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1. Introduction.

Let Gk,d be the space of all k-planes in Rd. The Radon transform or the k-plane

transform Rk,d is defined as an operator from the functions defined on Rd to the

functions defined on Gk,d via

Rk,df(p) =

∫
p

f, p ∈ Gk,d.

The Radon transform found important applications in integral geometry and in the

study of PDE’s.

R1,d is often called the X-ray transform due to its applications in radiology, we

denote it by Xfull. It is well-known [19], [12] that the sharp mixed norm estimates for

the full X-ray transform implies the Kakeya conjecture and it is related to some of

the main problems in the summability of Fourier transform, Fourier restriction and

more generally to oscillatory integrals, non-linear P.D.E’s and number theory [7], [1],

[2], [20], [3], [14]. For some mapping properties of Xfull, see, e.g., [6], [5], [19] and

[12].

Note that G1,d is a 2d− 2-dimensional manifold, thus Xfull is overdetermined for

d ≥ 3, and it is of interest to consider its restrictions to lower dimensional subspaces

of G1,d. For the definition of the restricted X-ray transforms as part of a more general

class of transformations and some of its properties, see [11].

One particular example is the restriction of Xfull to the space of light rays (lines

in Rd making a 45 degree angle with the plane xd = 0). Recently, Wolff [21] obtained

mixed norm estimates for this operator (almost sharp in R3) and used this information

to prove almost sharp bilinear cone restriction estimates in all dimensions.

We are interested in the restriction of Xfull to d dimensional line complexes in Rd.

Let d ≥ 3; the subspace Gd of G1,d we are interested in is defined as follows: Let γd

be the curve {γd(t) : γd(t) = (1, t, t2, ..., td−1), t ∈ (−1, 1)} in Rd. Let l(t, x) denote
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the line {x + sγd(t) : s ∈ R}, where x ∈ Ht := {x : x ⊥ γd(t)}. We identify Gd with

[−1, 1] × Rd−1 via Gd = {l(t, x) : t ∈ [−1, 1], x ∈ Ht}. This line complex is a model

case for a general class called rigid well-curved line complexes (see, e.g., [9], [10] and

[11]). It is called well-curved since γ′d(t), ..., γ
(d−1)
d (t) are linearly independent for any

t ∈ [−1, 1], and the term rigid is used to describe the fact that for any point γd(t) in

the “direction set” γd, Gd contains all the lines in Rd having the direction γd(t). We

call the lines in Gd the γd-rays.

Now, we define the restricted X-ray transform as an operator from the functions

defined on Rd to the functions defined on Gd in the following way

Xf(l(t, x)) =

∫
l(t,x)

f, t ∈ [−1, 1], x ∈ Ht.

We work with the following mixed norms for the functions defined on Gd:

‖f‖Lq(Lr) = ‖f‖q, r = (

∫ 1

−1

(

∫
Ht

|f(l(t, x))|rdx)q/rdt)1/q.

We are interested in the estimates of the following type: If f : Rd → R is supported

in the unit cube Q1 then

‖Xf‖q,r ≤ Cpqr‖f‖p. (1)

Proposition 1.1. The following conditions for p, q and r are necessary for (1) to

hold

d
p
≤ d−1

r
+ 1, (2)

(d−1)d
p

≤ 2
q

+ (d−1)d
r

, (3)

(d−2)(d+1)
p

≤ (d−1)d
r

. (4)

The following counter-examples prove Proposition 1.1, they are quite standard

(see, e.g., [5], [9], [10] and [11]). The restriction (2) can be obtained by applying X

to the characteristic function of a δ-ball. To obtain (3), let f be the characteristic

function of the set |x1| ≤ 1, |x2| ≤ δ, ..., |xd| ≤ δd−1. Note that ‖f‖p ≈ δ
d(d−1)

2p and for

all |t| < δ, we have Xf ≈ 1 on a subset of Ht of measure & δ
d(d−1)

2 . Hence ‖Xf‖q,r &

δ
1
q δ

d(d−1)
2r , which proves the necessity of (3). Finally, divide γd into M (≈ 1/δ) segments

s1, ..., sM of length δ centered at t1, ..., tM , respectively. For any segment si, consider

the parallelogram Pi ⊂ Rd−1 with dimensions δ × δ2 × ... × δd−1, whose longest axis

is tangent to γd at γd(ti) and other axes are in the directions γ′′d (ti), ..., γ
(d−1)
d (ti),
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respectively. Let f be the characteristic function of the set {(x1, x2, ..., xd) ∈ Rd :

x1 ∈ (1, 2), (x2

x1
, ..., xd

x1
) ∈ ∪M

i Pi}. Note that ‖f‖p ≈ δ
d2−d−2

2p and for all t, Xf ≈ 1

on a subset of Ht of measure & δ
d(d−1)

2 . Hence ‖Xf‖q,r & δ
d(d−1)

2r , which proves the

necessity of (4).

One may conjecture that

Conjecture. If p, q and r satisfy the inequalities (2), (3) and (4), then (1) holds.

We have the following theorem which contains the main result of the paper.

Theorem 1.2. The conjecture is true in Rd for d = 3, 4 or 5 except the end-point

issues. More explicitly, if p, q and r satisfy (2), (3) and (4) with inequalities replaced

with strict inequalities, then (1) holds in Rd for d = 3, 4 or 5.

The case d = 3 follows from Wolff’s above-mentioned mixed norm estimates for

the X-ray transform restricted to light rays [21], since in R3 the space of light rays is

a rigid well-curved line complex.

If one considers the case q = r only, the conjecture had been settled for d = 3

in [8] and [17], and for the case q = r and d = 4, it had been verified except the

endpoint issues in [10]. In higher dimensions, the conjecture was verified for p = d
d−1

and q = r = d−1
d−2

in [13] and for q = r = 2 and p = 2d2−2d
d2−d+2

in [9]. Note that the results

mentioned here are valid for all rigid well-curved line complexes whereas Theorem 1.2

is valid only in the model case.

Remarks: i) Note that (1) holds for all q and r if p = ∞, since we are interested

in local estimates.

ii) Fubini’s theorem implies that (1) holds for p = q = r = 1.

iii) It is well-known that (see, e.g., [10] and [9]) X is bounded from W 2,−η to L2 for

some positive η. Here W p,ε(Q1) is the Sobolev space consisting of all functions f

supported in Q1 such that ‖(1−4)ε/2f‖p < ∞.

In the light of these remarks, Theorem 1.2. (the cases d = 4 and d = 5) can be

obtained from the following theorem by interpolation.

Theorem 1.3. Let d = 4 or 5. Let p = q = d+2
d

and r = d2+d−2
d2−d−2

. Then, the

restricted X-ray transform X is bounded from the Sobolev space W p,ε(Q1) to Lq(Lr)

for any ε > 0, where Q1 is the unit cube in Rd.

In [21], Wolff used the “bush” construction. It was introduced by Bourgain in [1]

and used by several other authors (see, e.g., [15]). A bush is a family of tubes passing

through a common point. The basic observation there was the following; in the case

of light rays the intersection of a bush with a tube passing through a point far from

the bush is at most a small ball.

As in [21], in the proof of Theorem 1.3, we use the bush construction. The basic
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property of the bushes in our case is the following transversality property: Let d ≥ 4.

