊥λ (β)P⊥JP

}−1

PJP⊥R⊥λ (β).(23)

Note the occurrence of our earlier expression (22) as a factor here. Indeed, control
of (23) will be a simple by-product (see Lemma 5.4) of the analysis of (22) to which
we now direct our attention. (We do not need the other two matrix entries of
(Lλ + β)−1, that is, those mapping onto the range of P⊥: These are irrelevant to
(18) of Proposition 2.1 because |0, n, n〉 is orthogonal to the range P⊥.)

As we will eventually demonstrate, one can control (22) by replacing R⊥λ (β)
by R⊥0 (β) and then treating the error as a small perturbation. With this as our
inspiration, we define H : Range(P ) → Range(P ) by

(24) H = λ2PJP⊥R⊥0 (β)P⊥JP.
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(Notice that H depends on both λ and β.) Equation (22) can now be written as

P (Lλ + β)−1P

=
{
H + β + λ2PJP⊥

[
R⊥λ (β)−R⊥0 (β)

]
P⊥JP

}−1

(25)

=
∞∑

j=0

(
H + β

)−1
{
− λ2PJP⊥

[
R⊥λ (β)−R⊥0 (β)

]
P⊥JP

(
H + β

)−1
}j

.(26)

The convergence of this infinite resolvent series will not be justified until we derive
certain estimates in the next section; we merely offer it as a sign-post of where we
are headed.

In addition to H, the next two sections employ the operator

(27) D = λR⊥0 (β)P⊥JP

which is to be regarded as mapping Range(P ) → Range(P⊥). The importance of
this operator will become clearer as we proceed.

We now give a trio of lemmas. The first describes the behaviour of J on the
range of P + P⊥, which it leaves invariant. The others give explicit formulas for
the way the operators D and H act on their domain, that is, on the range of P .
Lemma 3.2. For any N,n,m ≥ 0,

J |N,n,m〉 =
√
N + 1

{
cn|N + 1, n+ 1,m〉+ cn−1|N + 1, n− 1,m〉(28)

− cm|N + 1, n,m+ 1〉 − cm−1|N + 1, n,m− 1〉
}

+

+
√
N

{
cn|N,n+ 1,m〉+ cn−1|N,n+ 1,m〉

− cm|N,n,m+ 1〉 − cm−1|N,n,m− 1〉
}

where the co-efficients ck are given by

ck =


0 : k = −1
1√
2

: k = 0
1
2 : k > 0

Proof. Recall that J = x⊗ [V, · ]. The proof is a mundane calculation based on the
following two formulae: First, as was stated above, (4),

xuN (x) =
√
N uN−1(x) +

√
N + 1uN+1(x)

and second,

cos(θ)|n〉 = cn|n+ 1〉+ cn−1|n− 1〉 =


1√
2
|1〉 : n = 0

1√
2
|0〉+ 1

2 |2〉 : n = 1
1
2 |n+ 1〉+ 1

2 |n− 1〉 : n ≥ 2

in the ket notation of (16). �

Lemma 3.3. The operator D acts like a vector-valued first order finite difference
operator. Specifically, one with two components: if |ψ〉 =

∑
ψn|0, n, n〉 then

〈1, n+ 1, n|D|ψ〉 = αn

[
ψn − ψn+1

]
(29)

〈1, n, n+ 1|D|ψ〉 = ᾱn

[
ψn+1 − ψn

]
(30)
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where

(31) αn =
λ

2
1

1 + β + i(2n+ 1)

{√
2 : n = 0

1 : n > 0

and all other co-efficients 〈N,n,m|D|ψ〉 are zero.

Proof. This follows from the previous lemma plus the fact that

R⊥0 (β)|N,n,m〉 =
1

N + β + i(n2 −m2)
|N,n,m〉

�

Lemma 3.4. The operator H is a discrete second order difference operator in
divergence form. Indeed, H = (1+β)D†D or, more explicitly, if |ψ〉 =

∑
ψn|0, n, n〉

then

〈0, n, n|H|ψ〉 =

{
a0ψ0 − a0ψ1 n = 0
(an + an−1)ψn − an−1ψn−1 − anψn+1 n ≥ 1

where an = 2(1 + β)|αn|2.

Proof. Define an operator S by S|N,n,m〉 = |N,m, n〉; that is, S swaps n and
m. From (28) one sees that SJP = −JP and, by taking adjoints for example,
PJS = −PJ so

H = λ2PJP⊥R⊥0 (β)P⊥JP(32)

= λ2PJSP⊥R⊥0 (β)P⊥SJP(33)

= λ2PJP⊥R⊥0 (β)†P⊥JP(34)

In the last line here we used SR⊥0 (β)S = R⊥0 (β)† which is easily checked since both
are diagonal in the |N,n,m〉 basis. Now we may write

H = 1
2λ

2PJP⊥
[
R⊥0 (β) +R⊥0 (β)†

]
P⊥JP(35)

= (1 + β)λ2PJP⊥R⊥0 (β)†R⊥0 (β)P⊥JP(36)

= (1 + β)D†D.(37)

Equation (36) requires some explanation: from (28) we know that the range of
P⊥JP is spanned by vectors of the form |1, n,m〉 and for such vectors we have

1
2

[
R⊥0 (β) +R⊥0 (β)†

]
|1, n,m〉 =

1 + β

(1 + β)2 + (n2 −m2)2
|1, n,m〉(38)

= (1 + β)R⊥0 (β)†R⊥0 (β)|1, n,m〉.(39)

The explicit formula for H follows easily from H = (1+β)D†D and the formula
for D given in the previous lemma. �

Remarks: 1. If we consider the matrix representation of H in the |0, n, n〉 basis,
the off-diagonal entries are non-positive and the sum of entries in each column
(and row) is zero. This makes H the generator of a continuous time Markov chain.
Indeed, from the state |0, n, n〉 there are two possible transitions: to |0, n+1, n+1〉,
which occurs at rate an, and to |0, n−1, n−1〉 with rate an−1. In this way one can
interpret the Markov chain as a continuous time random walk in which the hopping
rate decays as n → ∞. The physical interpretation of this is that H, which is a
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good approximation to PLλP , represents a spatially inhomogeneous random walk
in momentum space.

