
MAPPING PROPERTIES
OF THE ELLIPTIC MAXIMAL FUNCTION

M. BURAK ERDOĞAN

Abstract. We prove that the elliptic maximal function maps the Sobolev space

W4,η(R2) into L4(R2) for all η > 1/6. The main ingredients of the proof are an

analysis of the intersection properties of elliptic annuli and a combinatorial method

of Kolasa and Wolff.

1. Introduction.

In 1986, Bourgain [1] proved that the circular maximal function

MCf (x) = sup
t>0

∫
S1

f (x + ts) dσ(s)

is bounded on Lp(R2) if p > 2. Different proofs were given in [7] and [10].

In [8], Schlag generalized this result and obtained almost sharp Lp → Lq estimates

for MC .

In this paper, we attempt to generalize Bourgain’s theorem in a different direc-

tion; we consider a natural generalization of the circular maximal function by taking

maximal averages over ellipses instead of circles.

More explicitly, let E be the set of all ellipses in R2 centered at the origin with axial

lengths in [1
2
, 2]. Note that we do not restrict ourselves to the ellipses whose axes are

parallel to the co-ordinate axes. The elliptic maximal function, M , is defined in the

following way: Let f be a real-valued continuous function on R2, then

Mf(x) = sup
E∈E

1

|E|

∫
E

f(x + s)dσ(s), x ∈ R2,(1)

where dσ is the arclength measure on E and |E| is the length of E.
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We are interested in the Lp mapping properties of M .

Proposition 1. M is not bounded in Lp for p ≤ 4.

Proof. First, we prove that M is not bounded in Lp for p < 4. Let fδ be the

characteristic function of the δ-neighborhood of the unit circle. A simple calculation

shows that for all x ∈ B(0, 1), Mfδ(x) & δ1/4. This is because of the fact that for

all x ∈ B(0, 1), there is an ellipse centered at x which is third order tangent to the

unit circle. Therefore, ‖Mfδ‖p & δ1/4, whereas ‖fδ‖p ≈ δ1/p. Taking the limit δ → 0

yields the claim.

To prove that M is not bounded in L4, consider the function

gδ(x) = (|1− |x||+ δ)−1/4χB(0,2)\B(0,1).(2)

Note that ‖gδ‖4 ≈ log(1/δ)1/4. On the other hand, we have Mgδ(x) & log(1/δ) for

all x ∈ B(0, 1) and hence ‖Mgδ‖4 & log(1/δ) (see [8] for the details). �

In light of Proposition 1, one may conjecture that M is bounded in Lp for p > 4.

We are far from proving this conjecture. However, we obtain some estimates for M

in this direction. We state our results for the key exponent p = 4.

The setup is the following; we work with the family of maximal functions:

Mδf (x) = sup
E∈E

1

|Eδ|

∫
x+Eδ

f (u) du,(3)

where Eδ is the δ neighborhood of the ellipse E and |Eδ| is the two-dimensional

Lebesgue measure of Eδ. We investigate the L4 mapping properties of Mδ.

Applying Mδ to the functions in (2), we see that the inequality

‖Mδf‖4 . A (δ) ‖f‖4, δ > 0(4)

can not hold if A (δ) = o(log(1/δ)3/4). On the other hand, estimating the right-hand

side of (3) by δ−1‖f‖1 implies that ‖Mδf‖1 . δ−1‖f‖1 and estimating it by ‖f‖∞
implies that ‖Mδf‖∞ ≤ ‖f‖∞. By interpolating these bounds, we see that (4) holds

for A(δ) & δ−1/4.
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Let Eδ denote the δ-neighborhood of the ellipse E. We have the following basic

property of the elliptic annuli. It corresponds to the fact that two distinct ellipses

can be at most third order tangent to each other.

Lemma 2. Let E1 and E2 be ellipses such that the distance ∆ between their centers

is & δ2/5. Then

|Eδ
1 ∩ Eδ

2 | .
δ5/4

∆1/4
.

We prove this lemma in section 3 (Corollary 10(i)). Now, using this lemma and

Cordoba’s L2 Kakeya argument [2], we prove the simple fact that (4) holds for A(δ) &

δ−3/16.

Lemma 3.

‖Mδf‖4 . δ−3/16‖f‖4, δ > 0.

