ON FALCONER’S DISTANCE SET CONJECTURE
M. BURAK ERDOGAN

ABSTRACT. In this paper, using a recent parabolic restriction estimate
of Tao, we obtain improved partial results in the direction of Falconer’s

distance set conjecture in dimensions d > 3.

1. INTRODUCTION

Let E be a compact subset of R% The distance set, A(E), of E is defined
as

A(E) ={lz—yl: 2,y € E}.
Erdés’ famous distinct distances conjecture [7] states that for any € > 0 and
for any finite set £ ¢ R%, d > 2,

HA(E) > Cy. (#E) i,

This conjecture is still open in all dimensions d > 2. For various partial

results and references see [17], [1] and [13].
Falconer’s conjecture [8] is a variant of Erdds’ conjecture:

Conjecture. Let d > 2. Let E be a compact subset of R?. Then,
d
dim(F) > 5 = |A(E)| > 0.
Here | - | is the Lebesgue measure and dim(+) is the Hausdorff dimension.

Like Erdos’ conjecture, Falconer’s conjecture is open in every dimension. In
[8], Falconer gave an example showing that % in the conjecture is optimal and
proved that dim(E) > %! implies [A(E)| > 0. Bourgain [3] improved this

result in every dimension, and in particular proved that in R?, dim(E) > %

Date: October 5, 2004.



2 M. BURAK ERDOGAN

suffices. Later, Wolff [24] proved that in R?, dim(E) > 3 suffices. In [6],
the author obtained a simplified proof of Wolff’s result and noted that it is
possible to obtain the following improved partial result in higher dimensions
using the method in [6] and a bilinear Fourier restriction estimate by Tao

[22]. In this paper, we prove

Theorem 1. Let d > 2. Let E be a compact subset of R® with

: d(d+ 2)
dim(E) > A+ 1)

Then |A(E)| > 0.

There are other positive results in the direction of Falconer’s conjecture. For
example, Mattila [14] proved that in R?, dim(E) > 1 implies dim(A(E)) >
%. Recently, Bourgain [4] improved this result and proved that there exists
¢ > 0 such that in R?, dim(E) > 1 implies dim(A(E)) > § + c. Bourgain’s
result relies on a paper by Katz and Tao [12] which relates the Falconer’s

conjecture to various other problems in harmonic analysis.

There are lots of variations of Falconer’s problem. Notably, Mattila and
Sjolin [16] proved that A(E) has interior points if dim(E) > %. Peres and

Schlag [18] considered pinned distance sets,
Az, B) ={lz -yl :y € B},
and proved that if dim(E) > %t then |A(z, E)| > 0 for almost every x € E.

One can also consider distance sets with respect to general metrics. Let K
be a convex symmetric body in R%, d > 2. Define Ag(E) = {dx(z,y) :
x,y € E}, where dg is the distance induced by K. Iosevich and Laba [10]
investigated the relation between the curvature of the boundary of K and
the size of the distance sets. Hofmann and losevich [9] (also see [2] for a
similar result in higher dimensions) proved that in R? if dim(F) > 1 then
|Ag(E)| > 0 for almost every ellipse K centered at the origin. We note

that our main result, Theorem 1, remains valid for Ag in the case when the
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boundary of K is smooth and has non-vanishing Gaussian curvature (see

Remark 1 below).

List of notations.

xA: characteristic function of the set A.

B(z,r) :=A{y: |z —y|l <r}.

d(A, B): the distance between the sets A and B.
Ap(C) :={z e R?:||z| - R| < C}.

C': a constant which may vary from line to line.

A< B: A<CB.

ArxB: ASBand B S A

ALK B: AL %B, for some large constant C.

|Al: length of the vector A or the measure of the set A.

Acknowledgment. This work was partially supported by NSF grant DMS-
0303413. The author wishes to thank Alex Iosevich for pointing out Remark

1 and for useful comments on an earlier version of this paper.