2. For more general V and X, the expression (28) for operator J becomes far
more complicated since now both N and either n or m can change by an arbitrary
amount. (Notice that in (28), they change by one.) Apart from rendering the
explicit formulae unreadable, this generality creates no significant mathematical
problems. In particular, the operator D is still a vector-valued first order finite
difference operator (c.f. Lemma 3.3). Actually, it is better to regard it as a sequence
of such operators, {DN : N > 0} corresponding to the final values of N such that
D, as defined by (27), is equal to

∑
N DN . From (19),

P⊥JP |0, n, n〉 =
∑

N>0,k 6=0

x̂Ncn,k

{
|N,n+ k, n〉 − |N,n, n+ k〉

}
where cn,k = 〈n + k|V |n〉 and x̂N = 〈uN |x|u0〉 =

∫
xuN (x) dµ. This should be

compared with the formulae of Lemma 3.2 where cn,k and x̂N are only non-zero for
two values of k and N respectively. Note also that x̂0 = 0 so there is no need for
an N = 0 term in the sum. Similarly,

∫
V (θ) dθ = 0 implies cn,0 = 0.

Because V is a trigonometric polynomial, only values of k smaller than the degree
of V contribute to the sum given above. In this way, each DN can be regarded as
a vector of 2 deg(V ) finite difference operators:

〈N ′, n+ k, n|DN |ψ〉 = δN,N ′αN,n,k

[
ψn − ψn+k

]
.

〈N ′, n, n+ k|DN |ψ〉 = δN,N ′ ᾱN,n,k

[
ψn+k − ψn

]
.

where 1 ≤ k ≤ deg(V ) and

αN,n,k =
λx̂N

κN + β + i(2nk + k2)
cn,k.

All other matrix entries of DN are zero. The derivation of these formulae uses that
fact that for n ≥ k ≥ 1, cn+k,−k = cn,k.

3. In the general setting, H =
∑

N (κN + β)D†NDN . In this way, Lemma 3.4
continues to hold, but with

(40)

an =
deg(V )∑

k=1

∑
N≥1

2(κN + β)|αN,n,k|2

= 2λ2

deg(V )∑
k=1

|cn,k|2
∑
N≥1

(κN + β)|x̂N |2

(κN + β)2 + (2nk + k2)2
.

This is how (v) of Hypothesis 1 enters our analysis: an � n−2 as n → ∞ if and
only if

∑
κN |x̂N |2 < ∞. That is, if and only if u(x) = x belongs to the quadratic

form domain of B.

3.2. Odd. For the odd portion of the wave-packet, we must study Q(Lλ + β)−1Q.
Equations (21)–(27) continue to hold if P and P⊥ are replaced by Q and Q⊥

respectively. In particular, this defines new operators D and H associated to the
odd subspace. The exact form of these operators differs very slightly from those in
the even subspace. Indeed, they are slightly simpler as the following replacement
for Lemmas 3.3 and 3.4 demonstrates:
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Lemma 3.5. The operator D associated to the odd subspace acts as follows: if
|ψ〉 =

∑∞
n=1 ψn|0,−n,−n〉 then

〈1,−n− 1,−n|D|ψ〉 = αn

[
ψn − ψn+1

]
(41)

〈1,−n,−n− 1|D|ψ〉 = ᾱn

[
ψn+1 − ψn

]
(42)

where

(43) αn =
λ

2
1

1 + β − i(2n+ 1)

and all other co-efficients 〈N,n,m|D|ψ〉 are zero. Further, H = (1 + β)D†D so

(44) 〈0,−n,−n|H|ψ〉 = (an + an−1)ψn − an−1ψn−1 − anψn+1

where an = 2(1 + β)|αn|2 for n ≥ 1 and a0 = 0.

4. Norm estimates

This section is devoted to deriving weighted norm estimates involving the opera-
tors D and H = (1+β)D†D associated to the even portion of the wave packet (see
(24) and (27) in the last section). These are then used to obtain similar estimates
for P (Lλ + β)−1P .

The operators D and H associated to the odd portion of the wave so closely
resemble those for the even portion, that the same estimates can be derived with
only cosmetic changes to the proofs. We will not discuss these operators again in
this section.

The derivation of the weighted norm inequalities follows the well-known scheme
of Combes–Thomas [7] and Agmon [2]. In the section that follows this, we use
these weighted norm results to obtain pointwise estimates on (H + β)−1 and
P (Lλ +β)−1P . However, the standard reduction from norm-estimates to pointwise
estimates is unsuitable in our situation; the incorrect prefactor it gives renders it
useless. Part of our remedy to this problem involves obtaining derivative estimates
for the Green function. Indeed, as D acts essentially as a (vector-valued) differen-
tial operator (c.f. Lemma 3.3), this is how we encourage the reader to interpret
(50)–(52). We will discuss this further in the next section.

Given a weight function w : {0, 1, . . .} → (0,∞) we consider two weighted Hilbert
spaces: (i) Let `2w denote the range of P endowed with the norm

(45)
∥∥∥∑

n

ψn|0, n, n〉
∥∥∥2

`2w

=
∑

n

w(n) |ψn|2;

and (ii) let `2w̃ denote the span of {|N,n,m〉 : N,n,m ≥ 0} together with the norm

(46)
∥∥∥ ∑

N,n,m

ψN,n,m|N,n,m〉
∥∥∥2

`2w̃

=
∑

N,n,m

w̃(n,m) |ψN,n,m|2

where w̃(n,m) =
√
w(n)w(m). Notice that by Lemma 3.3, D : `2w → `2w̃ when

w(n) ≡ 1. In fact, this is true for a much broader class of weights.
The following lemma will be used in Corollary 4.4 to control the sum in (26).

