ON FALCONER'S DISTANCE SET CONJECTURE

M. BURAK ERDOĞAN

ABSTRACT. In this paper, using a recent parabolic restriction estimate of Tao, we obtain improved partial results in the direction of Falconer's distance set conjecture in dimensions $d \geq 3$.

1. Introduction

Let E be a compact subset of \mathbf{R}^d . The distance set, $\Delta(E)$, of E is defined as

$$\Delta(E) = \{|x - y| : x, y \in E\}.$$

Erdös' famous distinct distances conjecture [7] states that for any $\varepsilon > 0$ and for any finite set $E \subset \mathbf{R}^d$, $d \geq 2$,

$$\#\Delta(E) \ge C_{d,\varepsilon}(\#E)^{\frac{2}{d}-\varepsilon}.$$

This conjecture is still open in all dimensions $d \geq 2$. For various partial results and references see [17], [1] and [13].

Falconer's conjecture [8] is a variant of Erdös' conjecture:

Conjecture. Let $d \geq 2$. Let E be a compact subset of \mathbf{R}^d . Then,

$$\dim(E) > \frac{d}{2} \implies |\Delta(E)| > 0.$$

Here $|\cdot|$ is the Lebesgue measure and $\dim(\cdot)$ is the Hausdorff dimension.

Like Erdös' conjecture, Falconer's conjecture is open in every dimension. In [8], Falconer gave an example showing that $\frac{d}{2}$ in the conjecture is optimal and proved that $\dim(E) > \frac{d+1}{2}$ implies $|\Delta(E)| > 0$. Bourgain [3] improved this result in every dimension, and in particular proved that in \mathbf{R}^2 , $\dim(E) > \frac{13}{9}$

Date: October 5, 2004.

suffices. Later, Wolff [24] proved that in \mathbb{R}^2 , dim $(E) > \frac{4}{3}$ suffices. In [6], the author obtained a simplified proof of Wolff's result and noted that it is possible to obtain the following improved partial result in higher dimensions using the method in [6] and a bilinear Fourier restriction estimate by Tao [22]. In this paper, we prove

Theorem 1. Let $d \geq 2$. Let E be a compact subset of \mathbf{R}^d with

$$\dim(E) > \frac{d(d+2)}{2(d+1)}.$$

Then $|\Delta(E)| > 0$.

There are other positive results in the direction of Falconer's conjecture. For example, Mattila [14] proved that in \mathbf{R}^2 , $\dim(E) > 1$ implies $\dim(\Delta(E)) \ge \frac{1}{2}$. Recently, Bourgain [4] improved this result and proved that there exists c > 0 such that in \mathbf{R}^2 , $\dim(E) > 1$ implies $\dim(\Delta(E)) > \frac{1}{2} + c$. Bourgain's result relies on a paper by Katz and Tao [12] which relates the Falconer's conjecture to various other problems in harmonic analysis.

There are lots of variations of Falconer's problem. Notably, Mattila and Sjölin [16] proved that $\Delta(E)$ has interior points if $\dim(E) > \frac{d+1}{2}$. Peres and Schlag [18] considered pinned distance sets,

$$\Delta(x, E) = \{|x - y| : y \in E\},\$$

and proved that if $\dim(E) > \frac{d+1}{2}$ then $|\Delta(x, E)| > 0$ for almost every $x \in E$.

One can also consider distance sets with respect to general metrics. Let K be a convex symmetric body in \mathbf{R}^d , $d \geq 2$. Define $\Delta_K(E) = \{d_K(x,y) : x,y \in E\}$, where d_K is the distance induced by K. Iosevich and Laba [10] investigated the relation between the curvature of the boundary of K and the size of the distance sets. Hofmann and Iosevich [9] (also see [2] for a similar result in higher dimensions) proved that in \mathbf{R}^2 if $\dim(E) > 1$ then $|\Delta_K(E)| > 0$ for almost every ellipse K centered at the origin. We note that our main result, Theorem 1, remains valid for Δ_K in the case when the

boundary of K is smooth and has non-vanishing Gaussian curvature (see Remark 1 below).

List of notations.

 χ_A : characteristic function of the set A.

$$B(x,r) := \{ y : |x - y| < r \}.$$

d(A, B): the distance between the sets A and B.

$$A_R(C) := \{ x \in \mathbf{R}^d : ||x| - R| \le C \}.$$

C: a constant which may vary from line to line.

$$A \lesssim B$$
: $A \leq CB$.

 $A \approx B$: $A \lesssim B$ and $B \lesssim A$.

 $A \ll B$: $A \leq \frac{1}{C}B$, for some large constant C.

|A|: length of the vector A or the measure of the set A.

Acknowledgment. This work was partially supported by NSF grant DMS-0303413. The author wishes to thank Alex Iosevich for pointing out Remark 1 and for useful comments on an earlier version of this paper.

2. Mattila's approach to distance set problem

In [14], Mattila developed a method to attack the distance set problem. For a very good exposition of this method, see [26]. Mattila's approach was used in [14, 3, 24, 9, 6, 2].

