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1. Introduction

Let µ be a compactly supported non-negative measure in Rd. For α ∈ (0, d), the

α-dimensional energy of µ is defined via (see, e.g., [2])

Iα(µ) :=
∫∫

dµ(x)dµ(y)
|x− y|α

= cα,d

∫
|µ̂(ξ)|2

|ξ|d−α
dξ,

where µ̂ is the Fourier transform of the measure µ:

µ̂(ξ) =
∫

e−ix.ξdµ(x).

We are interested in the behavior of the Fourier transform of measures with finite

energy. It is easy to see that Iα(µ) < ∞ does not imply any pointwise decay of |µ̂(ξ)| as

|ξ| → ∞. However, in general, averages of µ̂(ξ) behave much better.

Let Γ be a smooth submanifold of Rd and let νΓ be a smooth surface measure on Γ.

One may ask the following general question: Fix α ∈ (0, d), and assume that Iα(µ) = 1.

For which β > 0

(1)
∫

Γ
|µ̂(Rξ)|2dνΓ(ξ) ≤ CβR−β,

for all R > 1?

The following theorem is a slight generalization of a result in [6]. We include a proof

in the appendix for the sake of completeness.

Theorem 1. Let µ be a non-negative measure supported in the unit ball in Rd with

Iα(µ) = 1. Fix a, b ∈ (0, d) and let ν be a compactly supported probability measure

satisfying

|ν̂(ξ)| . |ξ|−a and ν(B(x, r)) . rb, ∀x, ξ ∈ Rd, ∀r > 0.

Then ∫
|µ̂(Rξ)|2dν(ξ) . R−max(min(α,a),α−d+b).
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The case Γ = Sd−1 ⊂ Rd was investigated by several authors [3], [4], [5], [1], [6] and

[9] in connection with the continuum version of the Erdos’ distance set problem. In this

case, Theorem 1 can be applied with a = (d−1)/2 and b = d−1 but does not give sharp

bounds for all α. Sharp bounds for each α are known only in dimension 2, see [9]. We

discuss the result of [9] in more detail below. In higher dimensions, the known results

are slightly better than the bounds given by Theorem 1, see [1].

The general case that Γ has non-vanishing Gaussian curvature was investigated in [6].

In [9], Wolff obtained the following bound: Fix α ∈ (1, 2), and assume that Iα(µ) = 1.

Then for each ε > 0

(2)
∫

S1

|µ̂(Rξ)|2dν(ξ) ≤ CεR
−α/2+ε,

for all R > 1. This bound is sharp modulo Rε, c.f. [4]. Sharp bounds for α ∈ (0, 1) are

given by Theorem 1 and were first obtained by Mattila [4].

As pointed out in [4], (2) implies that any compact set E ⊂ R2 with Hausdorff

dimension > 4/3 has a positive measure distance set ∆(E) = {|x− y| : x, y ∈ E}.
By the uncertainty principle and duality, (2) follows from the following theorem (see

Lemma 1.5 in [9] and the discussion following it). Let AR(1) be the annulus {x ∈ R2 :

R− 1 < |x| < R + 1}.

Theorem 2. ([9]) Let α ∈ (1, 2). Let µ be a probability measure supported in the unit

ball in R2. Assume that

(3) µ(B(x, r)) ≤ C1r
α for all x ∈ R2 and r > 1/R.

Let f be supported in AR(1) with L2 norm 1, and G = f∨ be its inverse Fourier transform.

Then for all ε > 0 and R > 1

(4)
∣∣∣∣∫ Gdµ

∣∣∣∣ ≤ CεC
1/2
1 R

1
2
−α

4
+ε.

In the first part of the paper, we give a different proof of Wolff’s result and extend it

in the following direction.

Theorem 3. Let α ∈ (1, 2). Let µ be a non-negative measure supported in the unit ball

in R2 and satisfying (3). Let f be supported in AR(1) with L2 norm 1, and G = f∨.

Then, for each q ≥ 1, we have

(5) ‖G‖Lq(µ) ≤ Cs,qC
1/q
1 Rs, ∀s > max

(
1
2
− α

4
,
1
4

+
1− α

2q
,
1
2
− α

q

)
, ∀R > 1.