If the basepoint of one bush is far from another bush, then their intersection is at most

a finite union of small balls. This is consequence of well-curvedness. This property

yields the proof in R4.

However, for d = 5, this property by itself is not enough. The reason for this is

that in R5 two generic bushes do not intersect at all. We overcome this difficulty by

collecting the bushes into groups that we denote by “bushfields”. A bushfield is a set

of tubes intersecting a given tube which we call the basetube. In some aspects, this

object is similar to that used in [18], which came to be recognized as the “hairbrush”

(see, e.g., [12]). The main difference is that a bushfield behaves like a disjoint union

of bushes. This is because of the following basic properties:

i) The tubes in a bushfield are disjoint away from the base tube.

ii) If the basepoint of a given bush β in R5 is far from a given bushfield bf , then β∩ bf

consists of at most finitely many small balls, as in the case of two bushes in R4.

To make use of these properties, we use a standard technique which is usually

called the bilinear reduction (see, e.g., [16], [15], [12] and [21]) together with the

rescaling argument in [21]. However, our exposition of the proof of Theorem 1.3 is

largely self-contained and does not require the reader to be familiar with the cited

works.

In section 2, we discuss the bush decomposition lemma from [21]. In section 3, we

prove the geometric properties of the bushes and obtain the main estimate in R4. In

section 4, we discuss bushfields and the main estimate in R5. In section 5, we obtain

a bilinear estimate for the adjoint of X. Finally, in section 6, we convert this bilinear

estimate into a mixed norm estimate for X.

List of notation.

|A|: Cardinality or the measure of the set A.

χA: Characteristic function of the set A.

N (A, η): η neighborhood of the set A.

C: A constant which may vary from line to line.

A . B: A ≤ CB.

A ≈ B: A . B and B . A.

2. Bush decomposition lemma.

Fix δ > 0. We work with tubes τ ⊂ Rd such that the axis of τ is a γd-ray and

it has dimensions δ × ... × δ × 1. Two δ-tubes are called δ-separated if the distance

between their axis with respect to a (fixed) smooth metric on Gd is greater than δ.
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We say two segments of γd are disjoint if the distance between them is positive.

Fix two disjoint segments W and B of γd. We call a tube whose axis direction belongs

to W (resp. B) a white (resp. black) tube. Also fix two arbitrary δ-separated families

of white and black tubes, W and B respectively. Until the end of Lemma 5.1, we

work with these δ, W and B.

Let ΦS denotes the sum of the characteristic functions of the objects in the set S,

e.g. ΦW , ΦB.

In the sections 2-5, we estimate the Lp′ norm of the function min(ΦW , ΦB). This

can be considered as a bilinear estimate for the adjoint of X. We begin with the

following bush decomposition lemma of Wolff [21]. We give a proof for the reader’s

convenience. A bush [1] is a set of tubes passing through a common point p, which is

called a base point for the bush. A white (resp. black) bush means a bush consisting

of white (resp. black) tubes. Given a set W of δ-tubes, we define a µ-fold point for

W to be a point contained in at least µ tubes from W or equivalently a point x such

that ΦW(x) ≥ µ.

Lemma 2.1. Given a set W of δ-tubes, we have a decomposition

W = ∪J
j=1Wj, 2J ≈ |W|,

such that

i) Wj is a union of . 2j bushes βj
i , and any tube in W belongs to at most one of the

bushes βj
i .

ii) Wk
g := ∪j>kWj does not have any |W|

2k -fold points, i.e. ΦWk
g
≤ |W|

2k , for all k ≤ J .

iii) Wk
b := ∪j≤kWj is a union of . 2k bushes.

Proof. First, we prove the following lemma:

Lemma 2.2. Given a set W of δ-tubes and a positive number µ ≤ |W|, we can

decompose W as

W = Wg ∪Wb,

where Wb is a union of . |W|
µ

bushes and Wg does not have any µ-fold points.

Proof. We construct Wb inductively. Take any µ-fold point x1 ∈ Rd for W . The

tubes in W containing x1 forms a bush β1. Let Wb = β1 and W1 = W\β1. Repeat

this procedure with W1 instead of W . This gives another bush β2. Let Wb = β1 ∪ β2

and W2 = W1\β2. Continue to repeat this procedure until there is no µ-fold points.

Since we subtract at least µ tubes from W in each step, we stop at most in |W|
µ

steps.

Note that this gives Wb = ∪k
i=1βi, k ≤ |W|

µ
, and Wg := Wk has no µ-fold points. �

Proof of Lemma 2.1. Apply Lemma 2.2 to W with µ = |W|/2. This gives a set

W1
g with no |W|/2-fold points and a collection W1 of bushes β1

i . Then apply Lemma
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2.2 to W1
g with µ = |W|/4 to obtain W2

g with no |W|/22-fold points and a collection

W2 of bushes β2
i . Continue to repeat this procedure taking µ = |W|/2j at the jth

step. We stop the procedure at Jth step, where J is the smallest integer such that

|W|/2J < 1. Note that W = ∪J
j=1Wj and by Lemma 2.2, Wj is a union of at most

|W|/(|W|/2j) = 2j bushes βj
i . This yields the part i) of the lemma. Part ii) follows

from the construction and part iii) immediately follows from part i). �.

Lemma 2.1 gives a decomposition of W into a set of bushes βj
i . At this point, we

fix ε > 0 and a tiling of Q1 by δε-cubes. The letter Q is reserved for these δε-cubes.

The following definitions are from [21].

Definition. A tube w is related to a δε-cube Q, w ∼ Q, if w belongs to a bush

βj
i whose basepoint is in Q or one of its neighbors. Similarly, a tube w is related to

a point x, w ∼ x, if x is in a cube which is related to w.

Definition.

Φ∗
W(x) :=

∑
w∼x

ΦW(x), Φ̃W(x) :=
∑
w�x

ΦW(x) = ΦW(x)− Φ∗
W(x).

We use Lemma 2.1 for B too and define Φ̃B and Φ∗
B similarly.

3. Main lemma in R4; bushes.

The following lemma is the main lemma of the proof in R4. Let m = |W|, n = |B|.
Lemma 3.1. Let d = 4. With the notation in section 2, for any µ and ν we have

i) |{x ∈ Q1 : Φ̃W(x) ≥ µ, ΦB ≥ ν}| . δ
5
2
−Cε nm

1
2

ν2µ
3
2
,

ii) |{x ∈ Q1 : ΦW(x) ≥ µ, Φ̃B ≥ ν}| . δ
5
2
−Cε n

1
2 m

ν
3
2 µ2

.

We begin the proof with the following geometric lemma about the transversality

of white and black δ-bushes.

Lemma 3.2. Fix ε > 0, and let W and B be two disjoint segments of γ4. Let x

and y be two arbitrary points in 2Q1 and SW (resp. SB) be the surface consisting of

all white (resp. black) rays passing from the point x (resp. y). Let Qx be the δε-cube

centered at the point x. Then

i) the measure of the intersection of the δ neighborhood of SW and a black δ-tube is

. δ4,

ii) the measure of the set Q1 ∩ (N (SW , δ)\Qx) ∩N (SB, δ) is . δ−Cεδ4.

