A NOTE ON THE FOURIER TRANSFORM OF FRACTAL
MEASURES

M. BURAK ERDOGAN

1. INTRODUCTION

Let u be a compactly supported non-negative measure in R%. For a € (0,d), the

a-dimensional energy of u is defined via (see, e.g., [2])

_ ([ @) P
Ia(’”"// oyl ) et

where [ is the Fourier transform of the measure p:

le) = [ = duta),

We are interested in the behavior of the Fourier transform of measures with finite

energy. It is easy to see that I, (u) < oo does not imply any pointwise decay of |1i(§)| as
|| — oo. However, in general, averages of [i(§) behave much better.

Let T be a smooth submanifold of R? and let v be a smooth surface measure on T.
One may ask the following general question: Fix a € (0,d), and assume that I, (u) = 1.
For which 5 >0

(1) /F A(RE)[Pdup(€) < CsR,

for all R > 17
The following theorem is a slight generalization of a result in [6]. We include a proof

in the appendix for the sake of completeness.

Theorem 1. Let p be a non-negative measure supported in the unit ball in R® with
Io(p) = 1. Fiz a,b € (0,d) and let v be a compactly supported probability measure
satisfying
()| S 1€]7* and  v(B(z,r)) $r¥, Va,& € RY, vr > 0.
Then
[ R Pave) S mestmintecteasn,
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The case I' = S9! ¢ R was investigated by several authors [3], [4], [5], [1], [6] and
[9] in connection with the continuum version of the Erdos’ distance set problem. In this
case, Theorem 1 can be applied with a = (d—1)/2 and b = d — 1 but does not give sharp
bounds for all o. Sharp bounds for each « are known only in dimension 2, see [9]. We
discuss the result of [9] in more detail below. In higher dimensions, the known results
are slightly better than the bounds given by Theorem 1, see [1].

The general case that I" has non-vanishing Gaussian curvature was investigated in [6].

In [9], Wolff obtained the following bound: Fix a € (1,2), and assume that I,(p) = 1.
Then for each € > 0

@ [ Iare) Pave) < corelze

for all R > 1. This bound is sharp modulo R®, c.f. [4]. Sharp bounds for a € (0,1) are
given by Theorem 1 and were first obtained by Mattila [4].

As pointed out in [4], (2) implies that any compact set E C R? with Hausdorff
dimension > 4/3 has a positive measure distance set A(E) = {|z —y| : z,y € E}.

By the uncertainty principle and duality, (2) follows from the following theorem (see
Lemma 1.5 in [9] and the discussion following it). Let Ar(1) be the annulus {x € R? :
R—-1<|z|<R+1}.

Theorem 2. ([9]) Let o € (1,2). Let pu be a probability measure supported in the unit
ball in R?. Assume that

(3) w(B(z,r)) < C1r® for all z € R? and r > 1/R.

Let f be supported in Ar(1) with L? norm 1, and G = fV be its inverse Fourier transform.
Then for alle >0 and R > 1

(4) ’/Gdu‘ < C.CV2 R,

In the first part of the paper, we give a different proof of Wolff’s result and extend it

in the following direction.

Theorem 3. Let a € (1,2). Let p be a non-negative measure supported in the unit ball
in R? and satisfying (3). Let f be supported in Ar(1) with L?> norm 1, and G = fV.
Then, for each q > 1, we have

1 1 1-a 1
(5)  1GllLaq < CsCi/"R®, Vs > max ( a S ‘;‘) VR > 1.

SR 29 2
Moreover, if p(R?) < 1, then for each q € [1,2], we have

1

(6) 1Gl Loy < C-C{*R75+2, Ve >0, VR > 1.
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Remark 1. The range of s in (5) is sharp modulo endpoint issues. To see this first
let ¢ > 2. Note that in this case max(3 — %, 1 + 12_—(1‘1, :- 7)) = max(+ + 12_—(1‘1, i_ 7)- To
prove the necessity of the condition s > %—i— 12_—;“ let f be an L? normalized smooth bump
function supported in the rectangle {x € R? : |zo| < RY2, |z — R| < 1/2} C Ag(1)
and such that |f¥| > R'/4/100 on the rectangle P = {z € R? : |z1| < 1,|x3| < R™1/?}
and fV has a Schwartz decay away from P. Also let du(z) = R'=®/?xp(x)dz. Note
that p satisfies (3) with C; ~ 1. To obtain the second condition let f = R_I/QXAR(D,

and choose a measure u with p(B(0, R~1)) > R™®. In the case ¢ < 2 we have max(3 —