Let μ be a probability measure supported in E. Let ν_{μ} be the push forward of $\mu \times \mu$ under the distance map $(x, y) \mapsto |x - y|$, i.e.,

$$\nu_{\mu}(A) = \mu \times \mu(\{(x,y) : |x-y| \in A\}), \text{ for Borel sets } A \subset \mathbf{R}.$$

It is easy to check that ν_{μ} is a probability measure supported in $\Delta(E)$. Note that if the Fourier transform of ν_{μ} ,

$$\widehat{\nu_{\mu}}(\xi) := \int e^{-ix\cdot\xi} d\nu_{\mu}(x),$$

is an L^2 function, then ν_μ should be absolutely continuous with an L^2 density and hence

$$|\Delta(E)| \ge |\operatorname{Supp}(\nu_{\mu})| > 0.$$

Using this idea and the Fourier asymptotics of the surface measure of the unit sphere in \mathbf{R}^d , Mattila proved [14]:

Theorem A. Let $\alpha \in (0,d)$. Let E be a compact subset of \mathbf{R}^d with $\dim(E) > \alpha$. Assume that there is a probability measure μ supported in E such that

(1)
$$\|\widehat{\mu}(R\cdot)\|_{L^2(S^{d-1})} \le C_{\mu} R^{\frac{\alpha-d}{2}}, \quad \forall R > 1.$$

Then $|\Delta(E)| > 0$.

Note that Theorem A proves the distance set conjecture for Salem sets [19, 11]. A set $E \subset \mathbf{R}^d$ is called a Salem set if for each $\beta < \dim(E)$, there exists a probability measure μ supported in E such that

$$|\widehat{\mu}(\xi)| \lesssim |\xi|^{-\frac{\beta}{2}}, \quad \forall \xi \in \mathbf{R}^d.$$

To apply Theorem A to arbitrary compact sets, one needs Frostman's lemma (see, e.g., [15]).

Definition 1. A compactly supported probability measure μ is called α -dimensional if it satisfies

(2)
$$\mu(B(x,r)) \le C_{\mu} r^{\alpha}, \ \forall r > 0, \forall x \in \mathbf{R}^d.$$

Frostman's Lemma. If E is a compact subset of \mathbf{R}^d with $\dim(E) > \alpha$, then there is an α -dimensional measure μ supported in E.

Frostman's lemma and Mattila's theorem imply:

Lemma 2.1. Fix $\alpha \in (0, d)$. Assume that the inequality (1) holds for all α -dimensional measures. Then for any compact $E \subset \mathbf{R}^d$

$$\dim(E)>\alpha \implies |\Delta(E)|>0.$$

In view of Lemma 2.1, Theorem 1 is a corollary of the following:

Theorem 2. Let $d \ge 2$ and $\alpha \in (0, d)$. Let μ be an α -dimensional measure. Then for each $q > \frac{d+2}{d}$,

$$\|\widehat{\mu}(R\cdot)\|_{L^2(S^{d-1})} \le C_{q,\mu} R^{-\frac{\alpha}{2q}}, \quad \forall R > 1.$$

Like Theorem 1, Theorem 2 was first proved in [24] for d = 2. Under the hypothesis of Theorem 2, it is also known that [14, 20] (also see [21, 6])

(3)
$$\|\widehat{\mu}(R\cdot)\|_{L^2(S^{d-1})} \lesssim R^{-\max(\frac{\alpha-1}{2},\min(\frac{\alpha}{2},\frac{d-1}{4}))}, \quad \forall R > 1.$$

Theorem 2 and (3) give optimal bounds for each $\alpha \in (0,2)$ for d=2 (see, e.g., [20, 24, 6]). Therefore, one can not improve the result in Theorem 1 for d=2 using Mattila's approach. In higher dimensions, (3) is optimal for $\alpha \leq \frac{d-1}{2}$ (see [20]); however, there is no reason to believe that Theorem 2 and (3) give optimal bounds for $\alpha > \frac{d-1}{2}$.

It is essential that in Theorem 2, we are averaging $\widehat{\mu}(R\cdot)$ on a surface with non-vanishing Gaussian curvature. In general, the Fourier transform $\widehat{\mu}(\xi)$ of an α -dimensional measure μ does not have to converge to zero as $|\xi| \to \infty$. In fact, for any $d \geq 1$ and for any $\alpha \in (0,d)$, there are Cantor-type measures in \mathbf{R}^d of dimension greater than α whose Fourier transform does not converge to 0 at infinity [19].

Remark 1. Mattila's approach can be modified for distance sets with respect to general metrics. Let K be a convex symmetric body. Assume that the boundary of K is smooth and has non-vanishing Gaussian curvature. Let K^* be the dual of K. One can modify Mattila's approach and prove that the statement of Lemma 2.1 remains valid if $\Delta(E)$ is replaced with $\Delta_K(E)$ and S^{d-1} in (1) is replaced with ∂K^* (see [9, 2]). We note that Theorem 2 remains valid, too, if we replace S^{d-1} with ∂K^* . The proof of this fact follows the same line below with minor changes in the statements and proofs of Corollary 2 and Lemma 5.2. Therefore, Theorem 1 holds for Δ_K if K has a smooth boundary with non-vanishing Gaussian curvature.