Proof. The lemma follows by interpolating the trivial L∞ bound with the following

restricted weak type estimate:

‖Mδf‖2,∞ . δ−3/8‖f‖2,1.(5)

Fix a set A in B(0, 1) and λ ∈ [0, 1]. Let Ω = {x : Mδ(χA) > λ}. Take a δ-separated

set {x1, ..., xm} in Ω. We have

|Ω| . mδ2.(6)

For each xj, choose an ellipse Ej such that |Eδ
j ∩ A| > λδ. Using Cauchy-Schwarz

inequality, we have

mδλ ≤
m∑

j=1

|Eδ
j ∩ A| =

∫
A

∑
j

χEδ
j

≤ |A|1/2‖
∑

j

χEδ
j
‖2

= |A|1/2

(∑
j,k

|Eδ
j ∩ Eδ

k|

)1/2

.(7)
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Now, we estimate the sum
∑

j,k |Eδ
j ∩ Eδ

k| using Lemma 2. We have |Eδ
j ∩ Eδ

k| .
δ5/4

|xj−xk|1/4 given that |xj − xk| & δ2/5. Using this, we obtain for fixed j

∑
k

|Eδ
j ∩ Eδ

k| . δ−2

∫
1&|xj−x|&δ2/5

δ5/4

|xj − x|1/4
dx + δ−2

∫
|xj−x|.δ2/5

δdx(8)

. δ−3/4.

Thus,

∑
j,k

|Eδ
j ∩ Eδ

k| . mδ−3/4.(9)

Using (9) in (7), we have

mδλ . |A|1/2(mδ−3/4)1/2.

Hence

|Ω| . mδ2 .

(
δ−3/8 |A|1/2

λ

)2

,

which proves (5). �

We have the following improvement:

Theorem 4. For all ε > 0, inequality (4) holds with A (δ) = δ−1/6δ−ε.

Remark. Theorem 4 implies that M maps W4, 1
6
+ε into L4 for all ε > 0. Here Wp,η

is the Sobolev space consisting of functions f such that ‖(1−∆)η/2f‖p < ∞.

Theorem 4 is a corollary of the following stronger theorem, which is the main result

of this paper.

Theorem 5. ‖Mδf‖24/7,∞ . δ−1/3| log(δ)|5/4‖f‖2,1.

Proof of Theorem 5 utilizes an analysis of the intersection properties of elliptic

annuli. Lemma 2 above and the following lemma are the basic elements of the proof;

we prove them in section 3. The following lemma can be considered as a Marstrand’s

three circle lemma type result for ellipses.
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Lemma 6. Fix ∆ & δ2/5, d & δ and u & 1. Take any two ellipses E1 and E2 such

that the distance between their centers (c1, c2 respectively) is approximately d. Then

the δ-entropy of the set

S :={x ∈ R2 : |x− ci| & ∆, i = 1, 2, ∃ an ellipse E centered at x such that

|Eδ ∩ Eδ
i | & δ(δ/u∆)1/4, i = 1, 2, }

(10)

is . 1
δ2d1/2 | log(δ)|u3/4(δ/∆)1/4.

Note that in the proof of Lemma 3 (inequality (8)), we assumed that any two

ellipses can be third order tangent to each other in a given set of ellipses. However,

using Lemma 6 and a combinatorial method of Kolasa and Wolff [4], [11], we can

bound the number of pairs of elliptic annuli which are third order tangent to each

other. This is the main ingredient of the proof of Theorem 5.

This technique was also used in [8], [10], [9] and [6].

Notation.

S1: the unit circle.

Ee,f
z := {x ∈ R2 : (x1−z1

e
)2 + (x2−z2

f
)2 = 1}.

Eδ: δ neighborhood of the ellipse E.

K: A constant which may vary from line to line.

A . B: A ≤ KB.

A ≈ B: A . B and A & B.

A << B: A ≤ K−1B where K is a large enough constant.

|A|: cardinality or the measure of the set A or the length of the vector A in R2.

2. Proof of Theorem 5.

. Let A ⊂ R2, 0 < λ ≤ 1 and Ω = {x ∈ R2 : MδχA (x) > λ}. We need to prove that

|Ω| .
(
| log (δ) |5/4δ−1/3 |A|1/2

λ

)24/7

,

Without loss of generality, we can assume that A ⊂ D(0, 1). Let {xj}m
j=1 be a

maximally δ separated set in Ω. Note that

|Ω| . mδ2.(11)
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Choose ellipses Ej centered at xj such that |Eδ
j ∩ A| > λ|Eδ

j | ≈ λδ. We have

mδλ .
m∑

j=1

|Eδ
j ∩ A| =

∫
A

m∑
j=1

χEδ
j

≤ |A|1/2‖
m∑

j=1

χEδ
j
‖2

= |A|1/2

(
m∑

j,k=1

|Eδ
j ∩ Eδ

k|

)1/2

(12)

Let

S∆,u =

{
(j, k) : |xj − xk| ∈ (∆, 2∆), δ(

δ

u∆
)1/4 ≤ |Eδ

j ∩ Eδ
k| ≤ δ(

δ

2u∆
)1/4

}
.

