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In this paper we establish optimal mixed norm inequalities, except for endpoints,
for a certain restricted X-ray transform in arbitrary dimensions. In doing so, we
demonstrate that a method [2] applied heretofore only to simpler nonmixed norm
estimates can also be adapted to the mixed norm case.

For each θ in a fixed compact subinterval I0 of R1, define νθ = (1, θ, θ2, . . . , θd−1)
and Vθ = {y ∈ Rd : y ⊥ νθ}. The hyperplane Vθ is equipped with Lebesgue measure.
Define G = {(θ, y) ∈ I0 × Rd : y ∈ Vθ}. Let f be defined on Rd. For each (θ, y) ∈ G,
define

(1) Xf(θ, y) =

∫
|s|≤C0

f(y + sνθ) ds,

where C0 is any constant. On G we define mixed norms by

(2) ‖g‖Lq(Lr)(G) =
( ∫

I0

( ∫
Vθ

|g(θ, y)|r dy
)q/r

dθ
)1/q

.

Here dy denotes Lebesgue measure on the hyperplane Vθ for each θ. We write simply
Lq(G) when r = q.

Our main result will characterize those exponents for which X maps Lp(Rd) bound-
edly to Lq(Lr)(G), except for endpoints. As was shown in [3], a necessary condition
for X to map Lp(Rd) boundedly to Lq(Lr)(G) is that (p−1, q−1, r−1) satisfy all three
of the following inequalities:

dp−1 ≤ (d− 1)r−1 + 1(3)

d(d− 1)p−1 ≤ 2q−1 + d(d− 1)r−1,(4)

(d− 2)(d + 1)p−1 ≤ d(d− 1)r−1.(5)

The key exponents for this problem are

(6) p0 = q0 =
d + 2

d
, and r0 =

d2 + d− 2

d2 − d− 2
=

d2 − d

d2 − d− 2
· q0.

The set of all triples (p−1, q−1, r−1) satisfying the above three necessary conditions
equals the convex hull of the three points (1, 1, 1), (0, 0, 0) and (p0

−1, q0
−1, r0

−1),
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together with all points (p−1, q−1, r−1) for which there exists a triple (p̃−1, q̃−1, r̃−1)
in that convex hull satisfying p ≥ p̃, q ≤ q̃, and r ≤ r̃.

Theorem 1. Let d ≥ 3 be arbitrary, and let I0, C0 be fixed. Then X maps Lp(Rd)
to Lq(Lr)(G) whenever (p−1, q−1, r−1) satisfies (3), (4), and (5) with strict inequality
in each.

We will prove a sharper restricted weak type inequality:

(7) 〈g,Xf〉 ≤ C‖f‖Lp‖g‖Lq′ (Lr′ )

whenever f, g are characteristic functions of measurable sets, for all (p, q, r) satisfying
(3), (4), and (5), where q′, r′ are the exponents conjugate respectively to q, r. By a
crude interpolation argument, this implies boundedness from Lp to Lq(Lr) except at
endpoints, as stated above; details are left to the reader.

The result is true, and is already well known, for d = 2, where one is dealing
with the full complex of all lines in R2, and the critical exponent r0 equals ∞. Our
arguments can be adapted to handle d = 2, as well, although the details will not be
given here.

This theorem was previously established by Wolff1 [12] for d = 3, and by Erdoğan
[3] for d = 4, 5. The latter analysis suggested that the treatment of higher-dimensional
cases would require higher-order versions of the “bush” and “hairbrush” constructions
of Bourgain [1] and Wolff [10]. The approach of [2] may be viewed as a systematic
version of such constructions, of arbitrary order; it also has a more algebraic per-
spective, quantified for the present situation in Lemma 4, which seems to be useful
in high dimensions.

For purposes of exposition, we first discuss the simpler case of ordinary Lebesgue
space esimates, q = r. Define ∆d to be the set of all (p−1, q−1) ∈ [0, 1]2 that belong
to the convex hull of the three points (1, 1), (0, 0), and (p1

−1, q1
−1), where p1 =

d(d+1)/(d2−d+2) and q1 = (d+1)/(d−1). Examples discussed in [3] demonstrate
that X is unbounded unless (p−1, q−1) ∈ ∆d.