Moreover, if µ(R2) ≤ 1, then for each q ∈ [1, 2], we have

(6) ‖G‖Lq(µ) ≤ CεC
1/2
1 R

1
2
−α

4
+ε, ∀ε > 0, ∀R > 1.
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Remark 1. The range of s in (5) is sharp modulo endpoint issues. To see this first

let q ≥ 2. Note that in this case max(1
2 −

α
4 , 1

4 + 1−α
2q , 1

2 −
α
q ) = max(1

4 + 1−α
2q , 1

2 −
α
q ). To

prove the necessity of the condition s ≥ 1
4 + 1−α

2q let f be an L2 normalized smooth bump

function supported in the rectangle {x ∈ R2 : |x2| < R1/2, |x1 − R| < 1/2} ⊂ AR(1)

and such that |f∨| > R1/4/100 on the rectangle P = {x ∈ R2 : |x1| < 1, |x2| < R−1/2}
and f∨ has a Schwartz decay away from P . Also let dµ(x) = R1−α/2χP (x)dx. Note

that µ satisfies (3) with C1 ≈ 1. To obtain the second condition let f = R−1/2χAR(1),

and choose a measure µ with µ(B(0, R−1)) ≥ R−α. In the case q < 2 we have max(1
2 −

α
4 , 1

4 + 1−α
2q , 1

2 −
α
q ) = 1

2 −
α
4 . To prove the necessity of this condition we modify the first

example above. Fix T ≈ R(α−1)/2 and let

F∨(x) = T−1/2
T∑

k=1

f∨(x− k

T
e2).

Note that F is supported in AR(1), ‖F‖2 ≈ 1, and |F∨| & R1/4T−1/2 on the set

S = ∪T
k=1(P + k

T e2) (because of the Schwartz decay of f∨). Finally let dµ(x) =

R1−α/2χS(x)dx. Note that µ satisfies (3) with C1 ≈ 1.

The range of s in (6) and the dependence on C1 is also sharp modulo endpoints. To

see this take the function f in the first example above and let dµ(x) = R1/2χP (x)dx.

Note that µ is a probability measure and satisfies (3) with C1 ≈ R(α−1)/2.

Remark 2. Note that in the first part of the theorem we don’t need any additional

assumption on the total mass of µ. The claim (5) for q ∈ [1, 2) follows from the case

q = 2, Hölder’s inequality and the bound µ(R2) = µ(B(0, 1)) ≤ C1 which follows from

(3). The second claim follows from the first one in the same way by using the additional

assumption µ(R2) ≤ 1 instead of µ(R2) ≤ C1. A similar remark is valid for Theorem 5

below.

Remark 3. One can obtain some partial results in higher dimensions analogous

to Theorem 3 and Wolff’s result (4) by combining the proof of Theorem 3 with the

recent parabolic bilinear restriction estimate of Tao [7]. In particular, one can obtain

the following partial result in the distance set problem:

E ⊂ Rd, compact and dim(E) >
d(d + 2)
2(d + 1)

=⇒ |∆(E)| > 0.

The conjectured exponent is d/2, see [2]. Tao’s result comes into play in the inequalities

(23)-(25) below. Note that (25) is the well-known L2 × L2 → L2 bilinear restriction

estimate. One can use Hölder’s inequality with p > (d + 2)/d and p′ in (23) instead

of Cauchy-Schwarz and then use the L2 × L2 → Lp bilinear restriction estimate of Tao

after a parabolic rescaling to estimate the first integral. In fact, one needs a statement
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which is more general than the main result in [7], namely one needs a bilinear restriction

estimate for elliptic surfaces with implicit constants depending on the surface locally

uniformly. One can obtain this statement by going through the proof of Theorem 1.1,

see the final remark in [7]. We omit the details.

In the second part of the paper, we consider the problem (1) in the case when Γ is a

cone in R3. Let Γ = {z = (x, t) ∈ R2 ×R : |x| = t, t ∈ [1, 2]} and ν be the normalized

surface measure on Γ. Let β(α) be the supremum of all β ≥ 0 such that the inequality

(7)
∫

Γ
|µ̂(Ru)|2dν(u) ≤ CσR−β

holds for every non-negative measure µ supported in the unit ball in R3 with Iα(µ) = 1.

In the appendix, we discuss counterexamples which imply that

(8) β(α) ≤


α , α ∈ (0, 1/2]

1/2 , α ∈ [1/2, 1]

α/2 , α ∈ [1, 2]

α− 1 , α ∈ [2, 3).

As one may expect, these exponents are same as the exponents for S1 for α < 2.

Note that the bound

(9) β(α) ≥ max(min(α, 1/2), α− 1)

follows from Theorem 1.

The following theorem takes care of the remaining case α ∈ (1, 2).

Theorem 4. β(α) ≥ α
2 for α ∈ [1, 2].

Theorem 4 follows from the following theorem as in the case of circles.

Let ΓR(A) be the A neighborhood of RΓ. Let

(10) s0(α, q) =

 max
(
1− α

4 , 3
4 −

α−1
2q , 1− α

q

)
, for α ∈ [1, 2],

max
(

3−α
2 , 3

4 + 3−2α
2q , 1− α

q

)
, for α ∈ (2, 3).