Using this notation, we can estimate
∑m

j,k=1 |Eδ
j ∩ Eδ

k| as

m∑
j,k=1

|Eδ
j ∩ Eδ

k| .
∑

δ2/5.∆.1

∑
u

|S∆,u|δ(
δ

u∆
)1/4 +

m∑
j=1

δ min(m, δ−6/5)

.
∑

δ2/5.∆.1

∑
u

|S∆,u|δ(
δ

u∆
)1/4 + m17/12δ3/10,(13)

where the summations are over the dyadic values of ∆ and the dyadic values of

u ∈
(
1, δ−K

)
(since the terms with u greater than a high power of δ−1 makes negligible

contribution, and Lemma 2 implies that S∆,u is empty if ∆ > δ2/5 and u << 1).

Now, we find a bound for the cardinality of the set S∆,u using Lemma 6. Consider

the set of triples:

Q =

{
(j, k1, k2) : |xj − xki

| ∈ (∆, 2∆) , δ(
δ

u∆
)1/4 ≤ |Eδ

j ∩ Eδ
ki
| ≤ δ(

δ

2u∆
)1/4, i = 1, 2

}
.

We calculate the cardinality of Q in two different ways. Let Sj = |{k : (j, k) ∈ S∆,u}|.

Note that there are at least S2
j triples in Q whose first co-ordinate is j. Hence, we

have

|S∆,u| =
m∑

j=1

Sj ≤ m1/2

(
m∑

j=1

S2
j

)1/2

. (m|Q|)1/2 .(14)

On the other hand, we can choose k1 in m different ways, and for fixed k1, there are

at most min
(
m, d2

δ2

)
indices k2 such that |xk2−xk1| ∈ (d, 2d). For any such (k1, k2), by
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Lemma 6 and δ-separatedness, there are at most 1
δ2 min

(
| log (δ) |d−1/2u3/4 (δ/∆)1/4 , ∆2

)
indices j such that (j, k1, k2) ∈ Q. Summing over dyadic d ∈ (δ, 1), we obtain

|Q| . m
∑

d

min

(
m,

d2

δ2

)
1

δ2
min

(
| log (δ) |d−1/2u3/4 (δ/∆)1/4 , ∆2

)
.

m

δ2
| log (δ) |min

(
(mu)3/4

(δ∆)1/4
, m∆2

)
.(15)

Using (15) in (14), we have

|S∆,u| . (m|Q|)1/2 .
m

δ
| log (δ) |1/2 min

(
(mu)3/8

(δ∆)1/8
, m1/2∆

)

.
m

δ
| log(δ)|1/2

(
(mu)3/8

(δ∆)1/8

)2/3 (
m1/2∆

)1/3

.
m17/12

δ13/12
| log(δ)|1/2(u∆)1/4.(16)

Using (16) in (13) together with the fact that there are at most log(δ)2 terms in the

summation, we obtain

m∑
j,k=1

|Eδ
j ∩ Eδ

k| .
∑
∆

∑
u

δ

(
δ

u∆

)1/4
m17/12

δ13/12
| log(δ)|1/2(u∆)1/4 + m17/12δ3/10

. m17/12δ1/6| log (δ) |5/2.(17)

Using (17), (12) and (11), we have

|Ω| . mδ2 .

(
| log (δ) |5/4δ−1/3 |A|1/2

λ

)24/7

,(18)

which yields the claim of the theorem. �

3. Proof of Lemmas 2 and 6

Let N (A, δ) denote the δ neighborhood of the set A. First, we find a relationship

between the parameters z1, z2, e and f of an ellipse Ee,f
z and the measure of the set

N (Ee,f
z , δ) ∩N (S1, δ). We begin with the following basic lemma.
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Lemma 7. Let N be a positive integer. There exist constants K1 and K2 such that

for all α > 0 and for all δ > 0, we have

N∑
i=0

|ai|αi > δ =⇒ ∃x1 ∈ (0, K1α) and x2 ∈ (−K1α, 0)

such that |
N∑

i=0

aix
i
j| > K2δ, j = 1, 2.