Proof. We use the following parametrizations:

SB = {y + (a, at, at2, at3) : a ∈ (−2, 2), γ4(t) ∈ B},

SW = {x + (b, bs, bs2, bs3) : b ∈ (−2, 2), γ4(s) ∈ W},

6



and any black δ-tube is the δ neighborhood of a line

l(t0, z) = {z + (c, ct0, ct
2
0, ct

3
0), |c| < 2},

where t0 is a point such that γ4(t0) ∈ B.

i) It is easy to check that the intersection of SW and l(t0, z) consists of at most 2

points. The claim follows from the observations that the tangent plane T (b, s) of SW

at the point corresponding to the parameter values (b, s) is spanned by the vectors

e1 = (0, 1, 2s, 3s2) and e2 = (1, s, s2, s3), and the angle between l(t0, z) and T (b, s) is

greater than a fixed constant depending on the distance between W and B. We omit

the details.

ii) It is easy to check that for fixed x, the intersection of SW and SB consists of

. 1 points for y in a dense subset of R4. Therefore, by changing y slightly if necessary

and replacing δ with 2δ, we can assume that SW ∩ SB consists of . 1 points.

Note that if E and F are subsets of a metric space, then

N (E, δ) ∩N (F, δ) ⊆ N (E ∩N (F, 2δ), δ);

hence, it suffices to prove that the induced Lebesque measure of the set of points on

SB ∩Q1, which are in the 4δ neighborhood of SW\Qx, is . δ−Cεδ2.

Let Aλ = {z : |z − y| ∈ [λ, 2λ]}. We prove that forall λ ∈ (0, 1
2
), the measure

of the set of points on SB ∩ Aλ ∩ Q1 which are in the 4δ neighborhood of SW\Qx is

. δ−Cεδ2. This yields the claim since SB ∩Q1 can be covered by . log(δ−1) Aλ’s.

Note that the area element on the surface SB is

dA = f(a, t)a dadt, (5)

where f is a bounded function. Hence, the measure of a subset of SB∩Aλ of the form

{x + (a, at, at2, at3) : |a− a0| < α, |t− t0| < α
λ
} is . α2. Therefore, by using part (i)

of the lemma, we only need to show that the measure of the set

St := {t ∈ [−1, 1] : ∃a, b, s such that |F (a, b, t, s)| ≤ 4δ}

is . δ−ε δ
λ
, where F : R4 → R4 is the function defined via

F (a, b, t, s) = x− y + (a− b, at− bs, at2 − bs2, at3 − bs3).

Note that any derivative of F of order less than two is bounded by C and

JF = det


1 t t2 t3

−1 −s −s2 −s3

0 a 2at 3at2

0 −b −2bs −3bs2

 = ab(t− s)4 & λδεC.
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Hence, a quantitative version of the inverse function theorem, for example the one in

[4], implies that F−1(B(0, 4δ)) is contained in . 1 balls of diameter . δ−ε δ
λ
. This

shows that the measure of the set St is . δ−ε δ
λ
. �

Proof of Lemma 3.1. We prove part i) only.

Let j0 be the smallest integer so that m
2j0
≤ µ

2
. By Lemma 2.1, we have ΦWj0

g
≤ µ

2
.

Note that Φ̃W ≤ ΦWj0
g

+ Φ̃Wj0
b

. Therefore {Φ̃W ≥ µ} ⊂ {Φ̃Wj0
b
≥ µ

2
} and it is enough

to prove part i) with Φ̃Wj0
b

instead of Φ̃W . Also by Lemma 2.1, Wj0
b is a union of

. 2j0 . m
µ

bushes. Similarly, let k0 be the smallest integer so that n
2k0

≤ ν
2
. Note

that ΦB ≤ ΦBk0
g

+ ΦBk0
b

; hence, by the same reasoning, it is enough to prove part i)

with ΦBk0
b

instead of ΦB and Bk0
b is a union of . 2k0 . n

ν
bushes.

Denote the bushes in Wj0
b (resp. Bk0

b ) by βw (resp. βb). We have∫
ΦBk0

b
Φ̃Wj0

b
=
∑
βb

∑
βw

∫
Q1\2Q

Φβb
Φβw , (6)

where Q is the δε-cube containing the base of βw.

Now, we divide each black bush into ≈ log(δ−1) disjoint segments βk
b . The segment

β0
b consists of the parts of the tubes which are in the δ neighborhood of the basepoint,

and for k > 0, βk
b consists of the parts of the tubes whose distance to the basepoint

is between 2k−1δ and 2kδ. We have

(6) .
log(δ−1)∑

k=0

∑
βk

b

∑
βw

∫
Q1\2Q

Φβk
b
Φβw . (7)

We need the following lemma to estimate the right hand side of the inequality (7).

Lemma 3.3. Fix a black bush segment βk
b .

i) There are . 22kδ−1 white tubes which intersect βk
b .

ii) For any white bush βw which intersects βk
b , we have∫

Q1\2Q

Φβk
b
Φβw . δ3−Cε2−k,

where Q is the δε-cube containing the basepoint of the white bush βw,

iii) For any white tube w which intersects βk
b , we have∫

Q1

Φβk
b
χw . δ32−k.

Proof. i) Note that there are at most δ−1 tubes through a given point, and (5)

implies that the maximum possible cardinality of a δ-separated set of points on βk
b is

. 22k. Hence, there are at most 22kδ−1 white tubes which intersect βk
b .
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ii) Part ii) of Lemma 1 shows that the measure of the set of points which belong to

both βk
b and βw is . δ4−Cε. The claim follows from the following pointwise inequalities:

Φβk
b

. 2−kδ−1, (8)

ΦβwχQ1\2Q . δ−ε. (9)

To prove (8), note that the angle between the axis of the adjacent tubes is & δ.

Also note that the distance between the points on βk
b and the basepoint of βk

b is at

least 2kδ. These show that at most 2−kδ−1 many tubes passes through a given point

on βk
b .

Proof of (9) is similar, since the points in the complement of 2Q are at least at a

distance δε to the basepoint of the bush.

iii) This follows from part i) of Lemma 3.3 and (8). �
We continue the proof of part i) of Lemma 3.1. Fix a black bush segment βk

b . Using

part ii) of Lemma 3.3, and remembering that there are at most m
µ

white bushes, we

obtain ∑
βw

∫
Q1\2Q

Φβk
b
Φβw .

m

µ
δ3−Cε2−k. (10)

On the other hand, parts i) and iii) of Lemma 3.3 imply that∑
βw

∫
Q1\2Q

Φβk
b
Φβw . 22kδ−1δ32−k. (11)

Using (10) and (11) in (7), and remembering that there are at most n
ν

black bushes,

we obtain

(7) .
log(δ−1)∑

k=0

n

ν
min(

m

µ
, 22kδ−1)δ3−Cε2−k . log(δ−1)

n

ν
(
m

µ
)1/2δ5/2−Cε,

which yields the claim of part i) using Tschebyshev’s inequality. �

4. Main lemma in R5; bushfields.

The following lemma is the main lemma for the proof in R5. Let m = |W|, n = |B|.
Lemma 4.1. Let d = 5. With the notation in section 2, for any µ and ν we have

i) |{x ∈ Q1 : Φ̃W(x) ≥ µ, ΦB ≥ ν}| . δ
7
2
−Cε nm

1
4

ν2µ
3
4
,

ii) |{x ∈ Q1 : ΦW(x) ≥ µ, Φ̃B ≥ ν}| . δ
7
2
−Cε n

1
4 m

ν
3
4 µ2

.
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In the proof of the lemma, we use a geometric construction called bushfield. A

bushfield is a set of tubes intersecting a common tube τ ; we call τ the basetube of the

bushfield. We call a bushfield consisting of white (resp. black) tubes a white (resp.

black) bushfield. We begin the proof with the following lemma about the geometric

properties of the bushfields.