2
i % + 12_—;", % — %) = % — 9+ To prove the necessity of this condition we modify the first

example above. Fix T ~ R(@~1/2 and let

T
FY(z)=T72y " fY(a - LY
k=1

T
Note that F is supported in Agr(1), |Fllz2 ~ 1, and |FY| > RY*T~1/2 on the set
S = UL_ (P + %e;) (because of the Schwartz decay of fV). Finally let du(z) =
R'=%/2yg(x)dx. Note that p satisfies (3) with Oy ~ 1.

The range of s in (6) and the dependence on (] is also sharp modulo endpoints. To
see this take the function f in the first example above and let du(z) = RY?xp(x)dz.
Note that p is a probability measure and satisfies (3) with C; ~ R(@~1D/2,

Remark 2. Note that in the first part of the theorem we don’t need any additional
assumption on the total mass of p. The claim (5) for ¢ € [1,2) follows from the case
q = 2, Holder’s inequality and the bound u(R?) = u(B(0,1)) < C; which follows from
(3). The second claim follows from the first one in the same way by using the additional
assumption p(R?) < 1 instead of u(R?) < C;. A similar remark is valid for Theorem 5
below.

Remark 3. One can obtain some partial results in higher dimensions analogous
to Theorem 3 and Wolff’s result (4) by combining the proof of Theorem 3 with the
recent parabolic bilinear restriction estimate of Tao [7]. In particular, one can obtain
the following partial result in the distance set problem:
d(d+2)
2(d+1)
The conjectured exponent is d/2, see [2]. Tao’s result comes into play in the inequalities
(23)-(25) below. Note that (25) is the well-known L? x L? — L? bilinear restriction
estimate. One can use Holder’s inequality with p > (d + 2)/d and p’ in (23) instead

E c RY, compact and dim(E) > = |A(E)| > 0.

of Cauchy-Schwarz and then use the L? x L? — LP bilinear restriction estimate of Tao

after a parabolic rescaling to estimate the first integral. In fact, one needs a statement
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which is more general than the main result in [7], namely one needs a bilinear restriction
estimate for elliptic surfaces with implicit constants depending on the surface locally
uniformly. One can obtain this statement by going through the proof of Theorem 1.1,
see the final remark in [7]. We omit the details.

In the second part of the paper, we consider the problem (1) in the case when T is a
cone in R?. Let I' = {z = (z,t) € R2 xR : |z| = t,¢ € [1,2]} and v be the normalized

surface measure on I'. Let 3(a) be the supremum of all # > 0 such that the inequality
7) [ 1) Pav() < c 12
r

holds for every non-negative measure u supported in the unit ball in R? with I, (x) = 1.

In the appendix, we discuss counterexamples which imply that

a ,a € (0,1/2]

1/2  ,a€(l/2,1]
(®) Pla) < a/2 a€ll,2]

a—1 ,a€]2,3).

As one may expect, these exponents are same as the exponents for S for o < 2.
Note that the bound

9) B(a) > max(min(e, 1/2), a0 — 1)

follows from Theorem 1.

The following theorem takes care of the remaining case « € (1, 2).
Theorem 4. 3(a) > § for a € [1,2].

Theorem 4 follows from the following theorem as in the case of circles.
Let I'r(A) be the A neighborhood of RI'. Let

3 -1
max (1 — 9,5 — %5~ 1—%), for a € [1,2],

4 2q
(10) SO(aaQ) =
max 3770‘7%-#3526{,1—%)7 for o € (2,3).

Theorem 5. Let o € (1,3). Let pu be a non-negative measure supported in the unit ball.

Assume that
(11) w(B(z,r)) < C1r® for all z € R and r > 1/R.

Let f be supported in Tr(1) with L? norm 1, and G be its inverse Fourier transform.