Theorem 2. X maps Lp(Rd) to Lq(G) for all (p−1, q−1) ∈ ∆d, except possibly for
(p1

−1, q1
−1). It is of restricted weak type (p1, q1).

Modulo the algebraic calculation in Lemma 4 below, this theorem is a direct con-
sequence of the method developed in [2]. Various partial results can be found in
[4, 5, 6, 7, 9].

We begin with some preliminaries. It will be convenient to reparametrize G. In-
stead of taking Vθ to be the orthocomplement of νθ, we instead replace it by a fixed
copy of Rd−1, namely V = {y ∈ Rd : y1 = 0}. Thus G will be identified with a
compact subset of R× Rd−1 = R× V . Define for (θ, y) ∈ G and s ∈ R
(8) γ(θ, y, s) = (s, y2 + sθ, . . . , yd + sθd−1).

Then X may be identified with the operator

(9) Xf(θ, y) =

∫
R

f(γ(θ, y, s)) ds

1Wolff analyzed a related family of operators in all dimensions, which essentially coincides with
X in dimension three, but not otherwise; in higher dimensions he obtained partial results.
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where it is always understood that the integration with respect to s is taken over a
fixed compact subset of R. Mixed norms are now

(10) ‖g‖Lq(Lr)(G) =
( ∫ ( ∫

V

|g(θ, y)|r dy
)q/r

dθ
)1/q

.

The adjoint operator defined by
∫

G
Xf · g =

∫
Rd f ·X∗g is

X∗g(x) =

∫
R

g(γ∗(x, t)) dt(11)

where

γ∗(x, t) = (t, x2 − x1t, x3 − x1t
2, . . . , xd − x1t

d−1) .(12)

We denote the characteristic function of a set E by χE. For any two measurable sets
E ⊂ Rd, F ⊂ G, define

(13) X (E, F ) = 〈χF , X(χE)〉
where the inner product denotes here integration of χF ·X(χE) over G. This bilinear
form may be written in a formally symmetric way as 〈X∗(χF ), χE〉; this symmetry
manifests itself in the proof below. Fix any two such measurable sets having finite
measures. Define two quantities α, β by

α = X (E, F )/|F |
β = X (E, F )/|E| .

(14)

We aim to show that

|E| ≥ cαdβd(d−1)/2 for d even,

|F | ≥ cαd−1β(d2−d+2)/2 for d odd.
(15)

for some fixed constant c > 0. From this, Theorem 2 follows directly. Indeed,
substituting for α, β for d even gives

(16) |E| ≥ cX (E, F )d(d+1)/2|F |−d|E|−d(d−1)/2,

or equivalently,

(17) X (E, F ) ≤ C|E|(d2−d+2)/d(d+1)|F |2/(d+1) .

This means precisely that X is of restricted weak type (p1, q1). The case of odd d is
similar.

Define a sequence of maps Φk mapping Rk to Rd if k is even, and to G if k is odd,
by fixing a point x0 ∈ Rd, defining Φ1(t1) = γ∗(x0, t1), Φ2(t1, s1) = γ(Φ1(t1), s1), and
in general

Φ2k+1(t1, s1, t2, s2, . . . , tk+1) = γ∗(Φ2k(t1, s1, t2, s2, . . . , tk, sk), tk+1),

Φ2k+2(t1, s1, t2, s2, . . . , tk+1, sk+1) = γ(Φ2k+1(t1, s1, t2, s2, . . . , tk+1), sk+1).
(18)

The starting point of the analysis is a small lemma from [2].

