
ON FALCONER’S DISTANCE SET CONJECTURE

M. BURAK ERDOG̃AN

Abstract. In this paper, using a recent parabolic restriction estimate

of Tao, we obtain improved partial results in the direction of Falconer’s

distance set conjecture in dimensions d ≥ 3.

1. Introduction

Let E be a compact subset of Rd. The distance set, ∆(E), of E is defined

as

∆(E) = {|x− y| : x, y ∈ E}.

Erdös’ famous distinct distances conjecture [7] states that for any ε > 0 and

for any finite set E ⊂ Rd, d ≥ 2,

#∆(E) ≥ Cd,ε(#E)
2
d
−ε.

This conjecture is still open in all dimensions d ≥ 2. For various partial

results and references see [17], [1] and [13].

Falconer’s conjecture [8] is a variant of Erdös’ conjecture:

Conjecture. Let d ≥ 2. Let E be a compact subset of Rd. Then,

dim(E) >
d

2
=⇒ |∆(E)| > 0.

Here | · | is the Lebesgue measure and dim(·) is the Hausdorff dimension.

Like Erdös’ conjecture, Falconer’s conjecture is open in every dimension. In

[8], Falconer gave an example showing that d
2 in the conjecture is optimal and

proved that dim(E) > d+1
2 implies |∆(E)| > 0. Bourgain [3] improved this

result in every dimension, and in particular proved that in R2, dim(E) > 13
9
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suffices. Later, Wolff [24] proved that in R2, dim(E) > 4
3 suffices. In [6],

the author obtained a simplified proof of Wolff’s result and noted that it is

possible to obtain the following improved partial result in higher dimensions

using the method in [6] and a bilinear Fourier restriction estimate by Tao

[22]. In this paper, we prove

Theorem 1. Let d ≥ 2. Let E be a compact subset of Rd with

dim(E) >
d(d+ 2)
2(d+ 1)

.

Then |∆(E)| > 0.

There are other positive results in the direction of Falconer’s conjecture. For

example, Mattila [14] proved that in R2, dim(E) > 1 implies dim(∆(E)) ≥
1
2 . Recently, Bourgain [4] improved this result and proved that there exists

c > 0 such that in R2, dim(E) > 1 implies dim(∆(E)) > 1
2 + c. Bourgain’s

result relies on a paper by Katz and Tao [12] which relates the Falconer’s

conjecture to various other problems in harmonic analysis.

There are lots of variations of Falconer’s problem. Notably, Mattila and

Sjölin [16] proved that ∆(E) has interior points if dim(E) > d+1
2 . Peres and

Schlag [18] considered pinned distance sets,

∆(x,E) = {|x− y| : y ∈ E},

and proved that if dim(E) > d+1
2 then |∆(x,E)| > 0 for almost every x ∈ E.

One can also consider distance sets with respect to general metrics. Let K

be a convex symmetric body in Rd, d ≥ 2. Define ∆K(E) = {dK(x, y) :

x, y ∈ E}, where dK is the distance induced by K. Iosevich and Laba [10]

investigated the relation between the curvature of the boundary of K and

the size of the distance sets. Hofmann and Iosevich [9] (also see [2] for a

similar result in higher dimensions) proved that in R2 if dim(E) > 1 then

|∆K(E)| > 0 for almost every ellipse K centered at the origin. We note

that our main result, Theorem 1, remains valid for ∆K in the case when the
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boundary of K is smooth and has non-vanishing Gaussian curvature (see

Remark 1 below).

List of notations.

χA: characteristic function of the set A.

B(x, r) := {y : |x− y| < r}.

d(A,B): the distance between the sets A and B.

AR(C) := {x ∈ Rd : ||x| −R| ≤ C}.

C: a constant which may vary from line to line.

A . B: A ≤ CB.

A ≈ B: A . B and B . A.

A� B: A ≤ 1
CB, for some large constant C.

|A|: length of the vector A or the measure of the set A.

Acknowledgment. This work was partially supported by NSF grant DMS-

0303413. The author wishes to thank Alex Iosevich for pointing out Remark

1 and for useful comments on an earlier version of this paper.