Proof. The statement is trivial if α = 1, and the general case follows from this by the

change of variable y = xα. �

Let S1
1 be S1 ∩ {x ∈ R2 : x2 > 0, |x1| < 2/3}, and d(x, y) denotes the distance

between the points x, y ∈ R2.

Theorem 8. Let d(z, 0) = ∆ & δ2/5. Then

i) The arclength of Ee,f
z ∩N (S1

1 , δ) is . ( δ
∆

)1/4.

ii) If the arclength of the intersection is & ( δ
u∆

)1/4 for some 1 . u << (∆/δ)1/3, then

we have

|z1| . min(u3/2(δ∆)1/2, u9/4(δ/∆)3/4),(19)

|f − e2| . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2),(20)

|z2 + f − 1| . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).(21)

Proof. Consider the function

f(x) := z2 + f(1− ((x− z1)/e)
2)1/2 − (1− x2)1/2.

Take a point t ∈ (−2/3, 2/3) such that |f(t)| < δ.

Note that the set Ee,f
z ∩ N (S1, δ) consists of at most four connected components.

Hence, it suffices to prove that there exists x1 ∈ (t− ( δ
∆

)1/4, t) and x2 ∈ (t, t+( δ
∆

)1/4)

such that |f(xj)| > δ for j = 1, 2, and if x1 or x2 are not in the ( δ
u∆

)1/4 neighborhood

of t for 1 . u << (∆/δ)1/3, then (19), (20) and (21) are valid.

We consider the first five terms of the Taylor expansion of f(x) around t.
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Let w := (1− (t− z1)
2/e2)−1/2(1− t2)1/2. We can assume that w ≈ 1.

f(x) = z2 + (fw−1 − 1)(1− t2)1/2

+

[
(
f

e2
(z1 − t)w + t)(1− t2)−1/2

]
(x− t)

+
1

2

[
(1− t2)−3/2(1− f

e2
w3)

]
(x− t)2

+
1

2

[
(1− t2)−5/2(t− w5 f

e4
(t− z1))

]
(x− t)3

+
1

8

[
(1− t2)−7/2(1 + 4t2 − w7 f

e4
(1 + 4(t− z1)

2/e2))

]
(x− t)4

+
1

24

[
η

3 + 4η2

(1− η2)9/2
− f

e8
(η − x1)

3e2 + 4(η − z1)
2

(1− (η − z1)2/e2)9/2

]
(η − t)5,

η ∈ (t− |x− t|, t + |x− t|).

=: a0 + a1(x− t) + a2(x− t)2 + a3(x− t)3 + a4(x− t)4 + Er

(22)

Choose u such that
∑4

i=0 |ai|( δ
u∆

)i/4 = δ, we have |ai| ≤ (u∆)i/4δ1−i/4 for i =

0, 1, 2, 3, 4. We have two cases:

(i) u & (∆/δ)1/3. Lemma 7 shows that if we omit the error term Er, then the ar-

clength of the intersection is . ( δ
∆

)1/3. It is easy to see using the hypothesis ∆ & δ2/5

that the error term is not significant.

(ii) u << (∆/δ)1/3. Using the definitions of a0, a1, a2 and a3, we obtain

z2(1− t2)−1/2 + fw−1 = 1 + O(δ),(23)

f

e2
(t− z1)w = t + O((u∆)1/4δ3/4),(24)

f

e2
w3 = 1 + O((u∆)1/2δ1/2),(25)

f

e4
(t− z1)w

5 = t + O((u∆)3/4δ1/4).(26)

Substituting (25) into (26), we obtain

(ef)−2/3(t− z1)(1 + O((u∆)1/2δ1/2)) = t + O((u∆)3/4δ1/4),(27)
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which implies that

(
e1/3

f 2/3
− 1)

t− z1

e
+

t− z1

e
− t = O((u∆)3/4δ1/4).(28)

Substituting (25) into (24), we obtain

f 2/3

e4/3
(t− z1)(1 + O((u∆)1/2δ1/2)) = t + O((u∆)1/4δ3/4),(29)

which implies that

t(1− e4/3

f 2/3
) = z1 + O(|z1 − t|(u∆)1/2δ1/2 + (u∆)1/4δ3/4).(30)

Subtracting (27) from (29), we obtain

(t− z1)(f
4/3 − e2/3 + O((u∆)1/2δ1/2)) = O((u∆)3/4δ1/4).(31)

Substituting (25) into (23), we obtain

z2(1− t2)−1/2 + (
f 4/3

e2/3
− 1) = O((u∆)1/2δ1/2).(32)

Now, there are two cases |z2| ≈ ∆ or |z1| ≈ ∆.