3. Tao's bilinear parabolic extension estimate

In the proof of Theorem 2, we use a bilinear restriction estimate for elliptic surfaces by Tao [22]. First let us recall the definition of elliptic surfaces from [23]:

Definition 2. We say $\phi: B(0,1) \subset \mathbf{R}^{d-1} \to \mathbf{R}$ is an (M, ε_0) -elliptic phase if ϕ satisfies

- $i) \|\phi\|_{C^{\infty}} < M$
- *ii*) $\phi(0) = \nabla \phi(0) = 0$, and
- iii) For all $x \in B(0,1)$, all eigenvalues of the Hessian $\phi_{x_ix_j}(x)$ lie in $[1 \varepsilon_0, 1 + \varepsilon_0]$.

We say S is an (M, ε_0) -elliptic surface if $S = \{(x, y) \in B(0, 1) \times \mathbf{R} \subset \mathbf{R}^d : y = \phi(x)\}$ for some (M, ε_0) -elliptic phase ϕ .

Note that in this definition the term "elliptic" is used in a slightly non-standard way. In classical PDE, a non-vanishing symbol is considered to be elliptic. In the definition above, the non-vanishing of the curvature is required, too, (see II below). A model example for an elliptic phase is $\phi(x) = \frac{|x|^2}{2}$. We recall the following properties of elliptic phases (see, e.g., [23]):

I) Let ϕ be an (M, ε_0) -elliptic phase and $B(x_0, \eta) \subset B(0, 1)$. Let

$$\tilde{\phi}(x) := \frac{1}{n^2} \left(\phi(x\eta + x_0) - \phi(x_0) - \eta x \cdot \nabla \phi(x_0) \right), \quad x \in B(0, 1).$$

Then $\tilde{\phi}$ is a (C_dM, ε_0) -elliptic phase.

II) Let S be a smooth compact submanifold of \mathbf{R}^d with strictly positive principal curvatures. Note that for any $\varepsilon_0 > 0$ and for any $s \in S$ there is a neighborhood U_s of s and an affine bijection a_s of \mathbf{R}^d such that $a_s(U_s)$ is an (M, ε_0) -elliptic surface, where M depends only on d, $\|\phi\|_{C^{\infty}}$ and the principal curvatures at s. Moreover, by using a partition of unity, we can write S as a union of affine images of finitely many (M, ε_0) -elliptic surfaces.

These observations are especially important for the extension of Theorem 2 to ∂K^* (see Remark 1 above).

The following theorem is proved in [22] for $d \geq 3$. The d = 2 case is basically the Carleson-Sjölin Theorem [5]. In [6], it was used in the proof of Theorem 2 for d = 2.

Theorem B. Let $d \geq 2$. For any M > 0, there exists $\varepsilon_0 > 0$ such that the following statement holds.

Let S_1 , S_2 be compact subsets of an (M, ε_0) -elliptic surface in \mathbf{R}^d with $d(S_1, S_2) > \frac{1}{2}$. Let σ_j be the Lebesgue measure on S_j , j = 1, 2. Then for all $q > \frac{d+2}{d}$, we have

(4)
$$\|\widehat{f_1 d\sigma_1} \widehat{f_2 d\sigma_2}\|_{L^q(\mathbf{R}^d)} \le C_{M,q,d} \|f_1\|_{L^2(S_1,d\sigma_1)} \|f_2\|_{L^2(S_2,d\sigma_2)},$$

for all $f_j \in L^2(S_j, d\sigma_j), j = 1, 2.$

In [22], this theorem is proved explicitly only for the paraboloid. The version we stated here can be proved similarly, see the last section of [22] where the necessary modifications are described.

We need the following scaled and mollified version of this theorem (see, e.g., [23]). In view of II) above, choose N_d large enough so that any subset of S^{d-1} of diameter $\lesssim \frac{1}{N_d}$ is an affine image of an elliptic surface which satisfies the hypothesis of Theorem B. Let $A_R(\varepsilon)$ denote the set $\{x \in \mathbf{R}^d : ||x| - R| \le \varepsilon\}$.

Corollary 1. Fix a spherical cap U in $A_1(\varepsilon)$, $(\varepsilon \ll 1/N_d)$, of diameter $\lesssim 1/N_d$. If I_1 and I_2 are subsets of U of diameter η with $d(I_1, I_2) \approx \eta$, then for $q > \frac{d+2}{d}$, we have

$$\|\widehat{f}_1\widehat{f}_2\|_{L^q(\mathbf{R}^d)} \le C_{q,d} \varepsilon \eta^{d-1-\frac{d+1}{q}} \|f_1\|_2 \|f_2\|_2,$$

for all $f_j \in L^2(I_j), j = 1, 2$.