2. Mattila’s approach to distance set problem

In [14], Mattila developed a method to attack the distance set problem. For

a very good exposition of this method, see [26]. Mattila’s approach was used

in [14, 3, 24, 9, 6, 2].

Let µ be a probability measure supported in E. Let νµ be the push forward

of µ× µ under the distance map (x, y) 7→ |x− y|, i.e.,

νµ(A) = µ× µ({(x, y) : |x− y| ∈ A}), for Borel sets A ⊂ R.

It is easy to check that νµ is a probability measure supported in ∆(E). Note

that if the Fourier transform of νµ,

ν̂µ(ξ) :=
∫
e−ix·ξdνµ(x),
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is an L2 function, then νµ should be absolutely continuous with an L2 density

and hence

|∆(E)| ≥ |Supp(νµ)| > 0.

Using this idea and the Fourier asymptotics of the surface measure of the

unit sphere in Rd, Mattila proved [14]:

Theorem A. Let α ∈ (0, d). Let E be a compact subset of Rd with dim(E) >

α. Assume that there is a probability measure µ supported in E such that

(1) ‖µ̂(R·)‖L2(Sd−1) ≤ CµR
α−d

2 , ∀R > 1.

Then |∆(E)| > 0.

Note that Theorem A proves the distance set conjecture for Salem sets

[19, 11]. A set E ⊂ Rd is called a Salem set if for each β < dim(E), there

exists a probability measure µ supported in E such that

|µ̂(ξ)| . |ξ|−
β
2 , ∀ξ ∈ Rd.

To apply Theorem A to arbitrary compact sets, one needs Frostman’s lemma

(see, e.g., [15]).

Definition 1. A compactly supported probability measure µ is called α-

dimensional if it satisfies

(2) µ(B(x, r)) ≤ Cµrα, ∀r > 0,∀x ∈ Rd.

Frostman’s Lemma. If E is a compact subset of Rd with dim(E) > α,

then there is an α-dimensional measure µ supported in E.

Frostman’s lemma and Mattila’s theorem imply:

Lemma 2.1. Fix α ∈ (0, d). Assume that the inequality (1) holds for all

α-dimensional measures. Then for any compact E ⊂ Rd

dim(E) > α =⇒ |∆(E)| > 0.

In view of Lemma 2.1, Theorem 1 is a corollary of the following:
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Theorem 2. Let d ≥ 2 and α ∈ (0, d). Let µ be an α-dimensional measure.

Then for each q > d+2
d ,

‖µ̂(R·)‖L2(Sd−1) ≤ Cq,µR
− α

2q , ∀R > 1.

Like Theorem 1, Theorem 2 was first proved in [24] for d = 2. Under the

hypothesis of Theorem 2, it is also known that [14, 20] (also see [21, 6])

(3) ‖µ̂(R·)‖L2(Sd−1) . R
−max(α−1

2
,min(α

2
, d−1

4
)), ∀R > 1.

Theorem 2 and (3) give optimal bounds for each α ∈ (0, 2) for d = 2 (see,

e.g., [20, 24, 6]). Therefore, one can not improve the result in Theorem 1

for d = 2 using Mattila’s approach. In higher dimensions, (3) is optimal for

α ≤ d−1
2 (see [20]); however, there is no reason to believe that Theorem 2

and (3) give optimal bounds for α > d−1
2 .

It is essential that in Theorem 2, we are averaging µ̂(R·) on a surface with

non-vanishing Gaussian curvature. In general, the Fourier transform µ̂(ξ) of

an α-dimensional measure µ does not have to converge to zero as |ξ| → ∞. In

fact, for any d ≥ 1 and for any α ∈ (0, d), there are Cantor-type measures in

Rd of dimension greater than α whose Fourier transform does not converge

to 0 at infinity [19].

Remark 1. Mattila’s approach can be modified for distance sets with

respect to general metrics. Let K be a convex symmetric body. Assume that

the boundary of K is smooth and has non-vanishing Gaussian curvature.