Lemma 3. There exists c > 0 such that for any measurable sets E, F having finite
measures, there exist x0 ∈ E and a sequence of sets Ωk ⊂ Rk defined for 1 ≤ k ≤ d
and having the following properties:
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(1) For each k, Ωk+1 ⊂ Ωk × R
(2) |Ω1| ≥ cβ
(3) For k even, for each point ω ∈ Ωk, |{t ∈ R : (ω, t) ∈ Ωk+1}| ≥ cβ
(4) For k odd, for each point ω ∈ Ωk, |{s ∈ R : (ω, s) ∈ Ωk+1}| ≥ cα
(5) Φk(Ωk) ⊂ E for even k, and Φk(Ωk) ⊂ F for odd k

We denote coordinates in Ωd by (s, t) = (t1, s1, . . . , tD, sD) for d = 2D and (s, t) =
(t1, s1, . . . , tD, sD, tD+1) for d = 2D + 1.

To bring particular properties of our line complex into play, we compute the iterated
mapping Φd:

Φd(x, t1, s1, . . . , tD, sD)

=
(
sD, x2 +

D∑
j=1

(sj − sj−1)tj, x3 +
D∑

j=1

(sj − sj−1)t
2
j , . . . , xd +

D∑
j=1

(sj − sj−1)t
d−1
j

)
Φd(x, t1, s1, . . . , tD, sD, tD+1)

=
(
tD+1, x2 +

D∑
j=1

(sj − sj−1)tj − sDtD+1, . . . , xd +
D∑

j=1

(sj − sj−1)t
d−1
j − sDtd−1

D+1

)
Here we have written s0 = x1, the first coordinate of x, in order to simplify slightly

the expression. Its Jacobian matrix J(s, t) = ∂Φd/∂(s, t) of first partial derivatives
with respect to (s, t) equals

(19)



1 tD t2D · · · td−1
D

0 sD − sD−1 (sD − sD−1)2tD · · · (sD − sD−1)(d− 1)td−2
D

0 tD−1 − tD t2D−1 − t2D · · · td−1
D−1 − td−1

D

0 sD−1 − sD−2 (sD−1 − sD−2)2tD−1 · · · (sD−1 − sD−2)(d− 1)td−2
D−1

...
...

...
...

...
0 t1 − t2 t21 − t22 · · · td−1

1 − td−1
2

0 s1 − s0 (s1 − s0)2t1 · · · (s1 − s0)(d− 1)td−2
1


for d = 2D, and it equals

(20)



1 −sD −2sDtD+1 · · · −(d− 1)sDtd−2
D+1

0 tD − tD+1 t2D − t2D+1 · · · td−1
D − td−1

D+1

0 sD − sD−1 (sD − sD−1)2tD · · · (sD − sD−1)(d− 1)td−2
D

0 tD−1 − tD t2D−1 − t2D · · · td−1
D−1 − td−1

D

0 sD−1 − sD−2 (sD−1 − sD−2)2tD−1 · · · (sD−1 − sD−2)(d− 1)td−2
D−1

...
...

...
...

...
0 t1 − t2 t21 − t22 · · · td−1

1 − td−1
2

0 s1 − s0 (s1 − s0)2t1 · · · (s1 − s0)(d− 1)td−2
1


for d = 2D + 1.
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Lemma 4.

J = cd

D∏
j=1

(sj − sj−1)
∏

1≤j<k≤D

(tj − tk)
4 for d = 2D

J = cd

D∏
j=1

(sj − sj−1)
∏

1≤j<k≤D

(tj − tk)
4

D∏
j=1

(tj − tD+1)
2 for d = 2D + 1

(21)

for some nonzero constants cd.

Proof of Theorem 2. (i) Case 1: d = 2D. We have E ⊃ Φd(Ωd), and moreover, as
shown in [2], it is a consequence of Bezout’s theorem that

(22) |Φd(Ωd)| ≥
1

d!

∫
Ωd

|J(t, s)| dt ds

where (t, s) = (t1, s1, . . . , tD, sD).
From the structural properties of the sets Ωk, it follows easily as in [2] and the

proof below of (44) that

(23)

∫
Ωd

|J(s, t)| ds dt = cd

∫
Ωd

D∏
j=1

|sj − sj−1| ·
∏

1≤j<k≤D

|tj − tk|4 ds dt ≥ cαdβd(d−1)/2.