Lemma 4.1. Consider the weight function w(n) = e2ρ(n) with

ρ(n) = cmin{n, λ−1n2
√
β}
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and c > 0 a (small) constant. There is an operator E : `2w̃ → `2w̃ such that

(47) −λ2PJP⊥
[
R⊥λ (β)−R⊥0 (β)

]
P⊥JP = D†ED

and, for λ sufficiently small (not depending on β),∥∥E∥∥2

`2w̃→`2w̃
. λ

where the implicit constant holds uniformly as c, λ, β → 0.

Proof. From the resolvent formula, one finds

[
R⊥λ (β)−R⊥0 (β)

]
=

∞∑
j=1

(−iλ)jR⊥0 (β)
{
P⊥JP⊥R⊥0 (β)

}j

.

This means that (47) holds with

E =
∞∑

j=0

(−iλ)j+1
[
R⊥0 (β)†

]−1
R⊥0 (β)

{
P⊥JP⊥R⊥0 (β)

}j

P⊥JP⊥

and, since
[
R⊥0 (β)†

]−1
R⊥0 (β) is a unitary operator in `2w̃, that we need only show

(48)
∥∥R⊥0 (β)P⊥JP⊥

∥∥2

`2w̃→`2w̃
. 1

We show this by employing the Schur test. Looking at the explicit formula, (28),
for J shows that (in the |N,n,m〉 basis) the matrix representing J has only finitely
many non-zero elements in each row. Indeed the number of non-zero elements is at
most eight (there could be fewer since c−1 = 0). The same holds for the columns
as well since J is self-adjoint in the unweighted space.

These matrix entries are of size
√
N + 1 (indeed, J is not bounded); however,

we have

R⊥0 (β)|N,n,m〉 =
1

N + β + i(n2 −m2)
|N,n,m〉

and
∣∣N + β + i(n2 −m2)

∣∣−1 ≤ 1
2 (N + 1)−1 when N 6= 0 or n 6= m; that is, for all

vectors in its domain. Therefore, each of the at most eight non-zero entries in every
row/column of the matrix for R⊥0 (β)P⊥JP⊥ is bounded by a uniform constant.

The preceding discussion is sufficient to show that R⊥0 (β)P⊥JP⊥ is bounded in
the unweighted space. To obtain the weight estimate one further needs to know
that

w̃(n± 1,m) =
∥∥∥|N,n± 1,m〉

∥∥∥
`2w̃

.
∥∥∥|N ′, n,m〉

∥∥∥
`2w̃

= w̃(n,m)

and the corresponding result with m ± 1. This is easily checked to be the case
because |ρ(n+ 1)− ρ(n)| . 1 for the weight in question. �

Remark: By delving a little deeper into the specifics of the Ornstein–Uhlenbeck
process, one can show that the main estimate holds with λ2 on the right-hand side
rather than just λ. This need not be the case for more general processes.
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Proposition 4.2. There exists a (small) constant c > 0 so that for all λ < 1 the
following hold: ∥∥(D†D + β)−1

∥∥
`2w→`2w

≤ 2β−1(49) ∥∥D(D†D + β)−1D†
∥∥

`2w̃→`2w̃
≤ 3(50) ∥∥D(D†D + β)−1

∥∥
`2w→`2w̃

≤ 3β−1/2(51) ∥∥(D†D + β)−1D†
∥∥

`2w̃→`2w
≤ 3β−1/2(52)

where w(n) = e2ρ(n) and ρ(n) = cmin{n, λ−1n2
√
β}.

Proof. The first estimate is standard Combes–Thomas/Agmon fare: Let e±ρ denote
the multiplication operators associated with the corresponding function of n:

e±ρ|0, n, n〉 = e±ρ(n)|0, n, n〉.
Then

∥∥eρ|0, n, n〉
∥∥ =

∥∥|0, n, n〉∥∥
`2w

and so∥∥(D†D + β)−1
∥∥

`2w→`2w
=

∥∥eρ(D†D + β)−1e−ρ
∥∥

=
∥∥[
eρ(D†D + β)e−ρ

]−1∥∥
Now by brute calculation, we have that

eρD†De−ρ = D†D − ξ + iη

where ξ and η are self-adjoint operators defined as follows: for |ψ〉 =
∑
ψn|0, n, n〉,〈

0, n, n
∣∣ξ∣∣ψ〉

= ξnψn+1 + ξn−1ψn−1

ξn = 2|αn|2 sinh2
(ρ(n)− ρ(n+ 1)

2

)
n ≥ 0, ξ−1 = 0〈

0, n, n
∣∣η∣∣ψ〉

= ηnψn+1 + ηn−1ψn−1

ηn = |αn|2 sinh
(
ρ(n)− ρ(n+ 1)

)
n ≥ 0, η−1 = 0.

Recall that αn comes from the explicit formula for D (see Lemma 3.3).
By Schur’s test,∥∥ξ

∥∥2 ≤ sup
n

2|ξn|2 ≤ sup
n

λ2

1 + n2
sinh2

(ρ(n)− ρ(n+ 1)
2

)
.

So, since |ρ(n+ 1)− ρ(n)| . cmin{1, λ−1n
√
β}, one can ensure that ‖ξ‖ ≤ 1

2β by
choosing c small enough. As D†D is a positive operator, it follows that∥∥∥∥ 1

D†D + β

∥∥∥∥
`2w→`2w

=
∥∥∥∥ 1
D†D − ξ + iη + β

∥∥∥∥ ≤ 2β−1

which proves (49).
By identical arguments, one can show that for c small enough∥∥∥∥ 1

DD† + β

∥∥∥∥
`2w̃→`2w̃

≤ 2β−1.