Proof. First note that the inequality (4) is invariant under translations of one or both of the surfaces S_1 , S_2 . Therefore, under the hypothesis of

Theorem B, we have

(5)
$$\|\widehat{f}_1\widehat{f}_2\|_{L^q(\mathbf{R}^d)} \lesssim \varepsilon \|f_1\|_2 \|f_2\|_2,$$

for all $f_j \in L^2(S_j^{\varepsilon})$, j = 1, 2, where S_j^{ε} is the ε -neighborhood of S_j . This follows easily from the definition of Lebesgue measure.

Let e be the unit vector in the direction of the center of mass of $I_1 \cup I_2$. Let $\{e_1 = e, e_2, ..., e_d\}$ be an orthogonal basis for \mathbf{R}^d . Let $T : \mathbf{R}^d \to \mathbf{R}^d$ be the linear map which satisfies

$$T(e_1) = \frac{1}{\eta^2}e_1, \quad T(e_j) = \frac{1}{\eta}e_j, \ j = 2, 3, ..., d,$$

In view of I) and II) above, $C_j = TI_j$ is contained in $\approx \frac{\varepsilon}{\eta^2}$ -neighborhood of an affine image of a surface S_j , j = 1, 2, where the surfaces S_1 , S_2 satisfy the hypothesis of Theorem B (with M independent of η, I_1, I_2).

Let $g_j(x) = f_j(T^{-1}x)$, j = 1, 2. Since g_j is supported in C_j , using (5) we obtain

(6)
$$\|\widehat{g}_1\widehat{g}_2\|_q \lesssim \frac{\varepsilon}{\eta^2} \|g_1\|_2 \|g_2\|_2.$$

The following elementary identities and (6) yield the claim of the corollary:

$$\widehat{f}_{j}(\xi) = \frac{1}{\det(T)}\widehat{g}_{j}(T^{-1}(\xi)) = \eta^{d+1}\widehat{g}_{j}(T^{-1}(\xi)), \quad j = 1, 2,$$

$$\|\widehat{f}_{1}\widehat{f}_{2}\|_{q} = \eta^{(d+1)(2-\frac{1}{q})}\|\widehat{g}_{1}\widehat{g}_{2}\|_{q},$$

$$\|f_{j}\|_{2} = \eta^{\frac{d+1}{2}}\|g_{j}\|_{2}, \quad j = 1, 2.$$

The following Corollary is obtained from Corollary 1 using a dilation:

Corollary 2. If I_1 and I_2 are subsets of $A_R(\varepsilon)$, $(\varepsilon \ll R/N_d)$, of diameter $\eta \lesssim R/N_d$ with $d(I_1, I_2) \approx \eta$, then for $q > \frac{d+2}{d}$, we have

(7)
$$\|\widehat{f}_1\widehat{f}_2\|_{L^q(\mathbf{R}^d)} \le C_{q,d} \varepsilon R^{\frac{1}{q}} \eta^{d-1-\frac{d+1}{q}} \|f_1\|_2 \|f_2\|_2,$$
for all $f_j \in L^2(I_j), \ j = 1, 2.$

4. Uncertainty principle

Let φ be a Schwartz function satisfying

$$\varphi(\xi) = 1$$
, for $|\xi| < 2$ and $\varphi(\xi) = 0$, for $|\xi| > 4$.

Let D be a ball of radius s in \mathbf{R}^d . Fix an affine bijection a_D of \mathbf{R}^d which maps D to B(0,1). Let $\varphi_D = \varphi \circ a_D$. Since φ is a Schwartz function, for each $M \in \mathbf{N}$, we have

(8)
$$|\varphi_D^{\vee}(x)| = s^d |\varphi^{\vee}(sx)| \le C_{M,d} s^d \sum_{j=1}^{\infty} 2^{-Mj} \chi_{B(0,2^j s^{-1})}(x), \quad \forall x \in \mathbf{R}^d.$$

The following well-known corollary of the uncertainty principle (see, e.g., [26, Chapter 5]) is another important ingredient of the proof of Theorem 2. We give a proof for the sake of completeness.

Lemma 4.1. Let μ be an α -dimensional measure in \mathbf{R}^d . Let D be a ball of radius s in \mathbf{R}^d . Then the function $\mu_D := |\varphi_D^{\vee}| * \mu$ satisfies

- $i) \|\mu_D\|_{\infty} \lesssim s^{d-\alpha},$
- *ii*) $\|\mu_D\|_1 \lesssim 1$,
- iii) $\mu_D(\mathcal{B}) := \int_{\mathcal{B}} \mu_D(y) dy \lesssim r^{\alpha}$, for any ball \mathcal{B} of radius $r \geq 100s^{-1}$.