This is (15), from which Theorem 2 follows directly, as shown above.
(ii) Case 2: d = 2D + 1. The proof is essentially the same. We have F ⊃ Φd(Ωd),

and as above

(24) |Φd(Ωd)| ≥
1

d!

∫
Ωd

|J(t, s)| dt ds

where (t, s) = (t1, s1, . . . , tD, sD, tD+1). Proceeding as above, we obtain∫
Ωd

|J(s, t)| ds dt = cd

∫
Ωd

D∏
j=1

|sj − sj−1| ·
∏

1≤j<k≤D

|tj − tk|4
D∏

j=1

(tj − tD+1)
2 ds dt

≥ cαd−1β(d2−d+2)/2,

(25)

which completes the proof of the Theorem. �

Proof of Lemma 4. (i) Case 1: d = 2D. J is a polynomial of total degree d(d− 1)/2.
The right-hand side of (21) has the same degree:

(26)
d

2
+ 4

1

2

d

2
(
d

2
− 1) =

d + d(d− 2)

2
=

d(d− 1)

2
.

Clearly J is divisible by sj − sj−1 for all j ≥ 1, so it suffices merely to show that it
is divisible by (tj − tk)

4 for arbitrary j 6= k.
To do so, factor (sj − sj−1) out from each row where it occurs, leaving a matrix

involving only t1, . . . , tD. Fix any j 6= k. Perform row operations to transform this
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matrix to one whose first three rows are

(27)

 t0k 2tk 3t2k · · · (d− 1)td−2
k

tj − tk t2j − t2k t3j − t3k · · · td−1
j − td−1

k

t0j 2tj 3t2j · · · (d− 1)td−2
j

 .

It therefore suffices to show that the determinant of any three by three submatrix

(28)

 µtµ−1
k νtν−1

k ρtρ−1
k

tµj − tµk tνj − tνk tρj − tρk
µtµ−1

j νtν−1
j ρtρ−1

j


is divisible by (tj − tk)

4. By homogeneity we may assume that tj = 1, and we then
write tk = 1 + z and seek to show that this subdeterminant is O(z4) as z → 0.

Multiplying the middle row by −1, then adding the third row to the first, trans-
forms the preceding matrix to

(29)

µ(1 + z)µ−1 − µ ν(1 + z)ν−1 − ν ρ(1 + z)ρ−1 − ρ
(1 + z)µ − 1 (1 + z)ν − 1 (1 + z)ρ − 1

µ ν ρ


We expand in Taylor series about z = 0. Since the first two rows vanish when z = 0,
all terms of degree > 2 may be discarded; their contributions to the determinant will
be O(z4). We also factor µ, ν, ρ respectively out from the three columns to obtain

(30)

(µ− 1)z + O(z2) (ν − 1)z + O(z2) (ρ− 1)z + O(z2)
z + 1

2
(µ− 1)z2 z + 1

2
(ν − 1)z2 z + 1

2
(ρ− 1)z2

1 1 1


Subtracting z times the third row from the second gives

(31)

(µ− 1)z + O(z2) (ν − 1)z + O(z2) (ρ− 1)z + O(z2)
1
2
(µ− 1)z2 1

2
(ν − 1)z2 1

2
(ρ− 1)z2

1 1 1

 .

In computing the coefficient of z3 in the resulting determinant, we may drop the
quadratic terms in the first row; the first two rows of the resulting matrix are clearly
linearly dependent, so its determinant vanishes. Hence J takes the form (21), for
some scalar cd.