Equation (50) now follows from the following commutation formula

D
1

D†D + β
D† =

1
DD† + β

DD† = 1− β

DD† + β
.

which we learned from Percy Deift (see [8] for other, unrelated, applications).
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Corresponding to the weight w̃(n,m) =
√
w(n)w(m) we define

ρ̃(n,m) = 1
2ρ(n) + 1

2ρ(m)

so that w̃(n,m) = eρ̃(n,m). As was the case for eρ we regard eρ̃ as a multiplication
operator,

e±ρ̃|N,n,m〉 = e±ρ̃(n,m)|N,n,m〉.
To prove (51) we will use the following consequence of Lemma 3.3: if |ψ〉 =∑
ψn|0, n, n〉 then

〈1, n+ 1, n|e2ρ̃De−2ρ|ψ〉 = αn

[
eρ(n+1)−ρ(n)ψn − eρ(n)−ρ(n+1)ψn+1

]
(53)

〈1, n, n+ 1|e2ρ̃De−2ρ|ψ〉 = ᾱn

[
eρ(n)−ρ(n+1)ψn+1 − eρ(n+1)−ρ(n)ψn

]
(54)

and all other co-efficients are zero. This shows, by Schur’s test, that e2ρ̃De−2ρ =
D + ζ where ζ is an operator with∥∥e−ρ̃ζeρ

∥∥ ≤ sup
n

2|αn|
∣∣∣ sinh

[
1
2ρ(n+ 1)− 1

2ρ(n)
]∣∣∣ ≤ β1/2

The second inequality here follows from our particular choice of ρ when c is suffi-
ciently small. In particular, notice that |ρ(n+ 1)− ρ(n)| . cmin{1, λ−1n

√
β} and

|αn| . λ(1 + n)−1, see (31).
Now, ∥∥∥∥D 1

D†D + β

∥∥∥∥2

`2w→`2w̃

=
∥∥∥∥eρ̃D

1
D†D + β

e−ρ

∥∥∥∥2

(55)

=
∥∥∥∥e−ρ 1

D†D + β
D†e2ρ̃D

1
D†D + β

e−ρ

∥∥∥∥(56)

=
∥∥∥∥e−ρ 1

D†D + β

[
D†D +D†ζ

]
e2ρ 1

D†D + β
e−ρ

∥∥∥∥(57)

≤ 2β−1

∥∥∥∥e−ρ 1
D†D + β

[
D†D +D†ζ

]
eρ

∥∥∥∥(58)

by employing e2ρ̃D = (D + ζ)e2ρ and (49). We continue this chain by using, inter
alia, 1

D†D+β
D†D = 1− β

D†D+β
, the triangle inequality, and (49) again,

≤ 2β−1

{
1 +

∥∥∥∥e−ρ β

D†D + β
eρ

∥∥∥∥ +
∥∥∥∥e−ρ 1

D†D + β
D†eρ̃

∥∥∥∥∥∥∥e−ρ̃ζeρ
∥∥∥}

(59)

≤ 6β−1 + β−1/2

∥∥∥∥e−ρ 1
D†D + β

D†eρ̃

∥∥∥∥(60)

≤ 6β−1 + β−1/2

∥∥∥∥eρ̃D
1

D†D + β
e−ρ

∥∥∥∥(61)

≤ 6β−1 + β−1/2

∥∥∥∥D 1
D†D + β

∥∥∥∥
`2w→`2w̃

.(62)

In passing from (60) to (61) we used the fact that the norm of an operator is equal
to the norm of its adjoint. Now, (55)–(62) show that

x =
√
β

∥∥∥∥D 1
D†D + β

∥∥∥∥
`2w→`2w̃

obeys x2 ≤ 6 + x,

from which it follows that x ≤ 3. This completes the proof of (51).
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The proof of (52) is essentially the same as the above. Indeed, since the proof of
(49)–(51) did not require that c be positive, only that it was small, it follows that
(51) holds with w and w̃ replaced with their reciprocals. Taking the adjoint of the
operator in this modified inequality (51) proves (52). �

Since H = (1 + β)D†D, the following follows trivially from this proposition.

Corollary 4.3. There exists a (small) constant c > 0 so that for all λ < 1 and all
β < 1, ∥∥(H + β)−1

∥∥
`2w→`2w

≤ 4β−1(63) ∥∥D(H + β)−1D†
∥∥

`2w̃→`2w̃
≤ 6(64) ∥∥D(H + β)−1

∥∥
`2w→`2w̃

≤ 6β−1/2(65) ∥∥(H + β)−1D†
∥∥

`2w̃→`2w
≤ 6β−1/2(66)

where w(n) = e2ρ(n) and ρ(n) = cmin{n, λ−1n2
√
β}.

The operator H was introduced as the ‘main part’ of PLλP . We now estimate
the discrepancy between the two.

Corollary 4.4. There exists a (small) constant c > 0 so that for λ sufficiently
small and all β < 1, ∥∥∥∥[

P
1

(Lλ + β)
P − 1

H + β

]∥∥∥∥
`2w→`2w

. λβ−1(67) ∥∥∥∥D [
P

1
(Lλ + β)

P − 1
H + β

]
D†

∥∥∥∥
`2w̃→`2w̃

. λ(68) ∥∥∥∥D [
P

1
(Lλ + β)

P − 1
H + β

]∥∥∥∥
`2w→`2w̃

. λβ−1/2(69) ∥∥∥∥[
P

1
(Lλ + β)

P − 1
H + β

]
D†

∥∥∥∥
`2w̃→`2w

. λβ−1/2(70)

where w(n) = e2ρ(n) and ρ(n) = cmin{n, λ−1n2
√
β}.

Proof. By (26) and then Lemma 4.1,

P
1

(Lλ + β)
P − 1

H + β

=
∞∑

j=1

(
H + β

)−1
{
− λ2PJP⊥

[
R⊥λ (β)−R⊥0 (β)

]
P⊥JP

(
H + β

)−1
}j

=
∞∑

j=1

(
H + β

)−1
{
D†ED

(
H + β

)−1
}j

=
∞∑

j=0

(
H + β

)−1
D†E

{
D

(
H + β

)−1
D†E

}j

D
(
H + β

)−1

where the operator E obeys ∥∥E∥∥2

`2w̃→`2w̃
. λ.
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So, once λ is sufficiently small, (64) from Corollary 4.3 permits us to sum the series
and prove (67)–(70). �

5. Pointwise estimates

Given a weight function w(n) = e2ρ(n) and an estimate such as (63),∥∥(H + β)−1
∥∥

`2w→`2w
≤ 4β−1

there is a standard and simple way to obtain pointwise bounds for the Green func-
tion:

〈0, n, n|(H + β)−1|0,m,m〉(71)

≤
∥∥∥e−ρ|0, n, n〉

∥∥∥∥∥∥eρ(H + β)−1e−ρ
∥∥∥∥∥∥eρ|0,m,m〉

∥∥∥(72)

≤ 4β−1 exp
{
ρ(m)− ρ(n)

}
.(73)

In terms of the exponential behaviour, estimates of this type cannot really be
improved. However, as we will show, the factor β−1 in front can be significantly
improved.