Lemma 4.2. Let bf be a bushfield of white δ-tubes with basetube w and β be a bush

of black δ-tubes with basepoint p. Let Aλ be the cylinder Aλ = {y ∈ R5 : dist(w, y) ∈
[λ, 2λ]}. Then

i) If y ∈ Aλ, then Φbf (y) . λ−1.

ii) |bf ∩ Aλ| . λ2δ2; hence, there are at most λ2δ−4 δ-separated tubes intersecting

bf ∩ Aλ.

iii) |(bf ∩ Aλ) ∩ (b\N (p, δε))| . δ−Cεδ5.

Proof. Using the maps T t
N that is defined before Lemma 6.2, it is easy to see

that for all s and t in [−1, 1], there exists a linear map T t
s , which takes the curve

γ5 to itself and in particular takes γ5(s) to γ5(t), such that the entries in the matrix

representation of T t
s and its inverse are bounded by a fixed constant. Because of this

and translation invariance, it is enough to prove the lemma by assuming that W is

a segment around γ5(0), and the basetube of bf is the δ neighborhood of the line

l(γ5(0), 0).

Note that bf is contained in the 2δ neighborhood of the set

Sbf = {(u, 0, 0, 0, 0) + a(1, t, t2, t3, t4)|u ∈ (−1, 1), a ∈ (−2, 2), γ5(t) ∈ W}. (12)

It is easy to see that Sbf can also be parametrized as

Sbf = {(u, a, at, at2, at3) : u ∈ (−2, 2), a ∈ (−2, 2), γ5(t) ∈ W}. (13)

Using this parametrization, we see that bf ∩ Aλ is contained in the 2δ neighborhood

of

Sλ
bf = {(u, a, at, at2, at3) : u ∈ (−2, 2), |a| ∈ [λ/2, 2λ], γ5(t) ∈ W}. (14)

Also as before, we define

Sβ = {(b, bs, bs2, bs3, bs4) : |b| ∈ (δ−ε, 2), γ5(s) ∈ B}. (15)

Note that β\N (p, δε) is contained in the 2δ neighborhood of the set p + Sβ.

i) Let bfi be the set of tubes in bf whose direction is γ5(t) for some t ∈ [iδ, (i+1)δ].

Note that because of δ-separatedness every point in R5 is contained in . 1 of the tubes

in bfi. Let P δ
i be the 2δ neighborhood of the 2-plane Pi through the origin which is
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spanned by the vectors γ5(0) and γ5(iδ). Note that all of the tubes in bfi are contained

in P δ
i . Also note that the angle between the planes Pi and Pj is

](Pi, Pj) ≈ ](γ5(iδ)− γ5(0), γ5(jδ)− γ5(0))

≈ ]((0, 1, iδ, (iδ)2, (iδ)3), (0, 1, jδ, (jδ)2, (jδ)3)) ≈ |i− j|δ.

This and the observation that the distance between the points in Aλ and the basetube

is approximately λ show that any point in Aλ is contained in . 1
λ

P δ
i ’s, which is the

claim of part i).

ii) Note that the volume element on Sbf with respect to the parametrization (13)

is

dW = f(a, t)a dudadt, (16)

where f is a bounded function. This and (14) prove the first part. The second part

follows from the observations that there are at most λ2δ−3 δ-separated points on

bf ∩ Aλ, and at most δ−1 δ-separated tubes pass through a given point.

iii) This is similar to the proof of Lemma 3.2. Using the parametrization (12),

it is easy to check that for p in a dense subset of R5, the intersection of Sbf and Sβ

consists of . 1 points. Hence, by changing p slightly if necessary and replacing δ with

2δ, we can assume that Sbf ∩ Sβ consists of . 1 points.

As in the proof of Lemma 3.2 ii), it suffices to prove that the induced Lebesque

measure of the set of points on Sbf ∩Aλ, which are in the 4δ neighborhood of Sβ\Qx,

is . δ−Cεδ3.

(16) implies that the measure of a subset of Sbf∩Aλ of the form {(u, a, at, at2, at3) :

|u−u0| < α, |a−a0| < α, |t− t0| < α
λ
} is . α3. Also note that for fixed t, the intersec-

tion of the 2-plane {(u, a, at, at2, at3) : |u| < 2, |a| < 2} with the 4δ neighborhood of

Sβ is of measure . δ2. This is because of the transversality as in the proof of Lemma

3.2 i). Hence, it suffices to prove that the measure of the set

St = {t : ∃u, a, b, s such that |F (u, a, b, t, s)| ≤ 4δ}

is . δ−ε δ
λ
, where F : R5 → R5 is the function defined via

F (u, a, b, t, s) = p + (u− b, a− bs, at− bs2, at2 − bs3, at3 − bs4).

Note that any derivative of F of order less than two is bounded by C and

JF = det


1 0 0 0 0

0 1 t t2 t3

−1 −s −s2 −s3 −s4

0 0 a 2at 3at2

0 −b −2bs −3bs2 −4bs3

 = abCW,B & λδε,

11



where CW,B is a constant which depends on the distance between W and B only.

Hence, F−1(B(0, 4δ)) is contained in . 1 balls of diameter . δ−ε δ
λ
. This shows that

the measure of the set St is . δ−ε δ
λ
. �

Proof of Lemma 4.1. We prove part i) only.

Let j0 be the smallest integer so that m
2j0

≤ µ
2
. Using Lemma 2.1 as in the proof

of Lemma 3.1, we note that it is enough to prove part i) with Φ̃Wj0
b

instead of Φ̃W ,

and Wj0
b is a union of . 2j0 . m

µ
bushes.

Now, we decompose the black tubes into bushfields. Let Ω be the set {ΦB > ν/2}.
Fix a number η ∈ (0, 1) which is determined later. We need the following lemmas.

Lemma 4.3. Let τ be a black tube. If |τ ∩ Ω| ≥ η|τ | ≈ ηδ4, then τ intersects

& ην2 tubes from B.

Proof. Without loss of generality, we can assume that τ is the δ-tube with axis

l(γ5(0), 0). Note that the set τ ∩ Ω is covered by the black tubes ≈ ν/2 times. Since

we are trying to find a lower bound for the number of tubes required to cover τ ∩ Ω

ν/2 times, we can assume that all the tubes which intersect τ in a small angle are in

the covering.

Let Bi be the set of tubes b in B which intersect τ and such that the direction of

b is γ5(t) for some t ∈ [iδ, (i + 1)δ]. Note that using the tubes in Bi, one can cover

the set τ ∩ Ω at most once. This is because of δ-separatedness.