2. MATTILA’S APPROACH TO DISTANCE SET PROBLEM

In [14], Mattila developed a method to attack the distance set problem. For
a very good exposition of this method, see [26]. Mattila’s approach was used

in [14, 3, 24, 9, 6, 2].

Let p be a probability measure supported in E. Let v, be the push forward

of pu x p under the distance map (x,y) — |z — y|, i.e.,
vu(A) = pux p({(z,y) : |z —y| € A}), for Borel sets A C R.

It is easy to check that v, is a probability measure supported in A(E). Note

that if the Fourier transform of v,

7u() 1= / e~ dw, (@),
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is an L? function, then v,, should be absolutely continuous with an L? density
and hence

|A(E)| = [Supp(vy)| > 0.
Using this idea and the Fourier asymptotics of the surface measure of the

unit sphere in R?, Mattila proved [14]:

Theorem A. Let o € (0,d). Let E be a compact subset of R% with dim(E) >

. Assume that there is a probability measure pu supported in E such that
(1) || g2sa-1) < CuR*T", ¥R > 1.
Then |A(E)| > 0.

Note that Theorem A proves the distance set conjecture for Salem sets
[19, 11]. A set E C R? is called a Salem set if for each 3 < dim(E), there

exists a probability measure p supported in E such that

Q)| S €2, veeRL

To apply Theorem A to arbitrary compact sets, one needs Frostman’s lemma

(see, e.g., [15]).

Definition 1. A compactly supported probability measure p is called -

dimensional if it satisfies
(2) w(B(z,7)) < Cur®, ¥r >0,z € R%.

Frostman’s Lemma. If E is a compact subset of R? with dim(E) > a,

then there is an a-dimensional measure p supported in E.

Frostman’s lemma and Mattila’s theorem imply:

Lemma 2.1. Fiz a € (0,d). Assume that the inequality (1) holds for all

a-dimensional measures. Then for any compact E C R%

dim(F) > a = |A(E)| > 0.

In view of Lemma 2.1, Theorem 1 is a corollary of the following:
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Theorem 2. Letd > 2 and o € (0,d). Let p be an a-dimensional measure.

Then for each q > ‘%2,

(R p2(ga-1y < Cq,uR_Q%, VR > 1.

Like Theorem 1, Theorem 2 was first proved in [24] for d = 2. Under the
hypothesis of Theorem 2, it is also known that [14, 20] (also see [21, 6])

(3) P A

Theorem 2 and (3) give optimal bounds for each a € (0,2) for d = 2 (see,
e.g., [20, 24, 6]). Therefore, one can not improve the result in Theorem 1
for d = 2 using Mattila’s approach. In higher dimensions, (3) is optimal for
a < d—gl (see [20]); however, there is no reason to believe that Theorem 2

: . d—1
and (3) give optimal bounds for a > %=.

It is essential that in Theorem 2, we are averaging fi(R-) on a surface with
non-vanishing Gaussian curvature. In general, the Fourier transform () of
an a-dimensional measure p does not have to converge to zero as [{| — co. In
fact, for any d > 1 and for any « € (0, d), there are Cantor-type measures in
R? of dimension greater than a whose Fourier transform does not converge

to 0 at infinity [19].

Remark 1. Mattila’s approach can be modified for distance sets with
respect to general metrics. Let K be a convex symmetric body. Assume that
the boundary of K is smooth and has non-vanishing Gaussian curvature.
Let K* be the dual of K. One can modify Mattila’s approach and prove
that the statement of Lemma 2.1 remains valid if A(F) is replaced with
Ag(E) and S?1 in (1) is replaced with OK* (see [9, 2]). We note that
Theorem 2 remains valid, too, if we replace S9! with K*. The proof of
this fact follows the same line below with minor changes in the statements
and proofs of Corollary 2 and Lemma 5.2. Therefore, Theorem 1 holds for