Let K∗ be the dual of K. One can modify Mattila’s approach and prove

that the statement of Lemma 2.1 remains valid if ∆(E) is replaced with

∆K(E) and Sd−1 in (1) is replaced with ∂K∗ (see [9, 2]). We note that

Theorem 2 remains valid, too, if we replace Sd−1 with ∂K∗. The proof of

this fact follows the same line below with minor changes in the statements

and proofs of Corollary 2 and Lemma 5.2. Therefore, Theorem 1 holds for

∆K if K has a smooth boundary with non-vanishing Gaussian curvature.
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3. Tao’s bilinear parabolic extension estimate

In the proof of Theorem 2, we use a bilinear restriction estimate for elliptic

surfaces by Tao [22]. First let us recall the definition of elliptic surfaces from

[23]:

Definition 2. We say φ : B(0, 1) ⊂ Rd−1 → R is an (M, ε0)-elliptic phase

if φ satisfies

i) ‖φ‖C∞ < M ,

ii) φ(0) = ∇φ(0) = 0, and

iii) For all x ∈ B(0, 1), all eigenvalues of the Hessian φxixj (x) lie in [1 −

ε0, 1 + ε0].

We say S is an (M, ε0)-elliptic surface if S = {(x, y) ∈ B(0, 1)×R ⊂ Rd :

y = φ(x)} for some (M, ε0)-elliptic phase φ.

Note that in this definition the term “elliptic” is used in a slightly non-

standard way. In classical PDE, a non-vanishing symbol is considered to

be elliptic. In the definition above, the non-vanishing of the curvature is

required, too, (see II below). A model example for an elliptic phase is

φ(x) = |x|2
2 . We recall the following properties of elliptic phases (see, e.g.,

[23]):

I) Let φ be an (M, ε0)-elliptic phase and B(x0, η) ⊂ B(0, 1). Let

φ̃(x) :=
1
η2

(φ(xη + x0)− φ(x0)− ηx · ∇φ(x0)) , x ∈ B(0, 1).

Then φ̃ is a (CdM, ε0)-elliptic phase.

II) Let S be a smooth compact submanifold of Rd with strictly positive

principal curvatures. Note that for any ε0 > 0 and for any s ∈ S there is

a neighborhood Us of s and an affine bijection as of Rd such that as(Us)

is an (M, ε0)-elliptic surface, where M depends only on d, ‖φ‖C∞ and the

principal curvatures at s. Moreover, by using a partition of unity, we can

write S as a union of affine images of finitely many (M, ε0)-elliptic surfaces.
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These observations are especially important for the extension of Theorem 2

to ∂K∗ (see Remark 1 above).

The following theorem is proved in [22] for d ≥ 3. The d = 2 case is basically

the Carleson-Sjölin Theorem [5]. In [6], it was used in the proof of Theorem 2

for d = 2.

Theorem B. Let d ≥ 2. For any M > 0, there exists ε0 > 0 such that the

following statement holds.

Let S1, S2 be compact subsets of an (M, ε0)-elliptic surface in Rd with

d(S1, S2) > 1
2 . Let σj be the Lebesgue measure on Sj, j = 1, 2. Then

for all q > d+2
d , we have

(4) ‖f̂1dσ1f̂2dσ2‖Lq(Rd) ≤ CM,q,d‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ2),

for all fj ∈ L2(Sj , dσj), j = 1, 2.

In [22], this theorem is proved explicitly only for the paraboloid. The version

we stated here can be proved similarly, see the last section of [22] where the

necessary modifications are described.

We need the following scaled and mollified version of this theorem (see, e.g.,

[23]). In view of II) above, choose Nd large enough so that any subset of Sd−1

of diameter . 1
Nd

is an affine image of an elliptic surface which satisfies the

hypothesis of Theorem B. Let AR(ε) denote the set {x ∈ Rd : ||x|−R| ≤ ε}.