The angle between τ and the tubes in Bi is approximately iδ. This shows that

|τ ∩ b| . δ4

|i|+1
; hence, to cover the set τ ∩ Ω with the tubes in Bi, we need at least

η(|i| + 1) tubes from Bi. This yields the claim of the lemma, since we have to cover

the set τ ∩ Ω approximately ν/2 times and
∑ν/2

i=0 η(i + 1) ≈ ην2. �
Lemma 4.4. Given η > 0 we can decompose B as

B = Br ∪ Bs,

where each tube b in Br satisfies |b ∩ Ω| ≤ η|b|, and Bs is a union of . n
ην2 log(δ−1)

bushfields.

Proof. Let A be a large enough constant. Choose An
ην2 log(δ−1) tubes from B

randomly. The following claim yields the lemma.

Claim. With high probability all the tubes b in B with |b∩ ω| ≥ η|b| intersect at

least one of the tubes from the random sample.

Proof of the claim. Lemma 4.3 implies that b intersects at least ην2 tubes;

hence, b intersects none of the tubes from the random sample with probability . (1−
ην2

n
)

An
ην2 log(δ−1) ≈ δA. This shows that the above-mentioned probability is ≥ 1−CnδA,

which is ≥ 1
2

if A is large enough. �

12



Choose such a sample. Let Bs be the set of tubes which intersect one of the tubes

in the sample and Br be the set of remaining tubes. Obviously, Bs is a union of

. n
ην2 log(δ−1) bushfields, and any tube b ∈ Br satisfies |b ∩ Ω| ≤ η|b|. �
We continue the proof of Lemma 4.1. Note that

{Φ̃Wj0
b
≥ µ, ΦB ≥ ν} ⊆ {Φ̃Wj0

b
≥ µ, ΦBs ≥

ν

2
} ∪ {ΦBr ≥

ν

2
}. (17)

Using Lemma 4.4, we obtain

‖ΦBrχ{ΦBr≥
ν
2
}‖1 .

∑
b∈Br

|b ∩ {ΦBr ≥
ν

2
}| . ηδ4n.

Thus,

|{ΦBr ≥
ν

2
}| . ηn

ν
δ4. (18)

Now, we estimate the measure of the set {Φ̃Wj0
b
≥ µ, ΦBs ≥ ν

2
} as in the proof of

Lemma 3.1. Denote the bushfields in Bs by bf and white bushes by βw. We have∫
ΦBsΦ̃Wj0

b
=
∑
bf

∑
βw

∫
Q1\2Q

ΦbfΦβw , (19)

where Q is the δε-cube containing the base of βw.

Now, we divide each black bushfield into ≈ log(δ−1) disjoint segments bfk. The

segment bf0 consists of the parts of the tubes which are in the δ neighborhood of the

basetube, and for k > 0, bfk consists of the parts of the tubes whose distance to the

basetube is between 2k−1δ and 2kδ. We have

(19) .
log(δ−1)∑

k=0

∑
bfk

∑
βw

∫
Q1\2Q

ΦbfkΦβw . (20)

Fix a black bushfield segment bfk. Note that, as in the case d = 4, χQ1\2QΦβw .
δ−ε. Using this and parts i) and iii) of Lemma 4.2, and remembering that there are

at most m
µ

white bushes, we obtain∑
βw

∫
Q1\2Q

ΦbfkΦβw .
m

µ
δ4−Cε2−k. (21)

On the other hand, part ii) of Lemma 4.2 shows that there are at most 22kδ−2 white

tubes which intersect bfk. Using this and parts i) and iii) of Lemma 4.2, we obtain∑
βw

∫
Q1\2Q

ΦbfkΦβw . 2kδ2−Cε. (22)

13



Using (21) and (22) in (20), and remembering that there are at most n
ην2 (log(δ−1))2

black bushfields, we obtain

(20) .
log(δ−1)∑

k=0

n

ην2
(log(δ−1))2 min(

m

µ
, 22kδ−2)δ4−Cε2−k

. (log(δ−1))3 n

ην2
(
m

µ
)1/2δ3−Cε.

Thus, using Tschebyshev’s inequality, we obtain

|{Φ̃Wj0
b
≥ µ, ΦBs ≥

ν

2
}| . nm

1
2

ην3µ
3
2

δ3−Cε. (23)

Using (18) and (23) in (17), we obtain

|{Φ̃Wj0
b
≥ µ, ΦB ≥ ν}| . ηn

ν
δ4 +

nm
1
2

ην3µ
3
2

δ3−Cε. (24)

Minimizing the right hand side of the inequality (24) by choosing a suitable η yields

the claim of the lemma. �

5. Bilinear Estimate.

In this subsection, we estimate the Lp′ norm of the function min(ΦW , ΦB). We

need the following numerical inequalities. For proofs see [21]. Let θ ∈ [1
2
, 1] and

aj, bk, a, b, x and y be nonnegative real numbers. Then

min(ax, by)θ max(ax, by)1−θ ≤ min(x, y)θ max(x, y)1−θ max(a, b)θ min(a, b)1−θ, (25)

min(
∑

j

aj,
∑

k

bk)
θ max(

∑
j

aj,
∑

k

bk)
1−θ ≤

∑
j,k

min(aj, bk)
θ max(aj, bk)

1−θ. (26)

The following inequality is an immediate corollary of (26). Let a, b, c and d be non-

negative real numbers. Then

min(a + b, c + d)θ max(a + b, c + d)1−θ . a1−θ(b + c)θ + c1−θ(c + d)1−θ. (27)

For technical reasons, we work with the function Ψθ defined below instead of

min(ΦW , ΦB). This is because of the asymmetry of the bounds in Lemmas 3.1 and

4.1. Here, θ is a dimension dependent parameter in [1
2
, 1].

14



Definition.

Ψθ := χQ1 . min(ΦW , ΦB)θ max(ΦW , ΦB)1−θ,

Sθ := χQ1 . min(Φ∗
W , Φ∗

B)θ max(Φ∗
W , Φ∗

B)1−θ,

Tθ := χQ1 .(Φ̃
1−θ
W Φθ

B + Φθ
WΦ̃1−θ

B ).

Note that the inequality (27) implies that

Ψθ ≤ Sθ + Tθ. (28)

By using the estimates in Lemmas 3.1 and 4.1, we obtain an estimate for Tθ, and

using the rescaling and induction arguments from [21], we prove the same estimate

for Ψθ. In some sense, the estimates in Lemmas 3.1 and 4.1 are stronger than the

estimates we need; in the following lemma we bring them into the relevant form using

trivial estimates.

Lemma 5.1. Let θ = 1
2

for d = 4 and θ = 4
7

for d = 5. Let p = d+2
d

and
1
p

+ 1
p′

= 1. Then

‖δTθ‖p′

p′ . δ−Cε(δd max(|B|, |W|))
d

d−1 . (29)

Proof. First note that there are . δ−1 same colored tubes containing a given point.