Ak if K has a smooth boundary with non-vanishing Gaussian curvature.
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3. TAO’S BILINEAR PARABOLIC EXTENSION ESTIMATE

In the proof of Theorem 2, we use a bilinear restriction estimate for elliptic
surfaces by Tao [22]. First let us recall the definition of elliptic surfaces from

[23]:

Definition 2. We say ¢ : B(0,1) C R4 — R is an (M, eo)-elliptic phase
if ¢ satisfies

) llollo= < M,

ii) $(0) = V(0) = 0, and

i) For all v € B(0,1), all eigenvalues of the Hessian ¢u,q,(x) lie in [1 —
€0, 1 + &o).

We say S is an (M, eg)-elliptic surface if S = {(x,y) € B(0,1) x R c R%:
y = ¢(x)} for some (M, ep)-elliptic phase ¢.

Note that in this definition the term “elliptic” is used in a slightly non-
standard way. In classical PDE, a non-vanishing symbol is considered to
be elliptic. In the definition above, the non-vanishing of the curvature is
required, too, (see II below). A model example for an elliptic phase is
o(x) = @ We recall the following properties of elliptic phases (see, e.g.,
23)):

I) Let ¢ be an (M, gg)-elliptic phase and B(zg,n) C B(0,1). Let

1

o(x) : 7 (@@n +x0) = é(z0) =z - Vo(2o)), @ € B(O,1).

Then ¢ is a (CyM, e)-elliptic phase.

IT) Let S be a smooth compact submanifold of R¢ with strictly positive
principal curvatures. Note that for any €9 > 0 and for any s € S there is
a neighborhood Uy of s and an affine bijection as of R? such that as(Us)
is an (M, gg)-elliptic surface, where M depends only on d, ||¢||ce and the
principal curvatures at s. Moreover, by using a partition of unity, we can

write S as a union of affine images of finitely many (M, q)-elliptic surfaces.
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These observations are especially important for the extension of Theorem 2

to OK* (see Remark 1 above).

The following theorem is proved in [22] for d > 3. The d = 2 case is basically
the Carleson-Sj6lin Theorem [5]. In [6], it was used in the proof of Theorem 2
for d = 2.

Theorem B. Let d > 2. For any M > 0, there exists g > 0 such that the
following statement holds.

Let S1, Sy be compact subsets of an (M,eq)-elliptic surface in RY with
d(Sy,S2) > % Let o be the Lebesgue measure on Sj, j = 1,2. Then

for all ¢ > ‘%2, we have

(4) | frdoy fadoa| Laray < Crrgall fill 2¢sy do) | f2ll 22 (52, dos)

for all fj S LQ(SJ', de), j=12.

In [22], this theorem is proved explicitly only for the paraboloid. The version
we stated here can be proved similarly, see the last section of [22] where the

necessary modifications are described.

We need the following scaled and mollified version of this theorem (see, e.g.,
[23]). In view of IT) above, choose N, large enough so that any subset of S4~*
of diameter < Nid is an affine image of an elliptic surface which satisfies the

hypothesis of Theorem B. Let Ar(g) denote the set {z € R? : ||z| - R| < ¢}.

Corollary 1. Fiz a spherical cap U in Ai(e), (¢ < 1/Ng), of diameter

< 1/Ny. If I1 and Iy are subsets of U of diameter n with d(I1,I2) ~n, then

for q > %2, we have

~ _{_d+1
11 foll pagray < Caaen™ ™ || fill2ll foll2s
for all fj € L3(I}), j = 1,2.

Proof. First note that the inequality (4) is invariant under translations of

one or both of the surfaces Si, S3. Therefore, under the hypothesis of
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Theorem B, we have

(5) I F1 2l aqmey S ellfullall 2z,

for all f; € LQ(SJE-), J = 1,2, where S5 is the e-neighborhood of Sj. This

follows easily from the definition of Lebesgue measure.