Theorem 5. Let α ∈ (1, 3). Let µ be a non-negative measure supported in the unit ball.

Assume that

(11) µ(B(x, r)) ≤ C1r
α for all x ∈ R3 and r > 1/R.

Let f be supported in ΓR(1) with L2 norm 1, and G be its inverse Fourier transform.

Then for each q ≥ 1, we have

(12) ‖G‖Lq(µ) ≤ Cs,qC
1/q
1 Rs, ∀s > s0(α, q), ∀R > 1.
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Moreover, if µ(R3) ≤ 1, then for each q ∈ [1, 2], we have

‖G‖Lq(µ) ≤ CsC
1/2
1 Rs, ∀s > s0(α, 2), ∀R > 1.

Using (12), one can obtain the following Strichartz type estimates relative to fractal

measures for the wave equation in 2 + 1 dimensions.

Corollary 1. Let α ∈ (1, 3), and let µ be a non-negative measure supported in the unit

ball satisfying µ(B(x, r)) ≤ rα for all r > 0 and x ∈ R3. Let u be a solution of

�u = 0, u(·, 0) = f,
du

dt
(·, 0) = g

in R3. Then

(13) ‖u‖Lq(dµ) . ‖f‖W 2,s + ‖g‖W 2,s−1

for all s > s0(α, q). Here ‖f‖W 2,s = ‖(1−∆)s/2f‖2.

Remark 4. The inequality (13) is already known for s > max(3/4, 1− α/4, 1− α/q)

(see [10] (p.1283-1287) for a nice discussion about this type of inequalities).

Remark 5. The range of s in Theorem 5 is sharp modulo endpoints. The counterex-

amples are similar to the ones in Remark 1.

Remark 6. For α ∈ [2, 3], the proof of Theorem 5 is relatively easy. Parseval’s

theorem implies (12) for q = 2 and s > 3
2 −

α
2 . On the other hand L2 Fourier restriction

theory implies (12) for q = 6 and s > 1− α
6 . It is also easy to see that (12) holds for any

q if s = 1. Interpolating these bounds, we obtain (12).

Acknowledgment. This work was partially supported by NSF grant DMS-0303413.

The author wishes to thank Michael Christ for many useful conversations.

2. List of notation

χA: Characteristic function of the set A.

B(x, r) := {y : |x− y| < r}.
AR(C) := {x ∈ R2 : R− C < |x| < R + C}.
ΓR(C) := {(x, t) ∈ R2 ×R : t ∈ [R, 2R], ||x| − t| ≤ C}.
If P is a rectangle of dimensions a1 × a2 × ...× ad in Rd, then

CP is the rectangle of dimensions Ca1 × Ca2...× Cad with the same center and axis

directions as P .

A dual rectangle of P is a rectangle with the same axis directions and dimensions

a−1
1 × a−1

2 × ...× a−1
d .
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aP is a fixed affine map from Rd to Rd which takes the unit cube Q to P .

ϕ: A fixed Schwartz function (for each dimension d) which is equal to 1 in Q and vanishes

outside 2Q, moreover ϕ∨ satisfies for all M > 0

(14) |ϕ∨(ξ)| ≤ CM

∞∑
j=1

2−Mjχ2jQ(ξ), ∀ξ ∈ Rd.

φ: A fixed non-negative Schwartz function satisfying: i) φ > 1/2 in Q, ii) φ̂ is supported

in Q, iii) the inequality (14).

ϕP := ϕ ◦ a−1
P .

φP := φ ◦ a−1
P .

C: A constant which may vary from line to line.

A . B: A ≤ CB.

A ≈ B: A . B and B . A.

|A|: length of the vector A or the measure of the set A.

3. Proof of Theorem 3

In the proof of the theorem, we make repeated use of the following lemma.

Lemma 3.1. Let α ∈ [1, 2]. Let µ be a non-negative measure in R2 satisfying (3) with

C1 = 1. Let D be a rectangle of dimensions R1 ×R2 such that R1 ≤ R2 . R. Let Ddual

be the dual of D centered at the origin. Then the function µD := |ϕ∨D| ∗ µ satisfy

I) ‖µD‖∞ . R2−α
2 ,

II) ‖µD‖1 . 1,

III) µD(x + KDdual) :=
∫
KDdual

µD(x + y)dy . KαR1−α
2 R−1

1 , ∀K & 1 and x ∈ R2.

Proof. Fix M > 100. Using (14), we obtain

(15) |ϕ∨D(x)| . R1R2

∞∑
j=1

2−Mjχ2jDdual
(x).