Hence,

‖δTθ‖∞ . 1. (30)

Also note that ‖ΦW‖1 . |W|δd−1. This and the similar estimate for ΦB imply via

Tschebyshev’s inequality that

{ΦW ≥ µ, ΦB ≥ ν} . δd−1 min(
|W|
µ

,
|B|
ν

). (31)

i) The case d = 4: Let

Y (µ, ν) = |{x ∈ Q1 : Φ̃W(x) ≥ µ, ΦB ≥ ν}|

and m = |W|, n = |B|. Using part i) of Lemma 3.1, we obtain

Y (µ, ν) . δ
5
2
−Cε min(

nm
1
2

ν2µ
3
2

,
m

µ
δ

1
2 )

≤ δ
5
2
−Cε(

nm
1
2

ν2µ
3
2

)
2
3 (

m

µ
δ

1
2 )

1
3

= δ−Cε (δ4nδ4m)
2
3

(νµ)
4
3

δ−
8
3 . (32)
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Summing over the dyadic values of µ and ν between 1 and δ−1 gives

‖χQ1

√
Φ̃WΦB‖

8
3
8
3

. δ−Cε(δ4nδ4m)
2
3 δ−

8
3 .

Estimating ‖χQ1

√
Φ̃BΦW‖ 8

3
in the same way gives

‖δT 1
2
‖ 8

3
. δ−Cε(δ4nδ4m)

1
4 . (33)

Interpolating (33) with (30) yields the claim of the lemma for d = 4.

ii) The case d = 5:

Define Y (µ, ν) in the same way. Using part i) of Lemma 4.1, we obtain

Y (µ, ν) . δ−Cε nm
1
4

ν2µ
3
4

δ
7
2 .

Using µ . δ−1, we obtain

Y (µ, ν) . δ−Cε nm
1
4

ν2µ
3
2

δ
11
4 . δ−Cε (δ5 max(m, n))

5
4

ν2µ
3
2

δ−
7
2 .

summing over the dyadic values of µ and ν between 1 and δ−1 gives

‖χQ1Φ̃
3
7
WΦ

4
7
B‖

7
2
7
2

. δ−Cε(δ5 max(m, n))
5
4 δ−

7
2 .

Estimating ‖χQ1Φ̃
3
7
BΦ

4
7
W‖ 7

2
in the same way gives

‖δT 4
7
‖

7
2
7
2

. δ−Cε(δ5 max(m,n))
5
4 . �

Lemma 5.2. Let θ = 1
2

for d = 4 and θ = 4
7

for d = 5. Let p = d+2
d

and
1
p

+ 1
p′

= 1. Fix two disjoint segments W and B of γd. For any δ > 0, we have:

For any δ-separated W and B the following inequality is valid

‖δΨθ‖p′

p′ . δ−Cε(δd max(|B|, |W|))
d

d−1 . (34)

Proof. We begin with the following rescaling lemma.

Lemma 5.3. Fix δ ∈ (0, δ0) (δ0 is determined in the proof) and assume that the

claim of Lemma 5.2 has been proved for δ1−ε. Then, we have

‖δΨθ‖p′

Lp′ (Q)
≤ Aεδ

Cε2

2
−Cε((δd max(|B|, |W|))

d
d−1 , (35)
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where Q is a δε-cube and W and B are δ-separated sets of tubes.

Proof. Fix a δε-cube Q. For each w ∈ W , let k(w) be the cardinality of the set

of white tubes w1 such that w1 ∩ Q is contained in the double of w. Let Wµ be the

set of white tubes w with k(w) ∈ [µ, 2µ]. Define k(b) and Bν analogously. Note that

k(w) and k(b) are restricted to values between 1 and δ−ε. Let

Ψµν
θ := χQ. min(ΦWµ , ΦBν )

θ max(ΦWµ , ΦBν )
1−θ.

Note that (26) implies that

Ψθ ≤
∑
µν

Ψµν
θ , (36)

pointwise on Q, where the sum is over the dyadic values of µ and ν. We estimate the

Lp′ norm of the functions Ψµν
θ . We can assume that µ ≥ ν.

Let W̄µ be a maximal subset of Wµ which satisfies the property:

(*): If w1, w2 ∈ W̄µ, then w1 ∩Q is not contained in the double of w2.

Define B̄ν analogously. Replace the tubes in W̄µ (resp. B̄ν) with their doubles and

let

Ψ̄µν
θ := χQ. min(ΦW̄µ

, ΦB̄ν
)θ max(ΦW̄µ

, ΦB̄ν
)1−θ.

Note that the maximality of W̄µ (resp. B̄ν) implies that ΦWµ . µΦW̄µ
(resp. ΦBν .

νΦB̄ν
), which implies via (25) that

Ψµν
θ . µθν1−θΨ̄µν

θ .

Taking the Lp′ norms, we obtain

‖Ψµν
θ ‖p′ . µθν1−θ‖Ψ̄µν

θ ‖p′ . (37)

Finally, note that the property (*) implies that

|W̄µ| . µ−1|W|, |B̄ν | . ν−1|B|. (38)

Dilating the cube Q by δ−ε, we obtain a cube Q′ of side 1 and δ1−ε-separated sets

W̄µ, B̄ν of 2δ1−ε-tubes. Hence, we can apply the hypothesis to obtain

‖δ1−εΨ̄µν
θ (δεx)‖p′

Lp′ (Q′)
≤ Aεδ

−(1−ε)Cε(δ(1−ε)d max(|W̄µ|, |B̄ν |))
d

d−1 .

Making the change of variables x → δεx, we obtain

δ−p′εδ−dε‖δΨ̄µν
θ ‖

p′

Lp′ (Q)
≤ Aεδ

−Cε(δd max(|W̄µ|, |B̄ν |))
d

d−1 δCε2

δ−
d2

d−1
ε. (39)
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Using estimates in (38), we have

max(|W̄µ|, |B̄ν |) . max(
|W|
µ

,
|B|
ν

) ≤ 1

ν
max(|W|, |B|). (40)

Using estimate (39) and then estimate (40) in (37) and making the necessary cancel-

lations, we get

‖δΨµν
θ ‖

p′

Lp′ (Q)
. µθp′ν(1−θ)p′‖δΨ̄µν

θ ‖
p′

Lp′ (Q)

. Aεδ
−Cε(δd max(|W̄µ|, |B̄ν |))

d
d−1 δCε2

µθp′ν(1−θ)p′δp′εδ−
d

d−1
ε

. Aεδ
−Cε(δd max(|W|, |B|))

d
d−1 δCε2

µθp′ν(1−θ)p′− d
d−1 δp′εδ−

d
d−1

ε

. Aεδ
−Cε(δd max(|W|, |B|))

d
d−1 δCε2

; (41)

the last inequality follows from the fact that µ, ν . δ−ε when we note that (1−θ)p′ >
d

d−1
. Using (41) in (36), we have

‖δΨθ‖p′ ≤
∑
µν

‖δΨµν
θ ‖p′ .

∑
µν

Aεδ
−Cε(δd max(|W|, |B|))

d
d−1 δCε2

. Aεδ
−Cε(δd max(|W|, |B|))

d
d−1 δCε2

log(δ−1)2,

since there are . log(δ−1)2 terms in the summation. This yields the claim of the

lemma given that δ0 is small enough. �
We continue the proof of Lemma 5.2. Note that the lemma is obvious for δ ≥ δ0,

and we prove the lemma for the values of δ such that δ1−ε > δ0. An obvious induction

argument yields the claim of the lemma.