To see that cd 6= 0, we directly expand the determinant and find that the coefficient
of t2d−4

d/2 t2d−8
(d/2)−1 · · · t42t01 is a nonzero multiple of

∏
j(sj − sj−1); hence J does not vanish

identically.
(ii) Case 2: d = 2D+1. As above, it suffices to show that J is divisible by (tj−tk)

4

for 1 ≤ j < k ≤ D and by (tj − tD+1)
2 for 1 ≤ j ≤ D. The proof of the former is

essentially the same as above. We will prove that J is divisible by (tj − tD+1)
2 for

1 ≤ j ≤ D.
To do so, factor (sj − sj−1) out from each row where it occurs, leaving a matrix

involving only t1, . . . , tD+1. Fix any j ≤ D. Perform row operations to transform this
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matrix to one whose first two rows are

(32)

(
tj − tD+1 t2j − t2D+1 t3j − t3D+1 · · · td−1

j − td−1
D+1

t0j 2tj 3t2j · · · (d− 1)td−2
j

)
.

As above, it suffices to show that the determinant of any two by two submatrix of (32)
is divisible by (tj − tD+1)

2. This can easily be seen by factoring out (tj − tD+1) from
the first row and observing that the determinant of the remaining matrix vanishes
then tD = tD+1. �

The proof of Theorem 1 will require the conversion of information expressed in
terms of |F | to mixed norms of χF . The next lemma suffices for that purpose. For
any set F ⊂ G = R1 × Rd−1, denote by π(F ) its projection onto the first factor R1.

Lemma 5.

(33) |F | ≤ ‖χF‖(d+2)(d−1)/2d

Lq′0 (Lr′0 )
|π(F )|1/d.

Proof. Writing f(θ) = |{y ∈ Rd−1 : (θ, y) ∈ F}|, we have

(34) ‖χF‖Lq′0 (Lr′0 )
= (

∫
π(F )

f(θ)q′0/r′0 dθ)1/q′0 ,

and |F | =
∫

π(F )
f . By Hölder,

(35) |F | ≤ |π(F )|1/d
( ∫

π(F )

fd/(d−1)
)(d−1)/d

.

Now
q′0
r′0

= d+2
2
· 2d

d2+d−2
= d

d−1
, so the right-hand side of the last inequality is precisely

the right-hand side of (33). �

To prove Theorem 1, it suffices to establish the restricted weak type bound at the
endpoint (p0

−1, q0
−1, r0

−1): X (E, F ) ≤ C|E|1/p0‖χF‖Lq′0 (Lr′0 )
for any measurable sets

E ⊂ Rd, F ⊂ G having finite measure. Moreover, it suffices to prove this for any F
and any β > 0, with

(36) E = {x ∈ Rd : β ≤ X∗(χF )(x) < 2β}.

One of the devices we will use is a stopping-time procedure inspired partly by an
argument of Tao and Wright [8]. Let ε > 0 be a small constant to be chosen later. It
is possible to select for each x a nonegative integer m ≤ C log(β−1), and an interval
Ix ⊂ R of length 2mβ, such that for any subinterval I ′ ⊂ Ix of length 2m−1β,

(37) |{t ∈ Ix\I ′ : γ∗(x, t) ∈ F}| ≥ c2−εmβ,

where c > 0 is a fixed constant, depending only on the choice of ε.
Indeed, let K0 be a fixed interval of length 2Mβ ∼ 1, so that |{t ∈ K0 : γ∗(x, t) ∈

F}| ≥ β. Consider any subintervals K ⊂ K0 of length 2M−1β satisfying |{t ∈ K :
γ∗(x, t) ∈ F}| ≥ (1 − 2−εM)β. If no such subinterval exists, then we set Ix = K0.
Otherwise we choose one such subinterval, call it K1, and ask whether there exists
an interval K ⊂ K1 of length 2M−2β for which |{t ∈ K : γ∗(x, t) ∈ F}| ≥ (1 −
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2−ε(M−1))|{t ∈ K1 : γ∗(x, t) ∈ F}|. If not, we set Ix = K1. Continuing this way, we
ask at step m whether there exists K ⊂ Km of length 2m−1β satisfying

(38) |{t ∈ K : γ∗(x, t) ∈ F}| ≥ (1− 2−εm)|{t ∈ Km : γ∗(x, t) ∈ F}|.