As was remarked after Lemma 3.4, the operator H is the generator of a contin-
uous-time Markov chain. Indeed, since H is the dominant term in the operator Lλ,
this shows that to a good approximation, the quantum particle undergoes a random
walk in momentum space. Note that the hopping amplitudes for this random walk
are an � n−2 and so the diffusion is slower near infinity than for a homogeneous
random walk.

As probability is conserved, for any m,

(74)
∑

n

〈0, n, n|e−tH |0,m,m〉 = 1 for all t ≥ 0,

where each summand is positive. (Those unfamiliar with continuous-time Markov
chains may see Chapter VI of [9].) From (74),

(75)
∑

n

〈0, n, n|(H + β)−1|0, 0, 0〉 =
∫ ∞

0

e−βt
∑

n

〈0, n, n|e−tH |0, 0, 0〉 dt = β−1.

However, if we use the pointwise estimate that we derived above, (71)–(73), with
ρ(n) = cmin{n, n2

√
β}, then, ignoring the λ dependence, we have∑

n

〈0, n, n|(H + β)−1|0, 0, 0〉 ≤ 4β−1
∑

n

e−ρ(n) � β−5/4.

The reason for the discrepancy is not in the choice of ρ, but rather that too much
was given away in passing from (71) to (72). The weighted norm estimate on
(H + β)−1 is of the correct size, however, the vectors that realize that norm are
spread out, not localized as |0,m,m〉 is. Indeed, H is a differential operator, so
the vectors |ψ〉 for which ‖H|ψ〉‖ is small must have slowly varying co-efficients.
Another manifestation of this is the fact that the norm of D(H+β)−1, which should
be regarded as the derivative of the Green function, is

√
β times smaller than the

norm of (H + β)−1. The following lemma shows how one may represent |0, n, n〉 so
as to utilize this extra information.
Lemma 5.1. Let w(n) = e2ρ(n) with ρ(n) = cmin{n, λ−1n2

√
β} and c < 1 a

constant. For each n ≥ 0, there are vectors |Λn〉 ∈ `2w̃ and |Ωn〉 ∈ `2w so that

|0, n, n〉 = D†|Λn〉+ |Ωn〉
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and

(76) e∓ρ(n)
∥∥∥e±ρ|Λn〉

∥∥∥ .


λ−1/4β−3/8 : 0 ≤ n ≤ λ1/2β−1/4

λ−1/2β−1/4
√
n : λ1/2β−1/4 ≤ n ≤ λβ−1/2

0 : λβ−1/2 < n

(77) e∓ρ(n)
∥∥∥e±ρ|Ωn〉

∥∥∥ .


λ−1/4β1/8 : 0 ≤ n ≤ λ1/2β−1/4

λ−1/2β1/4
√
n : λ1/2β−1/4 ≤ n ≤ λβ−1/2

1 : λβ−1/2 < n

uniformly for β, λ ∈ (0, 1).

Proof. In the case λβ−1/2 < n we choose |Ωn〉 = |0, n, n〉 and |Λn〉 = 0. The
inequalities are trivial in this case.

For n ≤ λβ−1/2, let

|Λn〉 =
n+N−1∑

k=n

α−1
n

(
1− k−n

N

)
|1, k, k + 1〉

where N ≈ min{λ1/2β−1/4, λn−1β−1/2} is an integer:

N =

{⌈
λ1/2β−1/4

⌉
: 0 ≤ n ≤ λ1/2β−1/4⌈

λn−1β−1/2
⌉

: λ1/2β−1/4 ≤ n ≤ λβ−1/2

(dxe is the least integer greater than or equal to x). For ease of reading, we use
the symbol ≈ to indicate that two things are equal modulo the rounding of N to
an integer. By Lemma 3.3,

D†|Λn〉 =
n+N∑
k=n

(
1− k−n

N

){
|0, k, k〉 − |0, k + 1, k + 1〉

}
= |0, n, n〉 −

n+N∑
k=n+1

1
N |0, k, k〉

so we choose |Ωn〉 =
∑n+N

k=n+1
1
N |0, k, k〉.

We now proceed to calculate the norms:∥∥∥e−ρ |Ωn〉
∥∥∥2

= N−2
n+N∑

k=n+1

e−2ρ(k)

≤ N−1 e−2ρ(n)

. max{λ−1/2β1/4, λ−1nβ1/2} e−2ρ(n)

∥∥∥eρ |Ωn〉
∥∥∥2

= N−2
n+N∑

k=n+1

e2ρ(k)

≤ N−1 e2ρ(n+N)

. max{λ−1/2β1/4, λ−1nβ1/2} e2ρ(n)

Here we used the fact that ρ(n+N) ≤ ρ(n)+5. The justification of this is as follows:
for n ≤ λβ−1/2, ρ(n) = cλ−1n2

√
β and then either (a) 0 ≤ n ≤ λ1/2β−1/4 in which

case λ−1N2
√
β ≈ 1 and λ−12nN

√
β ≤ λ−1/22Nβ1/4 ≈ 2; or (b) λ1/2β−1/4 ≤ n ≤
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λβ−1/2 in which case λ−1N2
√
β ≈ λ(n2

√
β)−1 ≤ 1 and λ−12nN

√
β ≈ 2. This

completes the proof of (77).
For β < 1, we have |αn| ≥ λ(1 + n)−1 and so

∥∥∥e−ρ |Λn〉
∥∥∥2

≤
n+N−1∑

k=n

∣∣αn

∣∣−2(1− k−n
N

)2
e−2ρ(k) ≤ Nλ−2(n+N)2e−2ρ(n)

∥∥∥eρ |Λn〉
∥∥∥2

≤
n+N−1∑

k=n

∣∣αn

∣∣−2(1− k−n
N

)2
e2ρ(k) ≤ Nλ−2(n+N)2e2ρ(n+N)

By using ρ(n+N) ≤ ρ(n) + 5 these simplify to

e∓2ρ(n)
∥∥∥e±ρ|Λn〉

∥∥∥2

. Nλ−2(n+N)2.