We estimate Tθ using Lemma 5.1 and estimate Sθ using Lemma 5.3 in the following

way. For each δε-cube Q, applying Lemma 5.3 to the sets nW(Q) := {w ∈ W : w ∼ Q}
and nB(Q) := {b ∈ B : b ∼ Q}, we obtain

‖δSθ‖p′

Lp′ (Q)
≤ δ

Cε2

2
−CεAε

(
δd max(nW(Q), nB(Q))

) d
d−1 .

Summing over Q, we obtain

‖δSθ‖p′

p′ ≤ δ
Cε2

2
−CεAε

∑
Q

(
δd max(nW(Q), nB(Q))

) d
d−1

≤ δ
Cε2

2
−CεAε

(∑
Q

δd max(nW(Q), nB(Q))

) d
d−1

. δ
Cε2

2
−CεAε

(
δd max(

∑
Q

nW(Q),
∑
Q

nB(Q))

) d
d−1

. (42)
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Note that
∑

Q nW(Q) . |W| and
∑

Q nB(Q) . |B|. This is because by Lemma 2.1

each tube belongs to at most one bush; hence, each tube is related to . 1 δε-cubes.

Using these bounds in (42), we obtain

‖δSθ‖p′

p′ . δ
Cε2

2 Aεδ
−Cε(δd max(|W|, |B|))

d
d−1 ,

which yields the claim of the lemma. �

6. Proof of Theorem 1.3.

For possible future usage, we do the rest of the proof in general dimensions.

Lemma 5.2 and the following theorem yield the claim of Theorem 1.3.

Theorem 6.1. Let d ≥ 3 and ε > 0. Assume that p, q and r satisfy the

inequalities (2), (3) and (4), and r ≥ q ≥ p. Let W and B be disjoint segments of γd.

Assume that for any δ > 0, and for any δ-separated W and B, we have

‖δ min(ΦW , ΦB)‖p′

Lp′ (Q1)
. δ−ε(δd max(|W|, |B|))

p′
r′ ,

where 1
p

+ 1
p′

= 1 and 1
r

+ 1
r′

= 1. Then the restricted X-ray transform X is bounded

from the Sobolev space W p,Cε(Q1) to Lq(Lr).

In the proof of Theorem 6.1, we work with the operator

Xδf(l) =
1

δd−1

∫
lδ

f(x)dx,

where lδ is the δ neighborhood of l in Rd. Xδ is simply the operator X thickened by

δ. It is easy to see that the adjoint map X∗
δ of Xδ which takes functions defined on

Gd to functions defined on Rd is defined via

X∗
δ f(u) =

∫ 1

−1

∫
Ht

χlδ(t,x)(u)f(l(t, x))dxdt.

The hypothesis of Theorem 6.1 is essentially a bilinear estimate for X∗
δ ; in the proof

of Theorem 6.1, we convert it to a linear estimate. The argument is quite standard

and we omit some details; the proof below is a variation of the one in [21].

We need the following rescaling map for the curve γd: Fix a point γd(t0) and

consider the basis {γd(t0), γ
′
d(t0), ..., γ

(d−1)
d (t0)} for Rd. Define T t0

N via T t0
N (γ

(j)
d (t0)) =

N jγ
(j)
d (t0), j = 0, 1, 2, ..., d− 1.

Lemma 6.2. i) T t0
N takes the curve γd to itself, thus taking the γd-rays to γd-rays.

Moreover, we have the following formula:

T t0
N (γd(t)) = γd(N(t− t0) + t0).
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ii) T t0
N takes a segment of length N−1 centered at γd(t0) of the curve γd to a segment

of length ≈ 1.

Proof. We prove that T t0
N (γd(t)) = γd(N(t − t0) + t0), which yields the claims

of the lemma. Let A be the d × d matrix whose ith column is γi−1
d (t0), i.e. A =

[γd(t0) γ′d(t0) ... γ
(d−1)
d (t0)] and B = diag(1, N, ..., Nd−1). Note that

T t0
N (γd(t)) = ABA−1[1, t, t2, ..., td−1]T . (43)

Let f(t) = tj. Using the equality

f(t) = f(t0) + f ′(t0)(t− t0) + ... + f (j)(t0)
(t− t0)

j

j!
, (44)

and the definition of γd(t), we have

[1, t, ..., td−1]T = A[1, t− t0,
(t− t0)

2

2!
, ...,

(t− t0)
d−1

(d− 1)!
]T . (45)

Using (44) and (45) in (43), we have

T t0
N (γd(t)) = AB[1, t− t0,

(t− t0)
2

2!
, ...,

(t− t0)
d−1

(d− 1)!
]T

= A[1, N(t− t0),
(N(t− t0))

2

2!
, ...,

(N(t− t0))
d−1

(d− 1)!
]T . (46)

Using (45) by replacing t with N(t− t0) + t0, we obtain

(46) = [1, N(t− t0) + t0, ..., (N(t− t0) + t0)
d−1] = γd(N(t− t0) + t0). �

Let s be a segment of the curve γd of length N−1 centered at γd(t0). We denote

T t0
N by Ts and the subset of Gd consisting of all lines whose directions are in s by Gs

d.

Since Ts takes γd-rays to γd-rays, there is an action Ts : Gd → Gd. We give some

more definitions:

Definitions. Let Y be a subset of a metric space. We denote the characteristic

function of N (Y, η) by χY,η.

Let Y be a subset of Gs
d, then we have

(i) ‖χTsY ‖p,r ≈ N
1
p
+

d(d−1)
2r ‖χY ‖p,r,

(ii) ‖χTsY,δ‖p,r . N
1
p
+

d(d−1)
2r ‖χY,δ/N‖p,r,

(iii) X∗
δ χY (x) ≈ N−1X∗

δ χTsY (Tsx).
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To prove (i), note that Ts expands s by a factor ≈ N by Lemma 6.2, and for any

γd(t) ∈ s, Ts expands volumes in Ht by ≈ N
d(d−1)

2 . This follows from the observations

that

det(Ts) ≈ N.N2...Nd−1 = N
d(d−1)

2 , (47)

and Ts essentially preserves the lengths in γd(t) direction. (ii) follows from (i) and

the observation that N (TsY, δ) ⊆ TsN (Y,Cδ/N). Finally, (iii) follows from the fact

that Ts expands s by a factor ≈ N .

Lemma 6.3. Fix a large constant C. Let ε > 0, d ≥ 3 and p, q, r be as in Theorem

6.1. Let Z ⊂ Gd and R be a subset of Rd such that for any γd-ray l, N (l, δ) ∩ R is

contained in a cube of side 1. Let S be a subset of R satisfying:

If x ∈ S, then there are two segments s1 and s2 of γd such that

i) s1 and s2 are of length C−1,

ii) The distance between s1 and s2 is at least C−1,

iii) min(X∗
δ (χZ∩Gs1

), X∗
δ (χZ∩Gs2

)) ≥ η.

Then,

|S| . δ−εη−p′‖χZ,δ‖p′
q′,r′ .