Proof. i) Fix M > 100d. Using (8) and (2), we obtain

$$0 \le \mu_D(x) \lesssim s^d \sum_{j=1}^{\infty} 2^{-Mj} \int \chi_{B(0,2^j s^{-1})}(x-y) d\mu(y)$$
$$\lesssim s^d \sum_{j=1}^{\infty} 2^{-Mj} (2^j s^{-1})^{\alpha} \lesssim s^{d-\alpha}.$$

- ii) follows from Young's inequality and the observation $\|\varphi_D^{\vee}\|_1 \lesssim 1$.
- iii) Using (8), we get

$$\mu_D(\mathcal{B}) \lesssim s^d \sum_{j=1}^{\infty} 2^{-Mj} \int \int \chi_{\mathcal{B}}(y) \chi_{B(0,2^j s^{-1})}(y-u) d\mu(u) dy$$

Note that $y \in \mathcal{B}$ and $y - u \in B(0, 2^j s^{-1})$ imply $u \in \mathcal{B} + B(0, 2^j s^{-1})$. Using this, Fubini's theorem and then (2), we obtain

$$\mu_D(\mathcal{B}) \lesssim s^d \sum_{j=1}^{\infty} 2^{-Mj} \int \int \chi_{\mathcal{B}+B(0,2^j s^{-1})}(u) \chi_{B(0,2^j s^{-1})}(y-u) dy d\mu(u)$$

$$\lesssim s^d \sum_{j=1}^{\infty} 2^{-Mj} (r+2^j s^{-1})^{\alpha} (2^j s^{-1})^d$$

$$\lesssim \sum_{j=1}^{\infty} 2^{-\frac{Mj}{2}} (r+2^j s^{-1})^{\alpha} \lesssim r^{\alpha}.$$

5. Proof of Theorem 2

The proof is similar to the proof given in [6]. As in [24, 6], we work with the dual formulation:

Lemma 5.1. Theorem 2 follows from the following statement: For all $q > \frac{d+2}{d}$, for all α -dimensional measures μ , for all R > 1 and for all f supported in $A_R(1)$, we have

(9)
$$\left| \int f^{\vee}(u) d\mu(u) \right| \leq C_{q,\mu} R^{\frac{d-1}{2} - \frac{\alpha}{2q}} ||f||_2,$$

where f^{\vee} is the inverse Fourier transform of f.

Proof. [24] Fix $q_0 > \frac{d+2}{d}$. Note that by duality, Fubini's theorem and the statement of the lemma, we have

$$\|\widehat{\mu}\|_{L^{2}(A_{R}(1))} = \sup_{\|f\|_{L^{2}(A_{R}(1))} = 1} \left| \int_{A_{R}(1)} f(u)\widehat{\mu}(u)du \right|$$

$$= \sup_{\|f\|_{L^{2}(A_{R}(1))} = 1} \left| \int \widehat{f}(u)d\mu(u) \right|$$

$$\leq C_{q,\mu} R^{\frac{d-1}{2} - \frac{\alpha}{2q}}, \quad \forall R > 1.$$

This easily implies that for any $0 < \varepsilon \ll 1$,

(10)
$$\|\widehat{\mu}\|_{L^2(A_R(R^{\varepsilon}))} \le C_{q,\mu} R^{\frac{d-1}{2} - \frac{\alpha}{2q} + C\varepsilon}, \quad \forall R > 1.$$

Take a Schwartz function ϕ equal to 1 in the support of μ . Note that $\widehat{\mu} = \widehat{\mu} * \widehat{\phi}$. Let $d\sigma_R$ be the surface measure on RS^{d-1} . We have

$$\|\widehat{\mu}(R\cdot)\|_{L^{2}(S^{d-1})}^{2} = C_{d}R^{-(d-1)} \|\widehat{\mu}\|_{L^{2}(RS^{d-1})}^{2} = C_{d}R^{-(d-1)} \|\widehat{\mu} * \widehat{\phi}\|_{L^{2}(RS^{d-1})}^{2}$$

$$\leq C_{d}R^{-(d-1)} \|\widehat{\phi}\|_{1} \|\widehat{\mu}\|^{2} * \widehat{\phi}\|_{L^{1}(RS^{d-1})}^{2}$$

$$\lesssim R^{-(d-1)} \int |\widehat{\mu}|^{2}(u)(|\widehat{\phi}| * d\sigma_{R})(u)du$$

$$\lesssim R^{-(d-1)} \int |\widehat{\mu}|^{2}(u)(1 + |R - |u||)^{-M} du.$$
(11)

The second line follows from Cauchy-Schwarz inequality (as in (15) below); the third line from Fubini's theorem and the last line from the Schwartz decay of ϕ . Here M is a large constant and the implicit constants in the inequalities depend on d, μ, ϕ , and M. Choose $q \in ((d+2)/2, q_0)$. Using (10) for small $\varepsilon = \varepsilon(d, \alpha, q, q_0)$ and (11) for large $M = M(\varepsilon, d, q, q_0, \alpha)$, we obtain

$$\|\widehat{\mu}(R\cdot)\|_{L^{2}(S^{d-1})}^{2} \lesssim R^{-(d-1)} \Big[\|\widehat{\mu}\|_{L^{2}(A_{R}(R^{\varepsilon}))}^{2} + \int_{A_{R}(R^{\varepsilon})^{c}} (1 + |R - |u||)^{-M} du \Big]$$

$$\lesssim R^{-\frac{\alpha}{q} + 2C\varepsilon} + R^{-M\varepsilon/2} \lesssim R^{-\frac{\alpha}{q_{0}}}.$$