I) Using (15), we obtain

|ϕ∨D| ∗ µ(x) . R1R2

∑
j

2−Mj

∫
χ2jDdual

(x− y)dµ(y)

. R1R2

∑
j

2−Mj(2jR−1
2 )α R2

R1
. R2−α

2 .

The second inequality follows from (3) and the observation that 2jDdual can be covered

by . R2/R1 many balls of radius 2jR−1
2 .
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II) follows from Young’s inequality using ‖ϕ∨D‖1 . 1.

III) Without loss of generality assume x = 0. Using (15) and (3) like above, we obtain

µD(KDdual) . R1R2

∑
j

2−Mj

∫ ∫
χKDdual

(y)χ2jDdual
(y − u)dµ(u)dy

. R1R2

∑
j

2−Mj

∫ ∫
χ(K+2j)Ddual

(u)χ2jDdual
(y − u)dydµ(u)

. R1R2

∑
j

2−Mj

[
(K + 2j)αR−α

2

R2

R1

] [
22j

R1R2

]
. KαR1−α

2 R−1
1 .

�

We also need the following well-known geometric lemma about the size of intersection

of circular annuli. Given interval J ⊂ [−1/2, 1/2], let AR(C, J) = {(ρ cos(θ), ρ sin(θ)) ∈
AR(C) : θ ∈ J}.

Lemma 3.2. Let J1, J2 ⊂ [−1/2, 1/2] be two intervals of length ` & R−1/2. Assume that

the distance between J1 and J2 is & `, then for any x ∈ R2

|(x + AR(1, J1)) ∩AR(1, J2)| . `−1.

Proof. In the case ` ≈ R−1/2 the statement is void since |AR(1, J)| . `R . R1/2 . `−1.

Assume ` > 1000R−1/2, and fix x, J1, J2. Note that the set A1 ∩A2 := (x + AR(1, J1))∩
AR(1, J2) has at most two connected components. Let C be a connected component.

It suffices to prove that diam(C) . `−1. Take a point y ∈ C. Take an infinite strip S1

(S2, resp.) of thickness 10 tangent to A1 (A2, resp.) at the point y. By the hypothesis

the angle between the directions of the strips S1,S2 is ≥ `/10 ≥ 100R−1/2. Hence,

diam(S1 ∩ S2) ≤ 10`−1 ≤ R1/2/100. Also note that Ai ∩ B(y, R1/2) ⊂ Si for i = 1, 2.

Since C is connected, it follows that C ⊂ S1 ∩ S2. Thus diam(C) . `−1 �

Proof of Theorem 3. It suffices to prove the theorem for q ≥ 2 (see Remark 2 in the

introduction). We give a proof for q = 2 only. The proof for q > 2 can be obtained by

modifying the proof for q = 2 as in the proof of Theorem 5 below. Note that without

loss of generality we can let C1 = 1. Also note that it suffices to give a proof for

AR(1, [−1/2, 1/2]) instead of AR(1).

Let f be a function supported in AR(1, [−1/2, 1/2]) with ‖f‖2 = 1. We utilize the

bilinear approach (see, e.g., [8], [11]). Consider the set of dyadic intervals in [−1/2, 1/2].

We say two dyadic intervals I, J are related, I ∼ J , if i) they have the same length, ii)
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they are not adjacent and iii) their parents are adjacent. Note that

(16) [−1/2, 1/2]× [−1/2, 1/2] =

 ⋃
1≤2n≤R1/2

 ⋃
|I|=|J |=2−n,I∼J

(I × J)

⋃
D.

Here D is a subset of the CR−1/2 neighborhood of the diagonal {(x, x) : x ∈ [−1/2, 1/2]}
which can be written as a union of a set of finitely overlapping boxes I× I of side length

≈ R−1/2. Let fI := fχAR(1,I). Using the decomposition (16), it is easy to see that

(17) (f∨)2(ξ) =
∑

n

∑
|I|=|J |=2−n,I∼J

f∨I (ξ)f∨J (ξ) + Error,

where

|Error| .
∑
I∈IE

|f∨I |2.

Here IE is a set of finitely overlapping intervals of length ≈ R−1/2. By ”finitely overlap-

ping”, we mean that ‖
∑

I∈IE
χI‖∞ . 1. Using (17), we have

‖f∨‖2
L2(µ) ≤

log(R1/2)∑
n=1

∑
|I|=|J |=2−n,I∼J

‖f∨I f∨J ‖L1(µ) +
∑
I∈IE

‖f∨I ‖2
L2(µ)(18)

=: S1 + S2.