Then for each q > 1, we have

(12) |G Lo < CsqC1/"R®, Vs > so(a,q), YR > 1.
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Moreover, if u(R3) < 1, then for each q € [1,2], we have

1GlLa() < Cscll/QRs, Vs > so(a,2), VR > 1.

Using (12), one can obtain the following Strichartz type estimates relative to fractal

measures for the wave equation in 2 + 1 dimensions.

Corollary 1. Let a € (1,3), and let p be a non-negative measure supported in the unit
ball satisfying u(B(x,r)) < r* for allr > 0 and v € R3. Let u be a solution of
d
D’LL:07 U(,O):f, 71;(70):.9

in R3. Then

(13) ullzagany S 1flwzs + lgllwz
for all s > so(a,q). Here || f|lwas = (1 — A)2f|lo.

Remark 4. The inequality (13) is already known for s > max(3/4,1 —a/4,1 — a/q)
(see [10] (p.1283-1287) for a nice discussion about this type of inequalities).

Remark 5. The range of s in Theorem 5 is sharp modulo endpoints. The counterex-
amples are similar to the ones in Remark 1.

Remark 6. For a € [2,3], the proof of Theorem 5 is relatively easy. Parseval’s
theorem implies (12) for ¢ = 2 and s > 3 — 2. On the other hand L? Fourier restriction
theory implies (12) for ¢ = 6 and s > 1 — &. It is also easy to see that (12) holds for any
q if s = 1. Interpolating these bounds, we obtain (12).

Acknowledgment. This work was partially supported by NSF grant DMS-0303413.

The author wishes to thank Michael Christ for many useful conversations.

2. LI1ST OF NOTATION

xA: Characteristic function of the set A.
B(z,r):={y: |z —y| <r}.
Ap(C):={z€eR*: R-C < |z| < R+ C}.
Tr(C):={(x,t) e RZx R:t € [R,2R),||z| —t| < C}.
If P is a rectangle of dimensions a; X ag X ... X ag in R, then
CP is the rectangle of dimensions C'a; X Cas... x Cag with the same center and axis
directions as P.
A dual rectangle of P is a rectangle with the same axis directions and dimensions

-1, —1 -1
a; Xay X ..xay .
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ap is a fixed affine map from R¢ to R? which takes the unit cube Q to P.
¢: A fixed Schwartz function (for each dimension d) which is equal to 1 in @ and vanishes

outside 2Q), moreover ¢" satisfies for all M > 0

oo
(14) V(O < Cu Y2 Mxi0(6), VEER™
j=1
¢: A fixed non-negative Schwartz function satisfying: i) ¢ > 1/2 in @, ii) $ is supported
in Q, iii) the inequality (14).
pp1=@o a;l.
¢op :=¢o al_gl.
C: A constant which may vary from line to line.
A< B: A<SCB.
A~ B: A< Band B < A.
|Al: length of the vector A or the measure of the set A.

3. PROOF OF THEOREM 3

In the proof of the theorem, we make repeated use of the following lemma.

Lemma 3.1. Let « € [1,2]. Let n be a non-negative measure in R? satisfying (3) with
C1 = 1. Let D be a rectangle of dimensions Ry X Ry such that Ry < Ro < R. Let Dgya
be the dual of D centered at the origin. Then the function up = |p}| * u satisfy

D lunlle S RE

1) |lppll S 1,

III) pp(x + KDgyar) :== fKDdual pp(z+y)dy < KRy “RyY, VK > 1 and « € R2.

Proof. Fix M > 100. Using (14), we obtain

(15) leh(x)] S RiRa Y 2 "xaip,, ., ().
j=1

I) Using (15), we obtain

Phl % ) S RuRy Y 27Md / XaiDs (@ — 9)du(y)
7

SRRy Y 27MI(27R, )
J

RQ 2—
“—= < R;T%
Ry ~ 2

The second inequality follows from (3) and the observation that 27 D juar can be covered
by < Ry/R; many balls of radius 2/ R, .
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I1) follows from Young’s inequality using [|¢} |1 < 1.