This yields Theorem 2 and hence finishes the proof of the lemma. \Box

Let f be as in Lemma 5.1 with L^2 norm 1. Below, we prove that

(12)
$$||f^{\vee}||_{L^{2}(\mathrm{d}\mu)} \lesssim R^{\frac{d-1}{2} - \frac{\alpha}{2q}}.$$

(9) can be obtained from (12) using Cauchy-Schwarz inequality. As in [6], we use the bilinear approach. It suffices to prove (12) for functions f supported in a subset of $A_R(1)$ of diameter $\ll R$. Consider a dyadic decomposition of $A_R(1)$ into spherical caps, I, with dimensions $2 \times 2^n \times ... \times 2^n$ for

$$R^{\frac{1}{2}} \ll 2^n \ll R.$$

We say I has sidelength 2^n and write $\ell(I) = 2^n$. The unique cap of sidelength 2^{n+1} which contains I is called the parent of I. Let I and J be caps with

the same sidelength. We say I and J are related, $I \sim J$, if they are not adjacent but their parents are.

Let $f_I := f\chi_I$. As in [6], we have

(13)
$$||f^{\vee}||_{L^{2}(d\mu)}^{2} \leq \sum_{R^{\frac{1}{2}} \ll 2^{n} \ll R} \sum_{\ell(I)=2^{n}, I \sim J} ||f_{I}^{\vee} f_{J}^{\vee}||_{L^{1}(d\mu)} + \sum_{I \in I_{E}} ||f_{I}^{\vee}||_{L^{2}(d\mu)}^{2}$$

=: $S_{1} + S_{2}$.

Here I_E is a set of dyadic caps with sidelengths $\approx R^{\frac{1}{2}}$ satisfying the finite overlapping property:

First, we obtain a bound for S_2 . Since each $I \in I_E$ is contained in a ball D of radius $CR^{\frac{1}{2}}$, we have $f_I^{\vee} = f_I^{\vee} * \varphi_D^{\vee}$, (φ_D) is defined in the beginning of Section 4). Using this and Cauchy-Schwarz inequality, we have

$$(15) |f_I^{\vee}| \le (|f_I^{\vee}|^2 * |\varphi_D^{\vee}|)^{\frac{1}{2}} ||\varphi_D^{\vee}||_1^{\frac{1}{2}} \lesssim (|f_I^{\vee}|^2 * |\varphi_D^{\vee}|)^{\frac{1}{2}}.$$

Using this, Fubini's theorem and Lemma 4.1, we obtain

(16)
$$||f_I^{\vee}||_{L^2(\mathrm{d}\mu)}^2 \le \int |f_I^{\vee}(x)|^2 (\mu * |\varphi_D^{\vee}|)(x) dx \lesssim ||f_I^{\vee}||_2^2 R^{\frac{d-\alpha}{2}} = ||f_I \vee ||_2^2 R^{\frac{d-\alpha}{2}}.$$

Using (16) and (14), we obtain

$$S_2 = \sum_{I \in I_E} \|f_I^{\vee}\|_{L^2(\mathrm{d}\mu)}^2 \lesssim R^{\frac{d-\alpha}{2}} \sum_{I \in I_E} \|f_I\|_2^2 \lesssim R^{\frac{d-\alpha}{2}} \|f\|_2^2 = R^{\frac{d-\alpha}{2}}.$$

This term is harmless since $\frac{d-\alpha}{2} < d-1-\frac{\alpha}{q}$, for $\alpha \in (0,d)$ and $q > \frac{d+2}{d}$. In the remaining part of the paper we prove that for $q > \frac{d+2}{d}$, $S_1 \lesssim R^{d-1-\frac{\alpha}{q}}$.

Fix n and $I \sim J$ with $|I| = |J| = 2^n$. First, we prove that

(17)
$$||f_I^{\vee} f_J^{\vee}||_{L^1(\mathrm{d}\mu)} \le C_{\alpha,q,d} R^{d-1-\frac{\alpha}{q}} ||f_I||_2 ||f_J||_2.$$

Note that I + J is contained in a ball of radius $C2^n$. Hence, $f_I * f_J$ is supported in a ball D of radius $C2^n$. Using this as in (16), we obtain

(18)
$$||f_I^{\vee} f_J^{\vee}||_{L^1(\mathrm{d}\mu)} \le \int |f_I^{\vee}(x) f_J^{\vee}(x)| \mu_D(x) dx,$$

where $\mu_D = \mu * |\varphi_D^{\vee}|$.

Let e be the unit vector which is in the direction of the center of mass of $I \cup J$. Consider a tiling of \mathbf{R}^d with rectangles P of dimensions $100 \times 100 \frac{2^n}{R} \times \dots \times 100 \frac{2^n}{R}$, the long axis being in the direction e. For each P, let a_P be an affine bijection from \mathbf{R}^d to \mathbf{R}^d which maps P to the unit cube. Let ϕ be a Schwartz function satisfying

(19)
$$\phi(x) \ge \chi_{B(0,1)}(x), x \in \mathbf{R}, \text{ and } \operatorname{supp}(\widehat{\phi}) \subset B(0,1).$$

Let $\phi_P := \phi \circ a_P$ and $f_{I,P} := \widehat{f_I^{\vee} \phi_P}$. Using (19) and the fact that the rectangles P tile \mathbf{R}^d , we obtain

(20)
$$(18) \lesssim \sum_{P} \int |f_{I,P}^{\vee}(x)f_{J,P}^{\vee}(x)|\mu_{D}(x)\phi_{P}(x)dx$$

$$\lesssim \sum_{P} \|f_{I,P}^{\vee}f_{J,P}^{\vee}\|_{q} \|\mu_{D}\phi_{P}\|_{q'},$$

where $q > \frac{d+2}{d}$ and $q' = \frac{q}{q-1}$.