Note that for each I ∈ IE , the support of fI , AR(1, I), is contained in a rectangle D of

dimensions C × CR1/2. Hence f∨I = f∨I ∗ ϕ∨D. Using this and Hölder’s inequality, we

have

|f∨I | ≤ (|f∨I |2 ∗ |ϕ∨D|)1/2‖ϕ∨D‖
1/2
1 . (|f∨I |2 ∗ |ϕ∨D|)1/2.

Using this and Fubini’s theorem we obtain

(19) ‖f∨I ‖2
L2(µ) ≤

∫
|f∨I (x)|2(µ ∗ |ϕ∨D|)(x)dx . ‖fI‖2

2R
1−α/2.

In the last inequality, we used Lemma 3.1(I) and Parseval. Since the intervals in IE are

finitely overlapping, (19) implies that

S2 . R1−α/2.

To complete the proof of the theorem, we should obtain the same bound for S1. Since

there are . log(R) values of n and orthogonality (see, e.g., [8], [11]), it suffices to prove

that for each n and for each pair I ∼ J , |I| = |J | = 2−n,

(20) ‖f∨I f∨J ‖L1(µ) . R1−α/2‖fI‖2‖fJ‖2,

where the implicit constant is independent of I, J and R. First note that the union of

the supports of fI and fJ are contained in a rectangle of dimensions CR2−n ×CR2−2n.
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Hence fI ∗fJ is supported in a rectangle D of dimensions 2CR2−n×2CR2−2n, the longer

axis being in the direction e, say. Using fI ∗ fJ = (fI ∗ fJ)ϕD like above, we obtain

(21) ‖f∨I f∨J ‖L1(µ) ≤
∫
|f∨I (x)f∨J (x)|(µ ∗ |ϕ∨D|)(x)dx.

Consider a tiling of R2 with rectangles P of dimensions 100 × 100 2−n, the short axis

being in the direction of e. Note that each P is contained in a rectangle xP +CR2−2nDdual

for some xP ∈ R2. Using the properties of the function φ, we obtain

(22) 1 .
∑
P

φ3
P .

∑
P

φ2
P . 1.

Let fI,P := f̂∨I φP . Using (22) in (21) and then Cauchy-Schwarz, we get

(21) .
∑
P

∫
|f∨I,P (x)f∨J,P (x)|(µ ∗ |ϕ∨D|)(x)φP (x)dx

.
∑
P

[∫
|f∨I,P (x)f∨J,P (x)|2dx

]1/2 [∫ [
(µ ∗ |ϕ∨D|)(x)φP (x)

]2 dx

]1/2

.(23)

To estimate the first integral in (23), we use a well-known L4 orthogonality argument.

Let AI,P be the support of fI,P . By Parseval, Cauchy-Schwarz and Young’s inequality∫
|f∨I,P (x)f∨J,P (x)|2dx =

∫
|fI,P ∗ fJ,P (ξ)|2dξ

. ‖|(ξ + AI,P ) ∩AJ,P |‖L∞(ξ)

∫
(|fI,P |2 ∗ |fI,P |2)(ξ)dξ

. ‖|(ξ + AI,P ) ∩AJ,P |‖L∞(ξ)‖fI,P ‖2
2 ‖fJ,P ‖2

2.(24)

Note that fI,P = fI ∗ φ̂P . Hence AI,P is contained in supp(fI) + supp(φP ) = supp(fI) +

Pdual, where PDual is the dual of P centered at the origin. At this point the crucial

observation is the following:

supp(fI) + Pdual ⊂ AR(10,
11
10

I).

Thus, Lemma 3.2 implies that ‖|(ξ + AI,P ) ∩ AJ,P |‖L∞(ξ) . |I|−1 = 2n. Using this in

(24), we see that

(25)
∫
|f∨I,P (x)f∨J,P (x)|2dx . 2n‖fI,P ‖2

2 ‖fJ,P ‖2
2.

Now, we obtain a bound for the second integral in (23). This is just a simple application

of Lemma 3.1. First note that by Lemma 3.1(I), we have

(26) ‖µ ∗ |ϕ∨D|‖∞ . R2−α2nα−2n.