I1IT) Without loss of generality assume x = 0. Using (15) and (3) like above, we obtain

MD(KDdual) g R1R2 Z 2_Mj / / XKD gyar (y)XQJ'Ddual (y - u)d:u(u)dy
J

S RiRy Z 9~ Mj / / X(K+29) D (WX23 D gy (¥ — w)dydpu(u)
J

_Mi . _ Ry 92j
gRlRQZQ J [(K+2J)QR2QRJ [RIRJ
J

< KRy Ry
0

We also need the following well-known geometric lemma about the size of intersection
of circular annuli. Given interval J C [—1/2,1/2], let Ar(C,J) = {(pcos(#), psin(h)) €
Agr(C) : 0 € J}.

Lemma 3.2. Let Ji, Jo C [—1/2,1/2] be two intervals of length £ > R~Y2. Assume that
the distance between Jy and Jy is > €, then for any x € R?

|(xz + Ap(1,.1)) N Ap(1, Jo)| S 1.

Proof. In the case £ ~ R~'/? the statement is void since |Ag(1,J)| <R < RY? <t
Assume ¢ > 1000R~Y/2, and fix z, Ji, Jo. Note that the set A1 N Ag := (x+ Agr(1,J1))N
Ag(1,J2) has at most two connected components. Let C be a connected component.
It suffices to prove that diam(C) < ¢~!. Take a point y € C. Take an infinite strip S;
(S2, resp.) of thickness 10 tangent to Ay (Ag, resp.) at the point y. By the hypothesis
the angle between the directions of the strips S1,S82 is > £/10 > 100R~1/2, Hence,
diam(S; N'Sy) < 106~ < RY2/100. Also note that A; N B(y, RY/?) c S; for i = 1,2.
Since C is connected, it follows that C C S; N Sy. Thus diam(C) < ¢! O

Proof of Theorem 3. It suffices to prove the theorem for ¢ > 2 (see Remark 2 in the
introduction). We give a proof for ¢ = 2 only. The proof for ¢ > 2 can be obtained by
modifying the proof for ¢ = 2 as in the proof of Theorem 5 below. Note that without
loss of generality we can let C7 = 1. Also note that it suffices to give a proof for
Agr(1,[—-1/2,1/2]) instead of Agr(1).

Let f be a function supported in Agr(1,[—1/2,1/2]) with ||f|l2 = 1. We utilize the
bilinear approach (see, e.g., [8], [11]). Consider the set of dyadic intervals in [-1/2,1/2].
We say two dyadic intervals I, J are related, I ~ J, if i) they have the same length, ii)
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they are not adjacent and iii) their parents are adjacent. Note that

(16)  [-1/2,1/2] x [-1/2,1/2] = U U (x| |Jp.
1<2n<R/2 | [I|=|J|=27",I~J

Here D is a subset of the C R~/ neighborhood of the diagonal {(z,z) : = € [~1/2,1/2]}
which can be written as a union of a set of finitely overlapping boxes I x I of side length
~ RV2 Let f; := IXara,n- Using the decomposition (16), it is easy to see that
(17) FO= > HONE+Error

no|I|l=|J[=27"0~d
where

|\Brror| S ) A7
Ielg

Here Ig is a set of finitely overlapping intervals of length ~ R~/2. By "finitely overlap-
ping”, we mean that || > ;.7 Xrlleo S 1. Using (17), we have

log(R'/?)
18 s S I A e+ X 1 Ba
n=1|I|=|J|=2-"I~J Il
=: 51+ Ss.

Note that for each I € Ig, the support of fr, Ar(1,1), is contained in a rectangle D of
dimensions C' x CR'Y2. Hence fy = f) % ¢},. Using this and Hélder’s inequality, we

have
1/2
YT (A1 * 1B Y2 1eB 107 S (Y12 * o) 2.

Using this and Fubini’s theorem we obtain

19) 157 g < [ 17 @) s e Di@)de < 15I3R 22

In the last inequality, we used Lemma 3.1(I) and Parseval. Since the intervals in I are

finitely overlapping, (19) implies that
52 g lea/Z'

To complete the proof of the theorem, we should obtain the same bound for S;. Since
there are < log(R) values of n and orthogonality (see, e.g., [8], [11]), it suffices to prove
that for each n and for each pair I ~ J, |I| = |J| =27",