Corollary 1. Fix a spherical cap U in A1(ε), (ε � 1/Nd), of diameter

. 1/Nd. If I1 and I2 are subsets of U of diameter η with d(I1, I2) ≈ η, then

for q > d+2
d , we have

‖f̂1f̂2‖Lq(Rd) ≤ Cq,dεη
d−1− d+1

q ‖f1‖2‖f2‖2,

for all fj ∈ L2(Ij), j = 1, 2.

Proof. First note that the inequality (4) is invariant under translations of

one or both of the surfaces S1, S2. Therefore, under the hypothesis of
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Theorem B, we have

(5) ‖f̂1f̂2‖Lq(Rd) . ε‖f1‖2‖f2‖2,

for all fj ∈ L2(Sεj ), j = 1, 2, where Sεj is the ε-neighborhood of Sj . This

follows easily from the definition of Lebesgue measure.

Let e be the unit vector in the direction of the center of mass of I1 ∪ I2. Let

{e1 = e, e2, ..., ed} be an orthogonal basis for Rd. Let T : Rd → Rd be the

linear map which satisfies

T (e1) =
1
η2
e1, T (ej) =

1
η
ej , j = 2, 3, ..., d,

In view of I) and II) above, Cj = TIj is contained in ≈ ε
η2 -neighborhood of

an affine image of a surface Sj , j = 1, 2, where the surfaces S1, S2 satisfy

the hypothesis of Theorem B (with M independent of η, I1, I2).

Let gj(x) = fj(T−1x), j = 1, 2. Since gj is supported in Cj , using (5) we

obtain

(6) ‖ĝ1ĝ2‖q .
ε

η2
‖g1‖2‖g2‖2.

The following elementary identities and (6) yield the claim of the corollary:

f̂j(ξ) =
1

det(T )
ĝj(T−1(ξ)) = ηd+1ĝj(T−1(ξ)), j = 1, 2,

‖f̂1f̂2‖q = η
(d+1)(2− 1

q
)‖ĝ1ĝ2‖q,

‖fj‖2 = η
d+1

2 ‖gj‖2, j = 1, 2.

�

The following Corollary is obtained from Corollary 1 using a dilation:

Corollary 2. If I1 and I2 are subsets of AR(ε), (ε � R/Nd), of diameter

η . R/Nd with d(I1, I2) ≈ η, then for q > d+2
d , we have

(7) ‖f̂1f̂2‖Lq(Rd) ≤ Cq,dεR
1
q η

d−1− d+1
q ‖f1‖2‖f2‖2,

for all fj ∈ L2(Ij), j = 1, 2.
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4. Uncertainty principle

Let ϕ be a Schwartz function satisfying

ϕ(ξ) = 1, for |ξ| < 2 and ϕ(ξ) = 0, for |ξ| > 4.

Let D be a ball of radius s in Rd. Fix an affine bijection aD of Rd which

maps D to B(0, 1). Let ϕD = ϕ ◦ aD. Since ϕ is a Schwartz function, for

each M ∈ N, we have

(8) |ϕ∨D(x)| = sd|ϕ∨(sx)| ≤ CM,ds
d
∞∑
j=1

2−MjχB(0,2js−1)(x), ∀x ∈ Rd.

The following well-known corollary of the uncertainty principle (see, e.g.,

[26, Chapter 5]) is another important ingredient of the proof of Theorem 2.

We give a proof for the sake of completeness.

Lemma 4.1. Let µ be an α-dimensional measure in Rd. Let D be a ball of

radius s in Rd. Then the function µD := |ϕ∨D| ∗ µ satisfies

i) ‖µD‖∞ . sd−α,

ii) ‖µD‖1 . 1,

iii) µD(B) :=
∫
B µD(y)dy . rα, for any ball B of radius r ≥ 100s−1.