Now, when n ≤ λ1/2β−1/4, we have n ≤ N ≈ λ1/2β−1/4 and so λ−2N(n +N)2 .
λ−1/2β−3/4. When λ1/2β−1/4 ≤ n ≤ λβ−1/2, we have n ≥ N ≈ λβ−1/2n−1 from
which it follows that λ−2N(n+N)2 . λ−1nβ−1/2. In both cases, this is just what
is required to give (76). �

Proposition 5.2. Let ρ(n) = cmin{n, λ−1n2
√
β} with c > 0 sufficiently small.

For all λ sufficiently small and all β < 1,

(78) 0 <
〈
0, n, n

∣∣∣ 1
H + β

∣∣∣0,m,m〉
≤ C(β)

n C(β)
m e−|ρ(n)−ρ(m)|

and

(79)
∣∣∣∣〈0, n, n

∣∣∣P 1
Lλ + β

P − 1
H + β

∣∣∣0,m,m〉∣∣∣∣ ≤ λC(β)
n C(β)

m e−|ρ(n)−ρ(m)|

where

C
(β)
k = C


λ−1/4β−3/8 : 0 ≤ k ≤ λ1/2β−1/4

λ−1/2β−1/4
√
k : λ1/2β−1/4 ≤ k ≤ λβ−1/2

β−1/2 : λβ−1/2 < k

with some constant C which does not depend on β nor on λ.

Proof. The result depends only on the fact that the operators in question admit
the estimates (63)–(66) and (67)–(70). We discuss only the operator H.

By symmetry, it suffices to study the case n ≥ m. By Lemma 5.1 and Corol-
lary 4.3, 〈

0, n, n
∣∣(H + β

)−1∣∣0,m,m〉
=

{
〈Λn|D + 〈Ωn|

}
e−ρ eρ

(
H + β

)−1
e−ρ eρ

{
D†|Λm〉+ |Ωm〉

}
≤ 6

{∥∥e−ρ |Λn〉
∥∥ + β−1/2

∥∥e−ρ |Ωn〉
∥∥}{∥∥eρ |Λm〉

∥∥ + β−1/2
∥∥eρ |Ωm〉

∥∥}
. C(β)

n C(β)
m eρ(m)−ρ(n)

Positivity in (78) follows from integrating 〈0, n, n|e−tH |0,m,m〉 > 0. �
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Remark : This new pointwise estimate gives results in line with the conservation of
probability (c.f. (75)):∑

n

〈0, n, n|(H + β)−1|0, 0, 0〉

.
∑

n

λ−1/4β−3/8C(β)
n e−ρ(n)

. β−1 +
∫ λβ−1/2

λ1/2β−1/4
λ−3/4β−5/8e−cλ−1n2√β

√
ndn

. β−1 +
∫ ∞

1

β−1e−t2
√
t dt

. β−1

In this computation we estimated the sum over 0 ≤ n ≤ λ1/2β−1/4 by replacing
C

(β)
n by its largest value, namely λ−1/4β−3/8. The sum over λβ−1/2 < n is of a

geometric series and so can be computed exactly. Lastly, we changed variables in
the integral according to n = λ1/2β−1/4t.
Proposition 5.3. For all λ sufficiently small, β ≤ λ2, m ≥ 0, and s ≥ 0,

(80)
∑

n

n2s
〈
0, n, n

∣∣∣ 1
H + β

∣∣∣0,m,m〉
� β−1(m2s + λsβ−s/2),

and

(81)
∑

n

n2s
〈
0, n, n

∣∣∣P 1
Lλ + β

P − 1
H + β

∣∣∣0,m,m〉
. λβ−1(m2s + λsβ−s/2).

where the constants do not depend on λ or β. Combining these two estimates shows
that for λ sufficiently small

(82)
∑

n

(
1 + n2s

)〈
0, n, n

∣∣∣P 1
Lλ + β

P
∣∣∣0,m,m〉

� 1 +m2s + λsβ−s/2.

Proof. The proof of (81) is the same as that of the upper bound in (80), differing
only in that it uses (79) instead of (78). It is therefore omitted.

We will use the following simple observation repeatedly: for any function f with
f(x) > 0 and

∣∣f ′(x)/f(x)
∣∣ . 1,

(83)
b∑

n=a

f(n) . f(x0) +
∫ b

a

f(x) dx,

for any x0 ∈ [a, b]. The assumption that λ−1β1/2 ≤ 1 is sufficient to ensure the
hypothesis on the logarithmic derivative in each of the instances below.

We will also use the following simple inequalities

(84)
∫ ∞

s

nγe−ndn . sγe−s,

∫ s

0

nγendn . sγes,

and their corollaries

(85)
∫ ∞

s

nγ+1e−u2n2
dn . u−2sγe−u2s2

,

∫ s

0

nγ+1eu2n2
dn . u−2sγeu2s2

.

In (84) and (85), the implicit constants depend only on γ > −1.
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We now begin the proof of the . part of (80); it is much like the argument
given in the remark above. The first step is to replace the matrix elements of the
resolvent of H by the upper bounds given in (78) of Proposition 5.2. Now we need
to calculate the sum over n. The reasoning necessary depends on the value of m
and so we consider separately three cases:

Case 1 : 0 ≤ m ≤ λ1/2β−1/4. In this regime, ρ(m) ≤ c and so∑
n

n2sC(β)
n C(β)

m e−|ρ(m)−ρ(n)| . λ−1/4β−3/8
∑

n

n2sC(β)
n e−ρ(n)

. S1 + S2 + S3

where S1, S2, and S3 are given by restricting the sum to those n in [0, λ1/2β−1/4],
[λ1/2β−1/4, λβ−1/2], and [λβ−1/2,∞) respectively. Using (83) with x0 = 0,

S1 . λ−1/2β−3/4

λ1/2β−1/4∑
n=0

n2s . λsβ−1β−s/2.