Let e be the unit vector in the direction of the center of mass of 11 U I5. Let
{e1 = e,e3,...,eq} be an orthogonal basis for R%. Let T : R? — R be the
linear map which satisfies

1

1 .
Twﬂzﬁfh T@ﬁzgq,g:z&m@,

In view of I) and II) above, C; = T'I; is contained in ~ n%—neighborhood of

an affine image of a surface S;, j = 1,2, where the surfaces S1, Sy satisfy

the hypothesis of Theorem B (with M independent of n, I1, I2).
Let g;j(x) = f;(T~'z), j = 1,2. Since g; is supported in C;, using (5) we
obtain
~ o €
(6) I9:1921la S 75 191112l g2]l2-

The following elementary identities and (6) yield the claim of the corollary:

F(O = BT ©) = w1 G ). = 1.2

> d+1)(2—L) )| ~ ~
11 fallg = 0“3 ),

d+1

1 filla = n"="1lgjll2, 5 =1,2.

The following Corollary is obtained from Corollary 1 using a dilation:

Corollary 2. If I} and I» are subsets of Ar(e), (e < R/Ng), of diameter
n S R/Ng with d(Ih, I3) =~ n, then for q > %2, we have

~ 1 g q_d+1
(7) 1F1 2l Laqmay < CoaeRan™ " | fullallf2l2,

for all f; € L*(I;), j =1,2.
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4. UNCERTAINTY PRINCIPLE

Let ¢ be a Schwartz function satisfying
w(§) =1, for [(| <2 and p(&§) =0, for [£] > 4.

Let D be a ball of radius s in R%. Fix an affine bijection ap of R% which
maps D to B(0,1). Let ¢p = ¢ oap. Since ¢ is a Schwartz function, for
each M € N, we have

o
®)  leh(@)| = s (s)| < Crras® Y 27 xpais1)(z), Vo eR%
j=1
The following well-known corollary of the uncertainty principle (see, e.g.,
[26, Chapter 5]) is another important ingredient of the proof of Theorem 2.

We give a proof for the sake of completeness.

Lemma 4.1. Let p be an a-dimensional measure in R®. Let D be a ball of
radius s in RY. Then the function up := |p}| * u satisfies

i) luplleo S 57,

it) luplly S 1,

iii) up(B) = fB up(y)dy < v, for any ball B of radius r > 100s71.

Proof. i) Fix M > 100d. Using (8) and (2), we obtain
0< upl@) S 5732 [N~ y)duty

0o
5 Sdz2fMj(2ijl)a 5 Sdfa'
j=1

ii) follows from Young’s inequality and the observation ||¢} |1 < 1.

iii) Using (8), we get

up(B) S 543 2~Mi / / 3B ()X 502351 (¥ — w)da(u)dy
7j=1
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Note that y € B and y —u € B(0,2/s71) imply u € B+ B(0,2/s7!). Using

this, Fubini’s theorem and then (2), we obtain

up(B) S 5152~ M / / X309 51 ()X 30,2551y (¥ — w)dyd ()

j=1

o
< ¢l Z 2~ Mi(p 4 27 g (2057 1)d
j=1

5. PROOF OF THEOREM 2

The proof is similar to the proof given in [6]. As in [24, 6], we work with

the dual formulation:

Lemma 5.1. Theorem 2 follows from the following statement: For all ¢ >
d%/?, for all a-dimensional measures p, for all R > 1 and for all f supported

in Agr(1), we have

© | [ £ dnt)] < €k T E 1

where fV is the inverse Fourier transform of f.