Proof. First note that it suffices to prove the lemma with R replaced with

Q1. To see this, assume that we have proved the lemma for cubes of side 1. Tile

R by cubes of side 1, R = ∪iQ
i say. Let Zi be the δ neighborhood of the set

{l ∈ Z : N (l, δ) ∩Qi 6= ∅}. Note that

|S| .
∑

i |S ∩Qi| . δ−εη−p′
∑

i ‖χZi‖p′
q′,r′

. δ−ε‖
∑

i χZi‖p′
q′,r′ . δ−ε‖χZ,δ‖p′

q′,r′ ;

the third inequality follows from the fact that p′ ≥ q′ ≥ r′, and the last inequality

can be obtained by noting that for any γd-ray l, N (l, δ) intersects . 1 of the cubes

Qi.

Also note that γd can be covered with . 1 segments of length slightly larger than

C−1 so that any segment of length C−1 is contained in one of the segments in the

covering. The set C of pairs of the segments in the covering has . 1 members and

for any pair of segments s1 and s2 as in the lemma there is a pair (c1, c2) ∈ C so that

si ⊂ ci, i=1,2. Hence, it suffices to prove the lemma assuming that the segments s1

and s2 are independent of x.

Let Zi = Z ∩ Gsi
, i = 1, 2. Let W (resp. B) be δ-separated subsets of Z1 (resp.

Z2). Denote the characteristic function of the δ neighborhood of w ∈ W in Gd by

Dw and the characteristic function of the Cδ-tube whose axis is w by χw. Note that
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X∗
δ Dw . δχw. Hence, X∗

δ Z1 . δ
∑

w χw = δΦW . Similarly, we have X∗
δ Z2 . δΦB.

Using these and the hypothesis of Theorem 6.1, we obtain

‖min(X∗
δ χZ1 , X

∗
δ χZ2)‖

p′

Lp′ (Q1)
. ‖δ min(ΦW , ΦB)‖p′

Lp′ (Q1)
. δ−ε(δd max(|W|, |B|))

p′
r′

. δ−ε max(|N (Z1, δ)|, |N (Z2, δ)|)
p′
r′ . δ−ε‖χZ,δ‖p′

r′,r′ . δ−ε‖χZ,δ‖p′
q′,r′ ;

we used the fact that q′ ≥ r′ in the last inequality. This yields the claim of the lemma

using Tschebyshev’s inequality. �
Lemma 6.4. With the hypothesis of Theorem 6.1, we have

‖X∗
δ χY ‖Lp′ (Q1) . δ−Cε‖χY,δ‖q′,r′ ,

for any Y ⊂ Gd.

Proof. Below, we prove that

|{x ∈ Q1 : X∗
δ χY (x) ≥ λ}| . δ−Cελ−p′‖χY,δ‖p′

q′,r′ . (48)

This yields the claim of the lemma as in the proof of Lemma 5.1. Note that (48) is

obvious for λ < δB, where B is a large enough constant. The reason for this is that

the left-hand side is bounded by 1 and the right-hand side is & 1 if λ is small and Y

is non-empty. Therefore we assume that λ > δB.

Now, we prove (48). Fix a sufficiently large constant C which depends on ε and

B. Let A = {x ∈ Q1 : X∗
δ χY (x) ≥ λ} and Aσ be the set of all points x ∈ Q1 such

that

i) there are two segments s1 and s2 of length σ of γd,

ii) the distance between s1 and s2 is between σ and Cσ,

iii) X∗
δ (χY ∩Gsi

) ≥ C−1δελ for i = 1, 2.

We claim that ∪σAσ ⊇ A, where the union is over dyadic σ > δK , where K is a

constant which depends on B.

Let x ∈ A. Let σ be the smallest number such that X∗
δ (χY ∩Gs)(x) ≥ (Cσ)

ε
K λ for

some segment s of length Cσ. Note that the lower bound for λ implies that σ ≥ δK .

Divide s into ≈ C segments si of length σ. Since σ is minimal, for any segment si,

X∗
δ (χY ∩Gsi

)(x) < σ
ε
K λ. On the other hand,

∑
i X

∗
δ (χY ∩Gsi

)(x) ≥ X∗
δ (χY ∩Gs)(x) ≥

(Cσ)
ε
K λ. Hence, there should be at least 3 segments si such that X∗

δ (χY ∩Gsi
) ≥

C−1σ
ε
K λ, which proves the claim since σ > δK .

By pigeonholing, there is a σ such that |Aσ| & δε|A|. Using the rescaling maps

and Lemma 6.3, we find a bound for |Aσ|, which is independent of σ.

To do this, consider a covering of γd with Cσ-segments si with bounded overlap.

Let Ai
σ be the set of points x ∈ Aσ such that the two σ-segments in the definition of

Aσ are contained in si. Note that Aσ = ∪iA
i
σ.
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Fix one of the si’s. Note that the sets R = Tsi
(Q1), Z = Tsi

(Y ∩ Gsi
) and

S = Tsi
(Ai

σ) satisfy the hypothesis of Lemma 6.3 with η = δ−1λ. R satisfies the

hypothesis since Tsi
essentially preserves distances in γd direction. Thus, using Lemma

6.3, we obtain

|Tsi
Ai

σ| . δ−ε(σ−1λ)−p′‖χTsi (Y ∩Gsi ),δ
‖p′

q′,r′ (49)

Using property (ii) of the map Tsi
, we have

(49) . δ−ε(σ−1λ)−p′σ
−p′( 1

q′+
d(d−1)

2r′ )‖χY ∩Gsi ,σδ‖p′

q′,r′ .

Using (47), we have

|Ai
σ| . δ−εσ

d(d−1)
2 (σ−1λ)−p′σ

−p′( 1
q′+

d(d−1)

2r′ )‖χY ∩Gsi ,σδ‖p′

q′,r′ . (50)

(3) implies that σ
d(d−1)

2 σp′σ
−p′( 1

q′+
d(d−1)

2r′ ) . 1. Using this in (50), we obtain

|Ai
σ| . δ−ελ−p′‖χY ∩Gsi ,σδ‖p′

q′,r′ . (51)

Now, note that the sets N (Y ∩Gsi
, σδ) have bounded overlap. Thus, using (51), we

get

|Aσ| ≤
∑
si

|Ai
σ| . δ−ελ−p′

∑
si

‖χY ∩Gsi ,σδ‖p′

q′,r′

. δ−ελ−p′‖χY,σδ‖p′

q′,r′ . δ−ελ−p′‖χY,δ‖p′

q′,r′ ;

the last inequality follows from the observation that N (Y, σδ) ⊂ N (Y, δ). �
Proof of Theorem 6.1.

Using duality, Lemma 6.4 implies that

‖Xδf‖Lq(Lr) . δ−ε‖f‖Lp(Q1). (52)

Now, we trade ε derivatices for the δ−ε factors. This argument is standard, we

follow [19] and omit the details. We can assume that ‖f‖W p,ε=1. Using a suitable

partition of unity (see, e.g., [19], p.597), one can find functions fj, j = 1, 2, ... with

Fourier support in {ξ : |ξ| ≈ 2j} such that
∑

j 2ηj‖fj‖p . ‖f‖W p,ε = 1 for small η and

|Xf | . 1 +
∑

j

|X2−jfj|. (53)

Using (53) and (52) with ε = η, we have

‖Xf‖q,r . 1 +
∑

j

‖X2−jfj‖q,r . 1 +
∑

j

2ηj‖fj‖p . 1,

which is the claim of Theorem 6.1. �
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