10 M. BURAK ERDOG̃AN

Second, using (14) for φP and Lemma 3.1(III) (remember that P is contained in xP +

CR2−2nDdual for some xP ∈ R2), we have∫
(µ ∗ |ϕ∨D|)(x)φP (x)dx ≤

∞∑
j=1

2−Mj

∫
(µ ∗ |ϕ∨D|)(x)χ2jP (x)dx

.
∞∑

j=1

2−Mj2n−nα2jα . 2n−nα.(27)

Using (26) and (27), we have∫ [
(µ ∗ |ϕ∨D|)(x)φP (x)

]2 dx . ‖µ ∗ |ϕ∨D|‖∞
∫

(µ ∗ |ϕ∨D|)(x)φP (x)dx

. R2−α2−n.(28)

Substituting (25) and (28) into (23) yields (20):

‖f∨I f∨J ‖L1(µ) . R1−α/2
∑
P

‖fI,P ‖2‖fJ,P ‖2

. R1−α/2

[∑
P

‖fI,P ‖2
2

]1/2 [∑
P

‖fJ,P ‖2
2

]1/2

. R1−α/2‖fI‖2‖fJ‖2.

In the last inequality, we used Parseval’s theorem and (22). �

4. Proof of Theorem 5

We prove the theorem for α ∈ [1, 2] only (see Remark 6 in the introduction). We have

the following analog of Lemma 3.1.

Lemma 4.1. Let α ∈ [1, 2]. Let µ be a non-negative measure in R3 satisfying (11) with

C1 = 1. Let D be a rectangle of dimensions R1×R2×R3 such that R1 ≤ R2 ≤ R3 . R.

Let Ddual be the dual of D centered at the origin. Then the function µD := |ϕ∨D| ∗ µ

satisfy

I) ‖µD‖∞ . R2−α
2 R3,

II) ‖µD‖1 . 1,

III) µD(x + KDdual) :=
∫
KDdual

µD(x + y)dy . KαR1−α
2 R−1

1 , ∀K & 1 and x ∈ R3.

We omit the proof since it is similar to the proof of Lemma 3.1.

Proof of Theorem 5. The proof is similar to the proof of Theorem 3. We can assume that

q ≥ 2 and C1 = 1. Let ΓR(C, J) := {(ρ cos(θ), ρ sin(θ), t) ∈ ΓR(C) : θ ∈ J}. It suffices

to prove the theorem with ΓR(1, [−1/2, 1/2]) instead of ΓR(1). Let f be a function
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supported in ΓR(1, [−1/2, 1/2]) with ‖f‖2 = 1. Given interval I, let fI := fχΓR(1,I).

Using the decomposition (16) as in the proof of Theorem 3, we obtain

(29) |f∨(ξ)|2 ≤
∑

n

∑
|I|=|J |=2−n,I∼J

|f∨I (ξ)f∨J (ξ)|+
∑
I∈IE

|f∨I |2,

where, IE is a set of finitely overlapping intervals of length ≈ R−1/2. Using (29), we

have for any q ≥ 2

‖f∨‖2
Lq(µ) ≤

log(R1/2)∑
n=1

∑
|I|=|J |=2−n,I∼J

‖f∨I f∨J ‖Lq/2(µ) +
∑
I∈IE

‖f∨I ‖2
Lq(µ)(30)

=: S1 + S2.

Note that for each I ∈ IE , the support of fI , ΓR(1, I), is contained in a rectangle D of

dimensions C × CR1/2 × CR. Hence f∨I = f∨I ∗ ϕ∨D. Using this and Hölder’s inequality,

we have

|f∨I | ≤ (|f∨I |q ∗ |ϕ∨D|)1/q‖ϕ∨D‖
1−1/q
1 . (|f∨I |q ∗ |ϕ∨D|)1/q.

Using this, Fubini’s theorem and Hausdorff-Young, we obtain

‖f∨I ‖
q
Lq(µ) ≤

∫
|f∨I (x)|q(µ ∗ |ϕ∨D|)(x)dx . ‖fI‖q

q′‖µ ∗ |ϕ
∨
D|‖∞(31)

. ‖fI‖q
2R

3
2
( q
2
−1)R2−α/2.

In the last inequality, we used Lemma 4.1(I) and Hölder’s inequality. Since the intervals

in IE are finitely overlapping (19) implies that

S2 . R
3
2
+ 1−α

q .

This bound takes care of S2 for any q ≥ 2. In what follows, we obtain bounds for S1 for

q = 2 and q ≥ 4, the remaining case follows from interpolation.

Case 1). q = 2.

As in the proof of Theorem 3, it suffices to prove that for each n and for each pair

I ∼ J , |I| = |J | = 2−n,

(32) ‖f∨I f∨J ‖L1(µ) . R2−α/2‖fI‖2‖fJ‖2,

where the implicit constant is independent of I, J and R. Note that the union of the

supports of fI and fJ are contained in a rectangle of dimensions CR×CR2−n×CR2−2n.