Next, using (83) with x0 = λ1/2β−1/4 and (85), we get

S2 . λ−3/4β−5/8

λβ−1/2∑
n=λ1/2β−1/4

n2s+ 1
2 e−cβ1/2n2/λ .

(
λ−1/2β−3/4 + β−1

)
λsβ−s/2

But β ≤ λ2 and so the above implies S2 . λsβ−1β−s/2.
Finally, in S3, we can extend the sum from λβ−1/2 ≤ n <∞ to all positive n:

S3 . λ−1/4β−7/8
∞∑

n=0

n2se−cn . λ−1/4β−7/8 . λsβ−1β−s/2.

where the last inequality uses β < λ2.
Case 2 : λ1/2β−1/4 ≤ m ≤ λβ−1/2. In this regime, ρ(m) = cλ−1m2β1/2 and we

proceed as above, i.e., we divide the sum over all n into three pieces S1, S2, and S3

each corresponding to the same interval of ns as in case 1.
For the sum over 0 ≤ n ≤ λ1/2β−1/4 we use (83) with x0 = 0, and the fact that

x1/4e−cx . 1 uniformly for x > 0 and so in particular when x = λ−1m2β1/2:

S1 . λ−3/4β−5/8m1/2e−cλ−1m2β1/2
λ1/2β−1/4∑

n=0

n2s

. λsβ−s/2λ−1/4β−7/8m1/2e−cλ−1m2β1/2

. λsβ−1β−s/2.

Next, applying (83) twice with x0 = m and then both parts of (85),

S2 . λ−1/2β−1/2m1/2

{
λ−1/2m2s+ 1

2 +
∫ m

0

n2s+ 1
2 e−cλ−1(m2−n2)β1/2

dn

+
∫ ∞

m

n2s+ 1
2 e−cλ−1(n2−m2)β1/2

dn

}
. λ−1m2s+1β−1/2 +m2sβ−1

. β−1m2s.
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In the last inequality, we used the fact that m ≤ λβ−1/2. Finally, using (83) and
(84),

S3 . λ−1/2β−3/4m1/2
∞∑

n=λβ−1/2

n2se−cn+cλ−1m2β1/2

. λ−1/2β−3/4m1/2λ2sβ−se−cλβ−1/2+cλ−1m2β1/2

. β−1m2s.

To obtain the last inequality, consider the cases s > 1/4 and s ≤ 1/4 separately.
Case 3 : λβ−1/2 < m. We proceed similarly: By (83)

S1 . λ−1/4β−7/8e−cm

λ1/2β−1/4∑
n=0

n2s

. λsβ−s/2λ1/4β−9/8e−cm

. λsβ−s/2β−1m1/4e−cm

. β−1λsβ−s/2.

because x1/4e−cx . 1. Extending the summation region down to n = 0, applying
(83) with x0 = 0 and then (85),

S2 . λ−1/2β−3/4e−cm

∫ λβ−1/2

0

n2s+ 1
2 ecλ−1n2β1/2

dn

. β−1λ2sβ−se−c(m−λβ−1/2)

. β−1m2s.

Where the last line follows from m ≥ λβ−1/2.
To complete the proof of case 3 and so of the . part of (80) we estimate S3 by

extending the sum to all n ≥ 0 and applying both parts of (84):

S3 .
∞∑

n=λβ−1/2

n2se−c|m−n| . β−1m2s

To prove the & part of (80) we use

(86)
∑

n

〈0, n, n|(H + β)−1|0,m,m〉 = β−1.

which was derived earlier (see (75)).
Let G(n,m) = 〈0, n, n|(H + β)−1|0,m,m〉 and, given ε > 0, define

(87) n0 =

{
ελ1/2β−1/4 : m ≤ λ1/2β−1/4

εm : m ≥ λ1/2β−1/4

For ε sufficiently small (independent of m, β and λ) one can check that

(88)
∑

n<n0

G(n,m) ≤ 1
2β
−1,
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using computations similar to those performed earlier in this proof. By (86), this
means that the sum over n ≥ n0 must be at least 1

2β
−1 and so

∞∑
n=0

n2sG(n,m) ≥
∞∑

n=n0

n2s
0 G(n,m) ≥ 1

2β
−1n2s

0 & β−1(m2s + λsβ−s/2).

The final inequality here should be checked separately for each case in (87). �

Lemma 5.4. If w(n) = 1 + n2s, to be considered as a weight on the range of P ,
and W (n,m) = (1 + |n −m|2)−1

√
w(n)w(m), to be considered as a weight on the

range of P + P⊥, then ∥∥PJP⊥R⊥λ (β)P⊥
∥∥

`1W→`1w
. 1,

when λ is sufficiently small.

Proof. The resolvent formula implies that

PJP⊥R⊥λ (β)P⊥ = PJR⊥0 (β)P⊥
∞∑

j=0

{
− iλP⊥JR⊥0 (β)P⊥

}j

.

Thus, the claim will follow from

(89)
∥∥JR⊥0 (β)P⊥

∥∥
`1W→`1W

. 1,

whose proof is very much like that of (48) in Lemma 4.1. For variety, we present
the argument slightly differently.