Proof. [24] Fix qo > d%;z. Note that by duality, Fubini’s theorem and the

statement of the lemma, we have

sy = s | [ ]
HfHL2(AR(1)):1 Ar(1)

= s | [ Fudatw)

HfHL2(AR(1)):1

d—1 a
<CyuR 2 24, VR> 1
This easily implies that for any 0 < ¢ < 1,

d—1 e
(10) Il 2 an(reyy < ConR 2%, VR> 1.
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Take a Schwartz function ¢ equal to 1 in the support of u. Note that

L= [i* QAS Let dog be the surface measure on RS?~!. We have

|A(R) 2 ga-1y = CaR™ D[l 72 (rga-1y = CaR™ D (| % 6 || T gay
< Cal D3], 1 31| o sy
< p@ / AP (w) (18] * dow) (w)du

(11) S R_(d_”/lﬁlg(u)(l + R — [ull) ™ du.

The second line follows from Cauchy-Schwarz inequality (as in (15) below);
the third line from Fubini’s theorem and the last line from the Schwartz
decay of ¢. Here M is a large constant and the implicit constants in the
inequalities depend on d, i, ¢, and M. Choose q € ((d + 2)/2,qp). Using
(10) for small € = ¢(d, @, q,qo) and (11) for large M = M(e,d, q, qo, o), we

obtain

Hﬁ(R‘)Hi%sd%) <SRN ”ﬁH%Z(AR(RE)) "‘/A C(l +|R— |U\|)7Mdu}

r(R)

SR L RV < R,

~

This yields Theorem 2 and hence finishes the proof of the lemma. O

Let f be as in Lemma 5.1 with L? norm 1. Below, we prove that

d—1

(12) 1N 22 S R 2

—_o
2q ,

(9) can be obtained from (12) using Cauchy-Schwarz inequality. As in [6], we
use the bilinear approach. It suffices to prove (12) for functions f supported
in a subset of Ag(1) of diameter < R. Consider a dyadic decomposition of

AR(1) into spherical caps, I, with dimensions 2 x 2™ x ... x 2" for
1
R2 <« 2" < R.

We say I has sidelength 2™ and write (1) = 2". The unique cap of sidelength
2"*1 which contains I is called the parent of I. Let I and J be caps with
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the same sidelength. We say I and J are related, I ~ J, if they are not

adjacent but their parents are.
Let fr:= fxs. Asin [6], we have

1) I < S % I e+ 3 1 e

1 —9N [~u
R2<2"KR oI)y=2n,I~J Ielg

=: 51 + Ss.

Here Ig is a set of dyadic caps with sidelengths ~ R> satisfying the finite
overlapping property:

(149) | >l st

Ielp

First, we obtain a bound for S5. Since each I € I is contained in a ball D
of radius C’R%, we have f) = f) = ¢}, (¢pp is defined in the beginning of
Section 4). Using this and Cauchy-Schwarz inequality, we have

1 1 1
(15) < (AP 1Dz llenll? S (A 1P« 1epl)z.

Using this, Fubini’s theorem and Lemma 4.1, we obtain

(16)
V112 < vV 2 \Y, de < V ZRd_—D‘ _ QRd_—a
1/ 2@ < | T @) (*lepl)(@)dz SIfTzR 2 =[fiVIzR 2 .

Using (16) and (14), we obtain

d—a d—a d—a
So= > I ey SR YIS RZISB=R"".

Ielp Ielg
This term is harmless since 45 < d —1 — ¢ for a € (0,d) and ¢ > 2,
In the remaining part of the paper we prove that for ¢ > ‘%2, S1 < R,

Fix n and I ~ J with |I| = |J| = 2". First, we prove that

(17) 1A P @) < CangaR 5 | fillall -
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Note that I 4+ J is contained in a ball of radius C2". Hence, fr * f; is
supported in a ball D of radius C2". Using this as in (16), we obtain

(18) WY Y e < / Y @) £ (@)up () de,

where up = p* ).

Let e be the unit vector which is in the direction of the center of mass of
TUJ. Consider a tiling of R? with rectangles P of dimensions 100 x 100% X
e X 100%, the long axis being in the direction e. For each P, let ap be an
affine bijection from R% to R% which maps P to the unit cube. Let ¢ be a
Schwartz function satisfying

~

(19) ¢(z) 2 Xp,1)(r), * €R, and  supp(¢) C B(0,1).