Proof. i) Fix M > 100d. Using (8) and (2), we obtain

0 ≤ µD(x) . sd
∞∑
j=1

2−Mj

∫
χB(0,2js−1)(x− y)dµ(y)

. sd
∞∑
j=1

2−Mj(2js−1)α . sd−α.

ii) follows from Young’s inequality and the observation ‖ϕ∨D‖1 . 1.

iii) Using (8), we get

µD(B) . sd
∞∑
j=1

2−Mj

∫ ∫
χB(y)χB(0,2js−1)(y − u)dµ(u)dy
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Note that y ∈ B and y − u ∈ B(0, 2js−1) imply u ∈ B +B(0, 2js−1). Using

this, Fubini’s theorem and then (2), we obtain

µD(B) . sd
∞∑
j=1

2−Mj

∫ ∫
χB+B(0,2js−1)(u)χB(0,2js−1)(y − u)dydµ(u)

. sd
∞∑
j=1

2−Mj(r + 2js−1)α(2js−1)d

.
∞∑
j=1

2−
Mj
2 (r + 2js−1)α . rα.

�

5. Proof of Theorem 2

The proof is similar to the proof given in [6]. As in [24, 6], we work with

the dual formulation:

Lemma 5.1. Theorem 2 follows from the following statement: For all q >
d+2
d , for all α-dimensional measures µ, for all R > 1 and for all f supported

in AR(1), we have

(9)
∣∣∣ ∫ f∨(u)dµ(u)

∣∣∣ ≤ Cq,µR d−1
2
− α

2q ‖f‖2,

where f∨ is the inverse Fourier transform of f .

Proof. [24] Fix q0 >
d+2
d . Note that by duality, Fubini’s theorem and the

statement of the lemma, we have

‖µ̂‖L2(AR(1)) = sup
‖f‖L2(AR(1))=1

∣∣∣ ∫
AR(1)

f(u)µ̂(u)du
∣∣∣

= sup
‖f‖L2(AR(1))=1

∣∣∣ ∫ f̂(u)dµ(u)
∣∣∣

≤ Cq,µR
d−1

2
− α

2q , ∀R > 1.

This easily implies that for any 0 < ε� 1,

(10) ‖µ̂‖L2(AR(Rε)) ≤ Cq,µR
d−1

2
− α

2q
+Cε

, ∀R > 1.
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Take a Schwartz function φ equal to 1 in the support of µ. Note that

µ̂ = µ̂ ∗ φ̂. Let dσR be the surface measure on RSd−1. We have

‖µ̂(R·)‖2L2(Sd−1) = CdR
−(d−1) ‖µ̂‖2L2(RSd−1) = CdR

−(d−1)
wwµ̂ ∗ φ̂ww2

L2(RSd−1)

≤ CdR−(d−1)
wwφ̂ww

1

ww|µ̂|2 ∗ φ̂ww
L1(RSd−1)

. R−(d−1)

∫
|µ̂|2(u)(|φ̂| ∗ dσR)(u)du

. R−(d−1)

∫
|µ̂|2(u)(1 + |R− |u||)−Mdu.(11)

The second line follows from Cauchy-Schwarz inequality (as in (15) below);

the third line from Fubini’s theorem and the last line from the Schwartz

decay of φ. Here M is a large constant and the implicit constants in the

inequalities depend on d, µ, φ, and M . Choose q ∈ ((d + 2)/2, q0). Using

(10) for small ε = ε(d, α, q, q0) and (11) for large M = M(ε, d, q, q0, α), we

obtain

‖µ̂(R·)‖2L2(Sd−1) . R
−(d−1)

[
‖µ̂‖2L2(AR(Rε)) +

∫
AR(Rε)c

(1 + |R− |u||)−Mdu
]

. R−
α
q

+2Cε +R−Mε/2 . R
− α
q0 .

This yields Theorem 2 and hence finishes the proof of the lemma. �

Let f be as in Lemma 5.1 with L2 norm 1. Below, we prove that

(12) ‖f∨‖L2(dµ) . R
d−1

2
− α

2q .

(9) can be obtained from (12) using Cauchy-Schwarz inequality. As in [6], we

use the bilinear approach. It suffices to prove (12) for functions f supported

in a subset of AR(1) of diameter � R. Consider a dyadic decomposition of

AR(1) into spherical caps, I, with dimensions 2× 2n × ...× 2n for

R
1
2 � 2n � R.