Case a) Assume |z2| ≈ ∆. (32) implies that |e − f 2| ≈ ∆. Using this in (31), we

obtain

t− z1 = O(u3/4(δ/∆)1/4),(33)

which implies using (29) that

t = O(u3/4(δ/∆)1/4).(34)

Using the fact |e− f 2| ≈ ∆ and (33) in (28), we obtain

t− z1

e
− t = O((u∆)3/4δ1/4).

This and the definition of w implies that w = 1+O((u∆)3/4δ1/4). On the other hand,

using (33) and (34) in the definition of w, we obtain w = 1+O(u3/2(δ/∆)1/2). Hence,

using (25), we have

|f − e2| . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).(35)
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Using (33), (34) and (35) in (30), we obtain

|z1| . min(u3/2(δ∆)1/2, u9/4(δ/∆)3/4).(36)

Finally, using (34) and the estimates for |w − 1| in (23), we obtain

|z2 + f − 1| . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).(37)

Case b) Assume |z1| ≈ ∆. Using (30), we obtain

|f − e2| ≈ ∆, |t| ≈ ∆.(38)

Using (25), we obtain

(w2 − 1)(f/e2)2/3 + (f/e2)2/3 − 1 = O((u∆)1/2δ1/2),

which implies using (38) that

|w2 − 1| ≈ ∆.(39)

Using the definition of w, we obtain w2 − 1 ≈ (t − z1)
2/e2 − t2. Hence (39) implies

that ∣∣∣∣t− z1

e
− t

∣∣∣∣ ≈ ∆.(40)

Using (27), we obtain

(
e1/3

f 2/3
− 1)

t− z1

e
+

t− z1

e
= t + O((u∆)3/4δ1/4),

which implies using (40) that

|e− f 2||t− z1| ≈ ∆.

Hence |e − f 2| & ∆ and (32) implies that |z2| & ∆. Thus the estimates that we

obtained in case a) are valid.

Applying Lemma 7 (with K1δ instead of the δ in the lemma, for a sufficiently

large K1), we see that |f(x) − Er| > Kδ, for some z1 ∈ (t − K(δ/(u∆))1/4, 0) and

x2 ∈ (0, t + K(δ/(u∆))1/4).

Now, we prove that

Er = O(δ)
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for x ∈ (t − K(δ/(u∆))1/4, t + K(δ/(u∆))1/4). Note that the estimates that we

obtained in part a) imply that |e− 1|, |f − 1| . ∆. Let h(η) = η 3+4η3

(1−η)9/2 . We have

|Er| . (h(η)− f

e5
h(

η − z1

e
))|x− t|5

= (h(η)− h(
η − z1

e
) + h(

η − z1

e
)(1− f

e5
))|x− t|5

. (|η − η − z1

e
|+ ∆)|x− t|5 . (|η(e− 1)|+ |z1|+ ∆)|x− t|5

. ∆(
δ

u∆
)5/4 . δ.

Finally, we prove that u can not be << 1. Assume that u << 1. Using the

definition of a4 and the estimates we obtained above, we obtain

|a4| & |1− f

e4
| − f

e4
|1− w7| − |t2 − (

t− z1

e
)2| − (

t− z1

e
)2|1− w7 f

e4
| & ∆.

Hence, u can not be << 1. This yields the upper bound for the arclength of the

intersection. �

Let min±(A±B) denote min(A + B, A−B).

Corollary 9. Let d(z, 0) = ∆ & δ2/5. Then

i) The arclength of Ee,f
z ∩N (S1, δ) is . ( δ

∆
)1/4,

ii) if it is & ( δ
u∆

)1/4, 1 . u << (∆/δ)1/3, then we have

min
±

(|(fe)2/3 − 1± d(z, 0)|) . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).

Proof. We divide N (S1, δ) into four segments; N (S1, δ) = ∪4
i=1N (S1

i , δ), where

N (S1
1 , δ) is as before and N (S1

i , δ) is obtained by rotating N (S1
1 , δ) around the origin

iπ/2 degrees. Note that if the intersection of the ellipse with N (S1, δ) is large, then

its intersection with one of N (S1
i , δ) should be large, too.