If not, we set Ix = Km. If the selection process stops at step m then we have
|Ix| = 2mβ and for any subinterval K ⊂ Ix of length 2m−1β, |{t ∈ Ix : γ∗(x, t) ∈ F}| ≥
(1−2−εM)(1−2−ε(M−1)) · · · (1−2−ε(m+1))β ≥ cβ by induction, and consequently (37)
holds by virtue of the selection rule (38). Since c = c(ε) → 1 as ε → 0, by choosing
ε to be sufficiently small we may ensure that the process does indeed stop with
|Ix| ≥ β, since otherwise we would obtain a subinterval I ′ of length β/2 such that
|{t ∈ I ′ : γ∗(x, t) ∈ F}| ≥ (3/4)β > |I ′|.

Set

(39) Em = {x ∈ E : |Ix| = 2mβ},

for 0 ≤ m ≤ C log(1/β). Partition a compact subset of R into ∼ (2mβ)−1 intervals
Jm

j of lengths 2mβ, and set

Em
j = {x ∈ Em : Ix ∩ Jm

j 6= ∅}
Fm

j = F ∩ π−1(Jm
j−1 ∪ Jm

j ∪ Jm
j+1).

(40)

The collections {Em
j }m,j and {π(Fm

j )}j have bounded overlaps, in the sense that
there exists an absolute constant C < ∞ such that no point of E belongs to more
than C sets Em

j , and for fixed m, no point of π(F ) belongs to more than C sets Fm
j .

Since Em = ∪jE
m
j , (36) and (37) imply that

(41) X (Em, F ) ≤
∑

j

X (Em
j , F ) ≤ 2β

∑
j

|Em
j | ≤ C2εm

∑
j

X (Em
j , Fm

j ).

For each pair Fm
j , Em

j we associate to X (Em
j , Fm

j ) the two quantities

(42) αm
j = X (Em

j , Fm
j )/|Fm

j | and βm
j = X (Em

j , Fm
j )/|Em

j |.

Now (37) guarantees that βm
j ≥ c2−εmβ, and βm

j ≤ 2β by the definition of E.

Fix m, j. By the proof of Lemma 3, there exist sets Ωm,j
k , for 1 ≤ k ≤ d, satisfying

the conclusions of that lemma with αm
j , βm

j respectively replacing α, β, and with the

additional property that for all even k, for each ω ∈ Ωm,j
k , for any subinterval I of R

having length 2m−1β,

(43) |{t /∈ I : (ω, t) ∈ Ωm,j
k+1}| ≥ c2−εmβ .

Lemma 6. ∫
Ωm,j

d

|J | ds dt ≥ c22m(αm
j )d · (βm

j )d(d−1)/2 for d even,∫
Ωm,j

d

|J | ds dt ≥ c22m(αm
j )d−1 · (βm

j )(d2−d+2)/2 for d odd.

(44)
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Proof. We will give the proof only for the case of even d, and will first indicate how
to obtain the estimate without the bonus factor of 2m. To simplify notation we drop
the superscripts and write simply Ωk = Ωm,j

k . With D = d/2,
∫

Ωd
|J | equals

(45) cd

∫
Ωd−1

∏
j<D

|sj − sj−1| ·
∏
j<k

|tj − tk|4
∫

R
|sD − sD−1| dsD dω

where ω = (t1, s1, . . . , sD−1, tD) ∈ Ωd−1. In the inner integral, sD varies over a set
of measure at least cαm

j , while sD−1 remains fixed. Therefore the factor |sD − sD−1|
is ≥ c′αm

j on a subset of measure at least c′′αm
j . Thus the inner integral is bounded

below by a constant times (αm
j )2.

We repeat the procedure with respect to the next coordinate, tD, finding that (45)
is

(46) ≥ c(αm
j )2

∫
Ωd−2

∏
j<D

|sj − sj−1| ·
∏

j<k<D

|tj − tk|4
∫

R

∏
j<D

|tD − tj|4 dtD dω

where now ω = (t1, s1, . . . , tD−1, sD−1). For fixed ω, tD varies over a set whose measure
is ≥ cβm

j . Moreover, on at least a fixed fraction of that set, each factor |tD − tj| is

≥ cβ̃. It results that (46) is

(47) ≥ c(αm
j )2βm

j · (β)2d−4

∫
Ωd−2

∏
j<D

|sj − sj−1| ·
∏

j<k<D

|tj − tk|4 .