(20) LAY Pz S B2\ frllall folles

where the implicit constant is independent of I, J and R. First note that the union of

the supports of f; and f; are contained in a rectangle of dimensions C R2™" x CR272".
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Hence f7x* f; is supported in a rectangle D of dimensions 2C R2™" x 2C' R2~2", the longer
axis being in the direction e, say. Using fr x f; = (f1 * f7)¢p like above, we obtain

(21) 1£7 £ 1 S/If?(x)fY(x)!(u*IsDY)!)(w)de‘-

Consider a tiling of R? with rectangles P of dimensions 100 x 100 27", the short axis
being in the direction of e. Note that each P is contained in a rectangle z p+CR2™2"Dgyai

for some xp € R?. Using the properties of the function ¢, we obtain
(22) LS 0b<) ¢bSlL

P P
Let frp:= %. Using (22) in (21) and then Cauchy-Schwarz, we get

2D 5 Z/ |1 p(@) £ p(@)|(1+ [@p]) (@) dp(z)da
P

1/2

(23) sgvaWﬁwwfq/wwmwww%x

To estimate the first integral in (23), we use a well-known L* orthogonality argument.

Let A7 p be the support of fr p. By Parseval, Cauchy-Schwarz and Young’s inequality

L/Wf%;&z)fxp<xn2dx::L/nyf>*flp<sn2da

sr|@>%ALP>ru4lmew@,/kusz*|prPx5xm

(24) SIE+ Arp) N Ay plliLe@llfr.el3 | f1.p13-

Note that f; p = fr* (51\3. Hence Ay p is contained in supp(fr) + supp(¢p) = supp(fr) +
Py, where Ppyg is the dual of P centered at the origin. At this point the crucial

observation is the following;:

11
supp(fr) + Pauar C Ar(10, TOI)'

Thus, Lemma 3.2 implies that [|[(§ + A7p) N Asp|llr=@ S |71 = 2" Using this in
(24), we see that

(25) / 17 p(@) fp(@)dz < 2" fr.pl3 I f5.p3-

Now, we obtain a bound for the second integral in (23). This is just a simple application

of Lemma 3.1. First note that by Lemma 3.1(I), we have

(26) i lobllloo S RE2m720

~
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Second, using (14) for ¢p and Lemma 3.1(III) (remember that P is contained in zp +
CR272"Dg,q for some zp € R?), we have

/(M «lop)(@)gp(a)de <y 27 /(u «op|) (@) xar p(a)da
j=1

)
(27) 5 Z 27Mj2n7noz2ja 5 gn—na.
=1

<

Using (26) and (27), we have
/ (e [eH) @)op(@)]* dz < [l * |0) oo /(M * |opl)(@)pp(z)de
(28) < RFegm,
Substituting (25) and (28) into (23) yields (20):
LAY Y gy S RYO/2 Z I fr.pll2llfp|l2
P

1/2

1/2
< RO [Z I fr.p |§] [Z HfJ,pH%]
P P

< R frll2)l £1]l2-

In the last inequality, we used Parseval’s theorem and (22). O

4. PROOF OF THEOREM 5

We prove the theorem for v € [1,2] only (see Remark 6 in the introduction). We have

the following analog of Lemma 3.1.

Lemma 4.1. Let a € [1,2]. Let ju be a non-negative measure in R3 satisfying (11) with
C1 = 1. Let D be a rectangle of dimensions Ry X Ro X Rs such that Ry < Ry < R3 < R.
Let Dgyar be the dual of D centered at the origin. Then the function pp = |ph| * p
satisfy

D) lluplloe S B R,

1) ||puplh S 1,

1) pp(z + KDauat) := [icp,  mp(@+y)dy S KRy *Ry', VK 2 1 and x € R?,

We omit the proof since it is similar to the proof of Lemma 3.1.

Proof of Theorem 5. The proof is similar to the proof of Theorem 3. We can assume that
g>2and C1 = 1. Let T'r(C,J) := {(pcos(9), psin(0),t) € Tr(C) : 6 € J}. It suffices
to prove the theorem with I'r(1,[—1/2,1/2]) instead of I'r(1). Let f be a function
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supported in I'g(1,[-1/2,1/2]) with [|f[2 = 1. Given interval I, let f; := fxr,@,n-

Using the decomposition (16) as in the proof of Theorem 3, we obtain

(29) OS> D IO+ D IR

n o |I|=|J|=2-" I~J Ielp

where, Iy is a set of finitely overlapping intervals of length ~ R~1/2. Using (29), we

have for any ¢ > 2

log(R'/?)
(30) 1 NGy < D S NH Pl + D 1 e
n=1  |I|=|J|=2"",I~J] Ielp
=: 51 + 5.