To estimate $||f_{I,P}^{\vee}f_{J,P}^{\vee}||_q$, we use the Corollary 2 of Tao's theorem. Let I_P be the support of $f_{I,P}$. Note that I_P is contained in $I + \operatorname{supp}(\widehat{\phi_P}) \subset I + P_{dual}$, where P_{dual} is the dual of P centered at the origin. We have

Lemma 5.2. $I + P_{dual}$ is contained in a spherical cap of dimensions $10 \times \frac{11}{10} 2^n \times ... \times \frac{11}{10} 2^n$ in $A_R(10)$ which contains I.

Proof. Note that P_{dual} is a rectangle of dimensions $100^{-1} \times 100^{-1}R2^{-n} \times ... \times 100^{-1}R2^{-n}$, the short axis being in the direction e. For each $p \in P_{dual}$ and $x \in I$, the angle between $p - e\langle p, e \rangle$ and the hyperplane H_x with normal x is $\leq 10\frac{2^n}{R}$. Therefore P_{dual} is contained in $\frac{1}{10}$ -neighborhood of $H_x \cap B(0, 100^{-1}R2^{-n})$. Note that if $|x| \approx R$, and $r \ll R^{\frac{1}{2}}$, then $x + \frac{1}{2}$

 $(H_x \cap B(0,r))$ is contained in a spherical cap containing x of dimensions $\approx 1 \times r \times ... \times r$ in $A_{|x|}(1)$. This finishes the proof since

$$100^{-1}R2^{-n} < 100^{-1}R^{\frac{1}{2}} \ll 2^{n}.$$

Using Lemma 5.2 for I and J, we see that I_P and J_P have diameter $\lesssim 2^n$; they are contained in $A_R(10)$ and $d(I_P, J_P) \gtrsim 2^n$. Therefore, Corollary 2 implies that

(21)
$$||f_{I,P}^{\vee}f_{J,P}^{\vee}||_{q} \lesssim R^{\frac{1}{q}} 2^{n(d-1-\frac{d+1}{q})} ||f_{I,P}||_{2} ||f_{J,P}||_{2}.$$

We bound $\|\mu_D \phi_P\|_{q'}$ by interpolating between L^1 and L^{∞} . Using the Schwarz decay of ϕ_P , we have

$$\|\mu_D \phi_P\|_1 \le \sum_{j=1}^{\infty} 2^{-Mj} \int \mu_D(x) \chi_{2^j P}(x) dx.$$

Note that $2^{j}P$ can be covered by $\approx \frac{R}{2^{n}}$ balls of radius $\approx \frac{2^{j}2^{n}}{R}$. Therefore, using Lemma 4.1, we get

(22)
$$\|\mu_D \phi_P\|_1 \lesssim \sum_{i=1}^{\infty} 2^{-\frac{Mj}{2}} 2^{n\alpha - n} R^{1-\alpha} \lesssim 2^{n\alpha - n} R^{1-\alpha}.$$

Using Lemma 4.1 once again, we obtain

(23)
$$\|\mu_D \phi_P\|_{\infty} \lesssim \|\mu_D\|_{\infty} \lesssim 2^{nd-n\alpha}.$$

Using (23) and (22), we obtain

(24)
$$\|\mu_D \phi_P\|_{q'} \le \|\mu_D \phi_P\|_{\infty}^{1/q} \|\mu_D \phi_P\|_1^{1/q'}$$
$$\lesssim 2^{n \frac{d-\alpha}{q}} (2^{n\alpha-n} R^{1-\alpha})^{1/q'}.$$

Using (20), (21), (24) and then Cauchy-Schwarz inequality, we get

$$||f_I^{\vee} f_J^{\vee}||_{L^1(\mathrm{d}\mu)} \lesssim R^{1-\frac{\alpha}{q'}} 2^{n(\alpha(1-\frac{2}{q})+d-2)} \sum_P ||f_{I,P}||_2 ||f_{J,P}||_2$$
$$\lesssim R^{1-\frac{\alpha}{q'}} 2^{n(\alpha(1-\frac{2}{q})+d-2)} \Big[\sum_P ||f_{I,P}||_2^2 \Big]^{\frac{1}{2}} \Big[\sum_P ||f_{J,P}||_2^2 \Big]^{\frac{1}{2}}$$

Using the Schwartz decay of ϕ , the fact that the rectangles P tile \mathbf{R}^d and Plancherel formula, we get