We say I has sidelength 2n and write `(I) = 2n. The unique cap of sidelength

2n+1 which contains I is called the parent of I. Let I and J be caps with
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the same sidelength. We say I and J are related, I ∼ J , if they are not

adjacent but their parents are.

Let fI := fχI . As in [6], we have

‖f∨‖2L2(dµ) ≤
∑

R
1
2�2n�R

∑
`(I)=2n,I∼J

‖f∨I f∨J ‖L1(dµ) +
∑
I∈IE

‖f∨I ‖2L2(dµ)(13)

=: S1 + S2.

Here IE is a set of dyadic caps with sidelengths ≈ R
1
2 satisfying the finite

overlapping property:

(14)
ww ∑
I∈IE

χI
ww
∞ . 1.

First, we obtain a bound for S2. Since each I ∈ IE is contained in a ball D

of radius CR
1
2 , we have f∨I = f∨I ∗ ϕ∨D, (ϕD is defined in the beginning of

Section 4). Using this and Cauchy-Schwarz inequality, we have

(15) |f∨I | ≤ (|f∨I |2 ∗ |ϕ∨D|)
1
2 ‖ϕ∨D‖

1
2
1 . (|f∨I |2 ∗ |ϕ∨D|)

1
2 .

Using this, Fubini’s theorem and Lemma 4.1, we obtain

(16)

‖f∨I ‖2L2(dµ) ≤
∫
|f∨I (x)|2(µ ∗ |ϕ∨D|)(x)dx . ‖f∨I ‖22R

d−α
2 = ‖fI ∨ ‖22R

d−α
2 .

Using (16) and (14), we obtain

S2 =
∑
I∈IE

‖f∨I ‖2L2(dµ) . R
d−α

2

∑
I∈IE

‖fI‖22 . R
d−α

2 ‖f‖22 = R
d−α

2 .

This term is harmless since d−α
2 < d− 1− α

q , for α ∈ (0, d) and q > d+2
d .

In the remaining part of the paper we prove that for q > d+2
d , S1 . R

d−1−α
q .

Fix n and I ∼ J with |I| = |J | = 2n. First, we prove that

(17) ‖f∨I f∨J ‖L1(dµ) ≤ Cα,q,dR
d−1−α

q ‖fI‖2‖fJ‖2.
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Note that I + J is contained in a ball of radius C2n. Hence, fI ∗ fJ is

supported in a ball D of radius C2n. Using this as in (16), we obtain

(18) ‖f∨I f∨J ‖L1(dµ) ≤
∫
|f∨I (x)f∨J (x)|µD(x)dx,

where µD = µ ∗ |ϕ∨D|.

Let e be the unit vector which is in the direction of the center of mass of

I∪J . Consider a tiling of Rd with rectangles P of dimensions 100×1002n

R ×

...× 1002n

R , the long axis being in the direction e. For each P , let aP be an

affine bijection from Rd to Rd which maps P to the unit cube. Let φ be a

Schwartz function satisfying

(19) φ(x) ≥ χB(0,1)(x), x ∈ R, and supp(φ̂) ⊂ B(0, 1).

Let φP := φ ◦ aP and fI,P := ̂f∨I φP . Using (19) and the fact that the

rectangles P tile Rd, we obtain

(18) .
∑
P

∫
|f∨I,P (x)f∨J,P (x)|µD(x)φP (x)dx

.
∑
P

‖f∨I,P f∨J,P ‖q‖µDφP ‖q′ ,(20)

where q > d+2
d and q′ = q

q−1 .

To estimate ‖f∨I,P f∨J,P ‖q, we use the Corollary 2 of Tao’s theorem. Let IP be

the support of fI,P . Note that IP is contained in I + supp(φ̂P ) ⊂ I + Pdual,

where Pdual is the dual of P centered at the origin. We have

Lemma 5.2. I + Pdual is contained in a spherical cap of dimensions 10 ×
11
102n × ...× 11

102n in AR(10) which contains I.