Note that for each I € Ig, the support of f;, I'r(1,I), is contained in a rectangle D of
dimensions C' x CRY2? x CR. Hence f) = f) * ¢},. Using this and Holder’s inequality,

we have
1-1
YT A1+ BN Yllobl ™S (FY19 % [eh ).

Using this, Fubini’s theorem and Hausdorff-Young, we obtain

(31) 1Y [0 < / LAY (@)% * o)) (@)da S Il 1 * 1o oo
< /R G-V R0/,

In the last inequality, we used Lemma 4.1(I) and Hélder’s inequality. Since the intervals

in Ip are finitely overlapping (19) implies that
Sy < R2T

This bound takes care of So for any g > 2. In what follows, we obtain bounds for S; for
q = 2 and q > 4, the remaining case follows from interpolation.

Case 1). ¢ = 2.

As in the proof of Theorem 3, it suffices to prove that for each n and for each pair
I~ J |I|=|J]=2"",

(32) LAY £ pr gy S B2 frll2 ) £ 2,

where the implicit constant is independent of I, J and R. Note that the union of the
supports of f; and f; are contained in a rectangle of dimensions CR x CR2™" x CR272".
Hence fr* f; is supported in a rectangle D of dimensions 2C R x 2C R2™" x 2C R27?", the

longest axis being in the direction e and the second longest axis being in the direction
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of f, say. Note that e is a light direction and f is tangent to the light cone at e. Like

above, we have

(33) 17 £ e S/Iffv(l’)fﬂﬂf)!(ﬂ* b)) (x)da.

Let T, be the Lorentz transformation (see, e.g., [10], [11]) satisfying
T.(e) =e, T.(f)=2"f T.lexf)=2"exf.

Let Fr (&) = f1(T;1(€)) and F;(¢) = f7(T;1(€)). Note that Fy is supported in T'g(22", I')
and F; is supported in T'(2%", J'), where I’ and J' are intervals of length ~ 1 and the

distance between them is ~ 1. Also note that

(31 7 (@) = FY (T @2,
1l = IErlls2~.

Substituting (34) in (33) and then changing the variable, we get
(35) 1£7 £ ey S 23”/ | Fy () Fjf (u)| (1 [ ) (Te (u))du.

Consider a tiling of R? with boxes P of side length 100 272", Note that (22) is valid for
¢p. Let Fr p:= f/¢p. Using (22) in (35) and then Hélder’s inequality, we obtain

15 i €273 [ VBBl oD T ) ()
P
1/2
sr S| [ IRkl
P

1/2
(36) [ [l |¢VDr><Te<u>>¢p<u>]2du} |

We estimate the first integral in (36) as in the proof of Theorem 3. Let A; p be the
support of Fr p. By Parseval, Cauchy-Schwarz and Young’s inequality

/ FY p () FY () P = / Py p+ By p(€)2de
<€+ Arp) N Az plllp=(e / (F1p[2 % | Frpl?)(€)de

(37) S €+ Arp) N Asplllizo o | FrplI3 [1Fs.p |3

Like before A p is contained in supp(F7) + supp(¢p) = supp(Fr) + Piyar, where Py
is a cube of side length 227/100 centered at the origin. Thus A(I, P) is contained
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in r(C2%",111'). The transversality of the cone (see, e.g., [10], [11]) implies that
(€ + Arp) ¢) S R2*". Using this in (37), we see that

(38) / |EY p(w)F) p(u)Pdu S R2™|| Fp|I3] Fspll3.

Now, we obtain a bound for the second integral in (36).