Iterating this reasoning leads to (44), except for the factor of 22m.
To obtain it, reconsider the step involving an integration with respect to t2. For

any (t1, s1) ∈ Ω2, because of (43), the factor |t2 − t1| in the Jacobian is bounded
below by c2mβ for a set of values of t2 having measure ≥ 2−εmβm

j . This factor is

raised to either the power 2 or 4, resulting in an improvement by a factor ≥ 22m. �

(44) is fundamental because
∫

Ωm,j
d
|J | ds dt ≤ C|Em

j | for d even, and is ≤ C|Fm
j | for

d odd. Thus, for even d,

|Em
j | ≥ c22m(αm

j )d(βm
j )d(d−1)/2 for d even

|Fm
j | ≥ c22m(αm

j )d−1(βm
j )(d2−d+2)/2 for d odd.

(48)

Since βm
j ≥ 2−εmβ and since we may choose ε ≤ 1/2, we may rewrite these as

|Em
j | ≥ c2m/2(αm

j )d(βm
j )(d2−d−2)/2(2mβ) for d even

|Fm
j | ≥ c2m/2(αm

j )d−1(βm
j )(d2−d)/2(2mβ) for d odd.

(49)

Substituting for αm
j , βm

j according to their definitions, we obtain after a short
calculation that

(50) X (Em
j , Fm

j ) ≤ C2−δm|Em
j |d/(d+2)|Fm

j |2d/(d+2)(d−1) · (2mβ)−2/(d+2)(d−1)

for some positive constants C < ∞, δ > 0.
To express this as a mixed norm estimate, recall that the projection π(Fm

j ) of

Fm
j ⊂ R1×Rd−1 onto the first factor, R1, satisfies |π(Fm

j )| ≤ 3 · 2mβ, simply because
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π(Fm
j ) ⊂ Jm

j−1∪Jm
j ∪Jm

j+1 and each of the latter intervals has length 2mβ. Returning
to (50), we thus obtain

X (Em
j , Fm

j ) ≤ C2−δm|Em
j |d/(d+2)

(
|Fm

j | · |π(Fm
j )|−1/d

)2d/(d+2)(d−1)

≤ C2−δm|Em
j |d/(d+2)‖χF m

j
‖Lq′ (Lr′ );

(51)

to obtain the last line we have applied (33), with q = q0, r = r0.
Writing p = p0 = q0 = (d + 2)/d and invoking Hölder’s inequality yields∑

j

X (Em
j , Fm

j ) ≤ C2−δm(
∑

j

|Em
j |)1/p(

∑
j

‖χF m
j
‖q′

Lq′ (Lr′ )
)1/q′

≤ C2−δm|E|1/p‖χF‖Lq′ (Lr′ ) ;

(52)

to obtain the final inequality we have used the bounded overlap property of the
collection {π(Fm

j ) : j = 1, 2, . . . } of projections, uniformly in m. Since E = ∪mEm,
and since δ is independent of ε, by choosing ε < δ we may ensure that the factor of
2−δm here more than compensates for the loss of 2εm in (41). Therefore summation
over m ≥ 0 gives

(53) X (E, F ) ≤ C|E|1/p‖χF‖Lq′ (Lr′ ),

concluding the proof of Theorem 1. �

A final remark: The argument, as given, does not apply in the two-dimensional
case, where one is dealing with the Kakeya maximal function and the exponent r0

equals ∞. The difficulty is that in order to gain the factor of 22m in (44), we needed
to have at least two variables tj. Hence |π(Fm

j )| cannot be brought into play in
the same way when d = 2. Nonetheless, the argument can be applied after slight
reorganization.
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