Let |Ee,f
z ∩ N (S1

1 , δ)| > ( δ
u∆

)1/4, for some 1 . u << (∆/δ)1/3. Triangle inequality

and (19) imply that

min
±

(|y1 ± d(z, 0)|) ≤ |z1| . min(u3/2(δ∆)1/2, u9/4(δ/∆)3/4).(41)

The fact that e, f ∈ [1
2
, 2] and (20) imply that

|f − (ef)2/3| ≈ |f − e2| . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).
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Hence, we have

f − 1 = (fe)2/3 − 1 + O(min((u∆)3/4δ1/4, u3/2(δ/∆)1/2)).(42)

Using (41) and (42) in (21), we obtain

min
±

(|(fe)2/3 − 1± d(z, 0)|) . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2).

Applying Theorem 8 (after a rotation) also in the cases where N (S1
1 , δ) is replaced

with N (S1
i , δ), i = 2, 3, 4 yields the claim of the corollary. �

The following corollary proves Lemma 2. Let Ee,f,θ
z denote the ellipse Ee,f

z rotated

counter-clockwise by an angle θ around its center.

Corollary 10. Let d(z, y) = ∆ & δ2/5. Then

i) The measure of the set N (Ee,f,θ
z , δ) ∩N (Ea,b

y , δ) is . δ( δ
∆

)1/4,

ii) if it is & δ( δ
u∆

)1/4, 1 . u << (∆/δ)1/3, then we have

min
±

(|(fe)2/3 − (ab)2/3(1± da,b(z, y))|) . min((u∆)3/4δ1/4, u3/2(δ/∆)1/2),

where da,b((p1, p2), (q1, q2)) = ((p1 − q1)
2/a2 + (q1 − q2)

2/b2)1/2.

Proof. By a dilation, a translation and then a rotation, we can transform Ea,b
x0,y0

into

S1 and Ee,f,θ
z into Ee1,f1

w such that e1f1 = ef
ab

(since the area of Ee,f,θ
z is equal to

the area of Ee1,f1
w times ab) and d(w, 0) = da,b(z, y). The claim follows by applying

Corollary 9 to Ee1,f1
w and S1. �

Proof of Lemma 6. By making the suitable translations, rotations and dilations we

can assume that E2 = S1 and E1 = Ea,b
y , where |y| ≈ d. We can further assume that

u << (∆
δ
)1/3, since the statement of the theorem is void if u & (∆

δ
)1/3.

Denote u3/2(δ/∆)1/2 by ξ, and consider the functions

F (x) = (|x|2, da,b(x, y)2),

G(r, s) = min
±

(| − 1±
√

r + (ab)2/3(1±
√

s)|).

Theorem 10 implies that the set S is contained in the set

S̄ := {x ∈ R2 : |x| & ∆, d(x, y) & ∆, G(F (x)) . ξ}.(43)
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It is easy to see that the measure of the set Bξ := {(r, s) : G(r, s) . ξ} is . ξ (note

that ξ . 1).

Below, we prove that the measure of the inverse image of a set of measure ξ under

F is at most (ξ/d)1/2(| log(ξ/d)|+ 1), which yields the claim of the lemma.

Let Bξ be a set of measure ξ and Aη be the set where the Jacobian of F , JF , is

less then η. Co-area formula (see, e.g., [3] Theorem 3.2.3) implies that

|F−1(Bξ)| . |Aη|+
ξ

η
.(44)

Claim. |Aη| . η
d
| log(η

d
)|+ 1.

Proof. Without loss of generality, we can assume that |y1| & d. It is easy to

calculate that

JF ≈ x1(x2 − y2)

b2
− x2(x1 − y1)

a2
= x1x2

a2 − b2

a2b2
− x1y2

b2
+

x2y1

a2
.

Hence,

(45) Aη = {x ∈ R2 : x1 ∈ (−2, 2), |x2−
x1y2a

2

x1(a2 − b2) + y1b2)
| . ηa2b2

|x1(a2 − b2) + y1b2|
}.

This shows that if |a2 − b2| << d, then |Aη| . η
d
. Now, assume that |a2 − b2| & d.

(45) implies that

|Aη| .
∫ 2

−2

min(
ηa2b2

|x1(a2 − b2) + y1b2|
, 1)dx1 .

η

d
| log(

η

d
)|+ 1,

which proves the claim.

Claim of the lemma follows from (44) and the claim above by choosing η = (ξd)1/2.

�
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