/ [ 105 ) (T ) b ()] du S 2797 [0 / (% [ £h)) (w)dp (T, (u))du
(39) =2 ux el [ (¢ oD@, ) ()

By Lemma 4.1(I), we have
(40) I lepllloe S RE7O2M72M

~

Note that T,(P) has dimensions C272" x C27" x C and it is a multiple of a dual of D.
Thus we can apply Lemma 4.1(III) to obtain

(41) [t eph@on, pywdu < 27

Using (40) and (41) in (39), we have

(42) [l oD T )op(] du 5 R0z
Substituting (38) and (42) into (36) and then using (34), we obtain (32):

LAY £ iy S RZO22750 Y || Frplal|Fa e
P

Z 1F7.plI3 Z 1Fs.pl3

< R* a/22-3N||F1u2||FJH2 R* “/2Hf1!| 1 £]l2-

1/2 1/2

S R2—a/22—3n

Case 2). ¢ > 4.

Like above, we have

(13) 157 5512 < [ @I @I7 05 bl o)

where D is a rectangle of dimensions CR x CR2™" x CR2~?". Using (40), we have
2 —agna—2n
(14) 157 £330y S B2 [ @01 )20

<R3—a2na—2n V eV %_2 vV vV 2d
~ 1£7 £ ll% |ff () f7 (z)]"dz
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Using the Lorentz transformation 7, as in case 1, we have

(15) 15 @1 @)Pds s R2 1B 52 15,
We also have
(46) LAY £ Nloo < W frx folln < W felall falle S B227M frll2 £ l2.
Substituting (45) and (46) into (44), we have
_2a _n(2(a+1)-
(47) 157 gy < B 5276 >||f1|12||fj|\2
: n(g(cx-i—l)—l) 3_a-1
Note that if o > 4 — 1, then (a +1)—1 >0 and hence R*~ a S R2 a
2-22 (2 (at1)- )
Otherwise, R ? < R*™ T Combining these two cases, we have
max 72—0‘,77
(48) 177 £ lgoragy < BP0 Vsl ol
Substituting (48) into (30) yields the required bound. O

5. APPENDIX

In this appendix, we prove (8) and Theorem 1.

Take a non-negative Schwartz function ¢ supported in B(0,2) in R? such that
>0 and p(¢§) € [1/2,1], for ¢ < 1.

Let S = {z € R3: 23 € [-2R,2R],|z; — x3| < 1, |22 < RY/?}.

Using appropriate dilations one obtains a function ¢ with L' norm 1 and supported
in a rectangle of dimensions C' x CR~Y2 x CR™', and ¢ € [1/2,1] in S. Let du(z) =
wr(x)dz. Note that

(49) /F AR Pdup(u) 2 B2,

Also note that
1 € (0,1]
<SS RS Lae[L?]
R*3/12 o e2,3].

Pr(8)’
19k

(50) To(p) ~

The last inequality is easy to prove if one replaces ¢ with the characteristic function of
S. The inequality follows from the Schwartz decay of pg away from S.

Note that (49) and (50) imply (8) for aw > 1/2.

To see that f(a) < «, one may use the functions f,(z) = |z|7". Let du(z) =
f3—ays2(®)p(z)dx. Then

A(E) = cfayjo* P(E) = (14 [€)) 772,



FOURIER TRANSFORM OF FRACTAL MEASURES 15
Thus Io(1) ~ 1 and ;. |[A(Rw)|*dv(u) &~ R~*1, which imply that 3(a) < a.

Proof of Theorem 1. [6] The following calculation yields the first bound. It suffices to

consider the case o < a.

[ troPave = [ o6 - i) < [ DU

(R|z —y[)®
du(@)dp(y)
S Gy =
Second bound follows from the uncertainty principle. Let ¢ be a non-negative Schwartz
function supported in B(0,2) and ¢(x) = 1 for z € B(0,1). Using du(z) = ¢(z)du(z),
we get
filu) = fix o(u).

Using Cauchy-Schwarz, we obtain

(51) /m (Ru)|*dv(u /’/ d(Ru — ¢€)

< (13l / A©)1218(Ru — €)|dedv(u)

2
dv(u)

< Loy (1= [ 1t - avta)).

Note that the Schwartz decay, |$(:r)| < Op(1+|2))™™, and the density assumption on
v imply that

— R 7|£| SR < pd—a—bj¢la—d
(52) /|¢Ru &)ldv(u) < {mM 7,£‘>>R}NR glo,

if M has been chosen large enough. Substituting (52) in (51) yields the second bound.
([l
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