Notice that the weight W obeys

W (n± 1,m)
W (N,n,m)

. 1 and
W (n,m± 1)
W (N,n,m)

. 1

and let N denote the multiplication operator N|N,n,m〉 = (1 +N)|N,n,m〉.
By Schur’s test, (28), and the above, JN−1 is a bounded operator on `1W . As

R⊥0 (β)|N,n,m〉 = [N +β+ i(n2−m2)]−1|N,n,m〉, the operator NR⊥0 (β)P⊥ is also
bounded on this space. Taking the product of these two bounded operators proves
equation (89). �

We are now ready to complete the proof of the Theorem, which we restate for
the reader’s convenience.
Theorem. Let X(t) be a process obeying Hypothesis 1 and let V (θ) be an even
trigonometric polynomial. If the coupling constant λ is sufficiently small then for
any initial wave-function ψ0 ∈ Hs,

(90) 1
T

∫ ∞

0

e−t/T E
{
‖ψ(·, t)‖2

Hs

}
dt � λsT s/2‖ψ0‖2

L2 + ‖ψ0‖2
Hs

as T →∞. The expectation is over possible trajectories of the Markov process X(t).
In particular, the energy grows on average as the square-root of time.

Proof. By Proposition 2.1, we need to estimate

(91)
∑

n

(
1 + |n|2s

)〈
0, n, n

∣∣∣ β

Lλ + β

∣∣∣P(0)
〉
.

where P(0) = u0⊗|ψ0〉〈ψ0| and β = 1
T . Recall from Section 3 that |0, n, n〉 is in the

range of P , if n ≥ 0, or of Q, if n < 0. Recall also that by Lemma 3.1 the ranges
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of both P + P⊥ and Q+Q⊥ are invariant subspaces for Lλ. Combining these two
facts, we can re-write (91) as∑

n≥0

(
1 + |n|2s

)〈
0, n, n

∣∣∣P β

Lλ + β

[
P + P⊥

]∣∣∣P(0)
〉

+
∑
n<0

(
1 + |n|2s

)〈
0, n, n

∣∣∣Q β

Lλ + β

[
Q+Q⊥

]∣∣∣P(0)
〉
.

(92)

As earlier, we will treat the even part of the wave function (the top line above); the
odd part may be treated identically.

By (22) and (23),

(93) P (Lλ + β)−1[P + P⊥] = P (Lλ + β)−1P
[
P − iλPJP⊥R⊥λ (β)P⊥

]
.

So let |φ1〉 = P |P(0)〉 and |φ2〉 = −iλPJP⊥R⊥λ (β)P⊥ |P(0)〉. We will write
φj(m) = 〈0,m,m|φj〉, j = 1, 2, for their components. Of course, φ1(m) = |ψ̂0(m)|2
so by Proposition 5.3 equation (82),

(94)

∑
n≥0

(
1 + n2s

)〈
0, n, n

∣∣∣P β

Lλ + β
P

∣∣∣φ1

〉
�

∑
m

φ1(m)(1 +m2s + λsβ−s/2)

�
∥∥ψ0

∥∥2

Hs + λsβ−s/2
∥∥ψ0

∥∥2

L2 .

By similar reasoning,

(95)

∑
n≥0

(
1 + n2s

)〈
0, n, n

∣∣∣P β

Lλ + β
P

∣∣∣φ2

〉
.

∑
m

|φ2(m)|(1 +m2s + λsβ−s/2)

.
∥∥φ2

∥∥
`1w

+ λsβ−s/2
∥∥φ2

∥∥
`1
.

where w is as in Lemma 5.4 (we will also use the W notation found there). By this
Lemma and the fact that 〈0, n,m|P(0)〉 = ψ̂0(m)ψ̂0(n),∥∥φ2

∥∥
`1w

. λ‖P(0)‖`1W

. λ
∑
n,m

1
1 + |n−m|2

{
w(m)|ψ̂0(m)|2

}1/2{
w(n)|ψ̂0(n)|2

}1/2

. λ
∥∥ψ0

∥∥2

Hs

where the last inequality used the `2-boundedness of the matrix with entries (1 +
|n−m|2)−1. In the particular case that s = 0, the above argument says∥∥φ2

∥∥
`1

. λ
∥∥ψ0

∥∥2

L2 .

Substituting these two estimates for φ2 into (95) gives∑
n≥0

(
1 + n2s

)〈
0, n, n

∣∣∣P β

Lλ + β
P

∣∣∣φ2

〉
. λ

∥∥ψ0

∥∥2

Hs + λs+1β−s/2
∥∥ψ0

∥∥2

L2 .(96)

The combination of (94) and (96) shows that (90) does indeed hold once λ is
chosen sufficiently small. �



28 M. BURAK ERDOG̃AN, ROWAN KILLIP, WILHELM SCHLAG

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables, Superintendent of Documents, U.S. Government Printing Office,

Washington, D.C., 1964.

[2] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations:
bounds on eigenfunctions of N-body Schrödinger operators, Princeton Univ. Press, Princeton,

NJ, 1982.

[3] J. Bourgain, Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic
potential, Comm. Math. Phys. 204 (1999), no. 1, 207–247.

[4] J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time
dependent potential, J. Anal. Math. 77 (1999), 315–348.

[5] J. Bourgain, Global solutions of nonlinear Schrödinger equations, Amer. Math. Soc., Provi-

dence, RI, 1999.

[6] J. Bourgain, On long-time behaviour of solutions of linear Schrödinger euations with smooth
time-dependent potential, Preprint 2002.

[7] J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle
Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270.

[8] P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267–310.

[9] J. L. Doob, Stochastic processes, Wiley, New York, 1953.
[10] C. W. Gardiner, Handbook of stochastic methods, Second edition, Springer, Berlin, 1985

[11] C.-A. Pillet, Some results on the quantum dynamics of a particle in a Markovian potential,

Comm. Math. Phys. 102 (1985), no. 2, 237–254.
[12] S. Tcheremchantsev, Markovian Anderson model, C. R. Acad. Sci. Paris Sér. I Math. 324

(1997), no. 8, 907–912.

[13] S. Tcheremchantsev, Markovian Anderson model: bounds for the rate of propagation, Comm.
Math. Phys. 187 (1997), no. 2, 441–469.

[14] S. Tcheremchantsev, Transport properties of Markovian Anderson model, Comm. Math.

Phys. 196 (1998), no. 1, 105–131.

Department of Mathematics, University of California, Berkeley, CA 94720-3840

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street,

Philadelphia, PA 19104-6395

Department of Mathematics 253-37, Caltech, Pasadena, CA 91125