Hence fI ∗fJ is supported in a rectangle D of dimensions 2CR×2CR2−n×2CR2−2n, the

longest axis being in the direction e and the second longest axis being in the direction
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of f , say. Note that e is a light direction and f is tangent to the light cone at e. Like

above, we have

(33) ‖f∨I f∨J ‖L1(µ) ≤
∫
|f∨I (x)f∨J (x)|(µ ∗ |ϕ∨D|)(x)dx.

Let Te be the Lorentz transformation (see, e.g., [10], [11]) satisfying

Te(e) = e, Te(f) = 2nf, Te(e× f) = 22ne× f.

Let FI(ξ) = fI(T−1
e (ξ)) and FJ(ξ) = fJ(T−1

e (ξ)). Note that FI is supported in ΓR(22n, I ′)

and FJ is supported in ΓR(22n, J ′), where I ′ and J ′ are intervals of length ≈ 1 and the

distance between them is ≈ 1. Also note that

f∨I (x) = F∨
I (T−1

e (x))2−3n,(34)

‖fI‖2 = ‖FI‖22−3n/2.

Substituting (34) in (33) and then changing the variable, we get

(35) ‖f∨I f∨J ‖L1(µ) . 2−3n

∫
|F∨

I (u)F∨
J (u)|(µ ∗ |ϕ∨D|)(Te(u))du.

Consider a tiling of R3 with boxes P of side length 100 2−2n. Note that (22) is valid for

φP . Let FI,P := f̂∨I φP . Using (22) in (35) and then Hölder’s inequality, we obtain

‖f∨I f∨J ‖L1(µ) . 2−3n
∑
P

∫
|F∨

I,P (u)F∨
J,P (u)|(µ ∗ |ϕ∨D|)(Te(u))φP (u)du

. 2−3n
∑
P

[∫
|F∨

I,P (u)F∨
J,P (u)|2du

]1/2

.

[∫ [
(µ ∗ |ϕ∨D|)(Te(u))φP (u)

]2 du

]1/2

.(36)

We estimate the first integral in (36) as in the proof of Theorem 3. Let AI,P be the

support of FI,P . By Parseval, Cauchy-Schwarz and Young’s inequality∫
|F∨

I,P (u)F∨
J,P (u)|2du =

∫
|FI,P ∗ FJ,P (ξ)|2dξ

. ‖|(ξ + AI,P ) ∩AJ,P |‖L∞(ξ)

∫
(|FI,P |2 ∗ |FJ,P |2)(ξ)dξ

. ‖|(ξ + AI,P ) ∩AJ,P |‖L∞(ξ)‖FI,P ‖2
2 ‖FJ,P ‖2

2.(37)

Like before AI,P is contained in supp(FI) + supp(φP ) = supp(FI) + Pdual, where Pdual

is a cube of side length 22n/100 centered at the origin. Thus A(I, P ) is contained
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in ΓR(C22n, 11
10I ′). The transversality of the cone (see, e.g., [10], [11]) implies that

‖|(ξ + AI,P ) ∩AJ,P |‖L∞(ξ) . R24n. Using this in (37), we see that

(38)
∫
|F∨

I,P (u)F∨
J,P (u)|2du . R24n‖FI,P ‖2

2‖FJ,P ‖2
2.

Now, we obtain a bound for the second integral in (36).∫ [
(µ ∗ |ϕ∨D|)(Te(u))φP (u)

]2 du . 2−3n‖µ ∗ |ϕ∨D|‖∞
∫

(µ ∗ |ϕ∨D|)(u)φP (T−1
e (u))du

= 2−3n‖µ ∗ |ϕ∨D|‖∞
∫

(µ ∗ |ϕ∨D|)(u)φTe(P )(u)du(39)

By Lemma 4.1(I), we have

(40) ‖µ ∗ |ϕ∨D|‖∞ . R3−α2nα−2n.

Note that Te(P ) has dimensions C2−2n × C2−n × C and it is a multiple of a dual of D.

Thus we can apply Lemma 4.1(III) to obtain∫
(µ ∗ |ϕ∨D|)(u)φTe(P )(u)du . 2n−nα.(41)

Using (40) and (41) in (39), we have

(42)
∫ [

(µ ∗ |ϕ∨D|)(Te(u))φP (u)
]2 du . R3−α2−4n.

Substituting (38) and (42) into (36) and then using (34), we obtain (32):

‖f∨I f∨J ‖L1(µ) . R2−α/22−3n
∑
P

‖FI,P ‖2‖FJ,P ‖2

. R2−α/22−3n

[∑
P

‖FI,P ‖2
2

]1/2 [∑
P

‖FJ,P ‖2
2

]1/2

. R2−α/22−3n‖FI‖2‖FJ‖2 = R2−α/2‖fI‖2‖fJ‖2.

Case 2). q ≥ 4.