(25)
$$||f_I^{\vee} f_J^{\vee}||_{L^1(\mathrm{d}\mu)} \lesssim R^{1-\frac{\alpha}{q'}} 2^{n(\alpha(1-\frac{2}{q})+d-2)} ||f_I||_2 ||f_J||_2.$$

The exponent of 2^n in (25) is non-negative and $2^n \lesssim R$. Therefore

(26)
$$||f_I^{\vee} f_J^{\vee}||_{L^1(\mathrm{d}\mu)} \lesssim R^{1-\frac{\alpha}{q'}} R^{\alpha(1-\frac{2}{q})+d-2} ||f_I||_2 ||f_J||_2$$

$$\lesssim R^{d-1-\frac{\alpha}{q}} ||f_I||_2 ||f_J||_2.$$

Finally, using (26) and L^2 -orthogonality, as in [23] and [25], we bound S_1 . Note that for each dyadic cap I, there are finitely many (depending on d) dyadic caps J related to I. Therefore, for each I,

$$\sum_{I > I} \|f_J\|_2 \lesssim \|f_{I'}\|_2,$$

for a cap I' of sidelength $C2^n$ which contains I. Also note that for each n, the caps $\{I': \ell(I) = 2^n\}$ are finitely overlapping. Thus,

$$\sum_{\ell(I)=2^n} \|f_I\|_2^2 \approx \sum_{\ell(I)=2^n} \|f_{I'}\|_2^2 \approx \|f\|_2^2.$$

Therefore,

$$\sum_{\ell(I)=2^n, I \sim J} \|f_I\|_2 \|f_J\|_2 \le \left[\sum_{\ell(I)=2^n} \|f_I\|_2^2\right]^{1/2} \left[\sum_{\ell(I)=2^n} \left(\sum_{J \sim I} \|f_J\|_2\right)^2\right]^{1/2}$$

$$\lesssim \|f\|_2^2.$$

Using this, (26) and the fact that there are $\lesssim \log(R)$ values of n in the sum for S_1 in (13), we obtain (for each $q > \frac{d+2}{d}$)

$$S_1 \lesssim R^{d-1-\frac{\alpha}{q}}.$$

References

- B. Aronov, J. Pach, M. Sharir, G. Tardos, Distinct distances in three and higher dimensions, in: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.
- [2] G. Arutyunyants, A. Iosevich, Falconer conjecture, spherical averages, and discrete analogs, (to appear in the AMS volume on geometric measure theory, edited by J. Pach).
- [3] J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994), 193-201.
- [4] ______, On the Erdös-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), 334-365.
- [5] L. Carleson, P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 287-299.
- [6] M. B. Erdogan, A note on the Fourier transform of fractal measures, Math. Res. Lett. 11 (2004), no. 2-3, 299-313.
- [7] P. Erdös, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
- [8] K. J. Falconer, On the Hausdorff dimension of distance sets, Mathematika 32 (1985), 206-212.
- [9] S. Hofmann, A. Iosevich, Circular averages and Falconer/Erdos distance conjecture in the plane for random metrics, (to appear in the PAMS).
- [10] A. Iosevich, I. Laba, K-distance sets, Falconer's conjecture and discrete analogs, (preprint).
- [11] J. P. Kahane, Some random series of functions, Cambridge University Press, 1985.
- [12] N. H. Katz, T. Tao, Some connections between Falconer's distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149-187.
- [13] N. H. Katz, G. Tardos, Note on distinct sums and distinct distances, (preprint).
- [14] P. Mattila, Spherical averages of Fourier transforms of measures with finite energy: dimension of intersections and distance sets, Mathematika 34 (1987), 207-228.
- [15] _____, Geometry of sets and measures in euclidean spaces, fractals and rectifiability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, 1995.
- [16] P. Mattila, P. Sjölin, Regularity of distance measures and sets, Math. Nachr. 204 (1999), 157-162.
- [17] J. Pach, P. K. Agarwal, Combinatorial geometry, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., 1995.

- [18] Y. Peres, W. Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102 (2000), no. 2, 193-251.
- [19] R. Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Co., Boston, Mass. 1963.
- [20] P. Sjölin, Estimates of spherical averages of Fourier transforms and dimensions of sets, Mathematika 40 (1993), 322-330.
- [21] P. Sjölin, F. Soria, Estimates of averages of Fourier transforms with respect to general measures, Proc. Royal Soc. of Edinburg, 133A (2003), 943-950.
- [22] T. Tao, A sharp bilinear restriction estimate for paraboloids Geom. Funct. Anal. 13 (2003), 1359-1384.
- [23] T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967-5000.
- [24] T. Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices, 1999, 547-567.
- [25] ______, A sharp bilinear cone restriction estimate, Ann. of Math. (2) **153** (2001), 661-698.
- [26] ______, Lectures on harmonic analysis, University Lecture Series 29, American Mathematical Society, 2003.

Department of Mathematics, University of California, Berkeley, CA 94720-3840

Current address: Department of Mathematics, University of Illinois at Urbana Champaign, Urbana, IL 61801

E-mail address: berdogan@math.uiuc.edu