Proof. Note that Pdual is a rectangle of dimensions 100−1 × 100−1R2−n ×

...× 100−1R2−n, the short axis being in the direction e. For each p ∈ Pdual
and x ∈ I, the angle between p− e〈p, e〉 and the hyperplane Hx with

normal x is ≤ 102n

R . Therefore Pdual is contained in 1
10 -neighborhood of

Hx ∩B(0, 100−1R2−n). Note that if |x| ≈ R, and r � R
1
2 , then x +
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(Hx ∩ B(0, r)) is contained in a spherical cap containing x of dimensions

≈ 1× r × ...× r in A|x|(1). This finishes the proof since

100−1R2−n ≤ 100−1R
1
2 � 2n.

�

Using Lemma 5.2 for I and J , we see that IP and JP have diameter . 2n;

they are contained in AR(10) and d(IP , JP ) & 2n. Therefore, Corollary 2

implies that

‖f∨I,P f∨J,P ‖q . R
1
q 2n(d−1− d+1

q
)‖fI,P ‖2 ‖fJ,P ‖2.(21)

We bound ‖µDφP ‖q′ by interpolating between L1 and L∞. Using the

Schwarz decay of φP , we have

‖µDφP ‖1 ≤
∞∑
j=1

2−Mj

∫
µD(x)χ2jP (x)dx.

Note that 2jP can be covered by ≈ R
2n balls of radius ≈ 2j2n

R . Therefore,

using Lemma 4.1, we get

‖µDφP ‖1 .
∞∑
j=1

2−
Mj
2 2nα−nR1−α . 2nα−nR1−α.(22)

Using Lemma 4.1 once again, we obtain

(23) ‖µDφP ‖∞ . ‖µD‖∞ . 2nd−nα.

Using (23) and (22), we obtain

‖µDφP ‖q′ ≤ ‖µDφP ‖1/q∞ ‖µDφP ‖
1/q′

1

. 2n
d−α
q (2nα−nR1−α)1/q′ .(24)

Using (20), (21), (24) and then Cauchy-Schwarz inequality, we get

‖f∨I f∨J ‖L1(dµ) . R
1− α

q′ 2n(α(1− 2
q

)+d−2)
∑
P

‖fI,P ‖2‖fJ,P ‖2

. R1− α
q′ 2n(α(1− 2

q
)+d−2)

[∑
P

‖fI,P ‖22
] 1

2
[∑

P

‖fJ,P ‖22
] 1

2
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Using the Schwartz decay of φ, the fact that the rectangles P tile Rd and

Plancherel formula, we get

(25) ‖f∨I f∨J ‖L1(dµ) . R
1− α

q′ 2n(α(1− 2
q

)+d−2)‖fI‖2‖fJ‖2.

The exponent of 2n in (25) is non-negative and 2n . R. Therefore

‖f∨I f∨J ‖L1(dµ) . R
1− α

q′R
α(1− 2

q
)+d−2‖fI‖2‖fJ‖2

. Rd−1−α
q ‖fI‖2‖fJ‖2.(26)

Finally, using (26) and L2-orthogonality, as in [23] and [25], we bound S1.

Note that for each dyadic cap I, there are finitely many (depending on d)

dyadic caps J related to I. Therefore, for each I,∑
J∼I
‖fJ‖2 . ‖fI′‖2,

for a cap I ′ of sidelength C2n which contains I. Also note that for each n,

the caps {I ′ : `(I) = 2n} are finitely overlapping. Thus,∑
`(I)=2n

‖fI‖22 ≈
∑

`(I)=2n

‖fI′‖22 ≈ ‖f‖22.

Therefore,∑
`(I)=2n, I∼J

‖fI‖2‖fJ‖2 ≤
[ ∑
`(I)=2n

‖fI‖22
]1/2[ ∑

`(I)=2n

(∑
J∼I
‖fJ‖2

)2]1/2

. ‖f‖22.

Using this, (26) and the fact that there are . log(R) values of n in the sum

for S1 in (13), we obtain (for each q > d+2
d )

S1 . R
d−1−α

q .
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