—

Let ¢p := ¢poap and frp = f/ép. Using (19) and the fact that the

rectangles P tile R, we obtain

(18 <3 / Y (@) £ (@) e (@) b () de
P

(20) S Z 17 pfipllalpdplly,
P

d+2 r_ g
where ¢ > 7= and ¢’ = 1

To estimate || f{ pf pllq, we use the Corollary 2 of Tao’s theorem. Let Ip be
the support of fr p. Note that Ip is contained in I + supp(qz/b;) C I+ Pyyas
where Ppyyq is the dual of P centered at the origin. We have

Lemma 5.2. [ + Py, is contained in a spherical cap of dimensions 10 X

%2" X o X %2” in Ar(10) which contains I.

Proof. Note that Py,q is a rectangle of dimensions 100! x 1001 R2™™ x
... x 100"*R27™, the short axis being in the direction e. For each p € Py
and x € I, the angle between p — e(p,e) and the hyperplane H, with
normal z is < 10%. Therefore Py, is contained in 1—10—neighborhood of

H,N B(0,100"'R2~"). Note that if |z| ~ R, and r < R2, then z +
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(H; N B(0,7)) is contained in a spherical cap containing = of dimensions

~ 1 X7 x..xrin Ay /(1). This finishes the proof since

100-'R2-™ < 100~ 'R? < 2"

O

Using Lemma 5.2 for I and J, we see that Ip and Jp have diameter < 27;

they are contained in Ar(10) and d(Ip,Jp) 2 2". Therefore, Corollary 2

implies that
1 d—1—d+1
(21) 1A Y plle S Ro 250 frpllo | el

We bound ||upép|ly by interpolating between L' and L.

Schwarz decay of ¢pp, we have

lupoply < 3 2~ / 1p(@)xa1 p(2)da.

j=1

Note that 2/ P can be covered by ~ 2% balls of radius ~ 22",

R
using Lemma 4.1, we get

& .
(22) HMngPHl S Z 2_%271(1—an—04 S Qna_an_a.
j=1

Using Lemma 4.1 once again, we obtain

(23) lnpdpllo S llupllee S 2M47m.

Using (23) and (22), we obtain

1 /
lupeplly < lupspllLlnpor;

(24) SJ QH(FTO‘ (2na7nR17a)1/q/‘

Using the

Therefore,

Using (20), (21), (24) and then Cauchy-Schwarz inequality, we get

1- 2 n(a(1—2)+d—
LA P gy S B0 200N bl £0]l2
P

1
< R ¥gn(a(-2)ta-2) [Z HfI,PH%} ’ [Z ||fJ,PH%}
P

P

N
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Using the Schwartz decay of ¢, the fact that the rectangles P tile R% and

Plancherel formula, we get

N —
(25) LAY P g S R 27020 o1 £ o

The exponent of 2" in (25) is non-negative and 2" < R. Therefore

1-2 Sa(l-2 —
1A Y i S BRSO fral| £l

(26) S R 2 ol

Finally, using (26) and L?-orthogonality, as in [23] and [25], we bound S;.
Note that for each dyadic cap I, there are finitely many (depending on d)
dyadic caps J related to I. Therefore, for each I,

D Malle S M1frlle,

J~1

for a cap I’ of sidelength C2" which contains I. Also note that for each n,
the caps {I’ : ¢(I) = 2™} are finitely overlapping. Thus,

Yoo~ Y frlE = 1f13

o(I)=2n o(I)=2n
Therefore,
/ /
S i< [ X 1] ] (Sale) ]
oIy=2n, I~J o(1y=2n on=2n J~I
S I1B

Using this, (26) and the fact that there are < log(R) values of n in the sum

for Sy in (13), we obtain (for each ¢ > d%;?)

S1 < RN
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