Like above, we have

(43) ‖f∨I f∨J ‖
q/2

Lq/2(µ)
≤

∫
|f∨I (x)f∨J (x)|q/2(µ ∗ |ϕ∨D|)(x)dx,

where D is a rectangle of dimensions CR× CR2−n × CR2−2n. Using (40), we have

‖f∨I f∨J ‖
q/2

Lq/2(µ)
. R3−α2nα−2n

∫
|f∨I (x)f∨J (x)|q/2dx(44)

. R3−α2nα−2n‖f∨I f∨J ‖
q
2
−2

∞

∫
|f∨I (x)f∨J (x)|2dx
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Using the Lorentz transformation Te as in case 1, we have

(45)
∫
|f∨I (x)f∨J (x)|2dx . R2n‖fI‖2

2‖fJ‖2
2.

We also have

(46) ‖f∨I f∨J ‖∞ ≤ ‖fI ∗ fJ‖1 ≤ ‖fI‖1‖fJ‖1 . R22−n‖fI‖2‖fJ‖2.

Substituting (45) and (46) into (44), we have

(47) ‖f∨I f∨J ‖Lq/2(µ) . R
2− 2α

q 2n
“

2
q
(α+1)−1

”
‖fI‖2‖fJ‖2.

Note that if α ≥ q
2 − 1, then 2

q (α + 1)− 1 ≥ 0 and hence R
2− 2α

q 2n
“

2
q
(α+1)−1

”
. R

3
2
−α−1

q .

Otherwise, R
2− 2α

q 2n
“

2
q
(α+1)−1

”
. R

2− 2α
q Combining these two cases, we have

(48) ‖f∨I f∨J ‖Lq/2(µ) . R
max(2− 2α

q
, 3
2
−α−1

q
)‖fI‖2‖fJ‖2.

Substituting (48) into (30) yields the required bound. �

5. Appendix

In this appendix, we prove (8) and Theorem 1.

Take a non-negative Schwartz function ϕ supported in B(0, 2) in R3 such that

ϕ̂ ≥ 0 and ϕ̂(ξ) ∈ [1/2, 1], for |ξ| < 1.

Let S = {x ∈ R3 : x3 ∈ [−2R, 2R], |x1 − x3| < 1, |x2| < R1/2}.
Using appropriate dilations one obtains a function ϕR with L1 norm 1 and supported

in a rectangle of dimensions C × CR−1/2 × CR−1, and ϕ̂R ∈ [1/2, 1] in S. Let dµ(x) =

ϕR(x)dx. Note that

(49)
∫

Γ
|µ̂(Ru)|2dνΓ(u) & R−1/2.

Also note that

(50) Iα(µ) ≈
∫

ϕ̂R(ξ)2

|ξ|3−α
dξ .


1 , α ∈ (0, 1]

R
α−1

2 , α ∈ [1, 2]

Rα−3/2 , α ∈ [2, 3].

The last inequality is easy to prove if one replaces ϕ̂R with the characteristic function of

S. The inequality follows from the Schwartz decay of ϕ̂R away from S.

Note that (49) and (50) imply (8) for α ≥ 1/2.

To see that β(α) ≤ α, one may use the functions fη(x) = |x|−η. Let dµ(x) =

f3−α1/2(x)ϕ(x)dx. Then

µ̂(ξ) = cfα1/2 ∗ ϕ̂(ξ) ≈ (1 + |ξ|)−α1/2.
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Thus Iα(µ) ≈ 1 and
∫
Γ |µ̂(Ru)|2dν(u) ≈ R−α1 , which imply that β(α) ≤ α.

Proof of Theorem 1. [6] The following calculation yields the first bound. It suffices to

consider the case α ≤ a.∫
|µ̂(Ru)|2dν(u) =

∫
ν̂(R(x− y))dµ(x)dµ(y) .

∫
dµ(x)dµ(y)
(R|x− y|)a

.
∫

dµ(x)dµ(y)
(R|x− y|)α

= R−αIα(µ).

Second bound follows from the uncertainty principle. Let φ be a non-negative Schwartz

function supported in B(0, 2) and φ(x) = 1 for x ∈ B(0, 1). Using dµ(x) = φ(x)dµ(x),

we get

µ̂(u) = µ̂ ∗ φ̂(u).

Using Cauchy-Schwarz, we obtain∫
|µ̂(Ru)|2dν(u) =

∫ ∣∣∣∣∫ µ̂(ξ)φ̂(Ru− ξ)dξ

∣∣∣∣2 dν(u)(51)

. ‖φ̂‖L1

∫
|µ̂(ξ)|2|φ̂(Ru− ξ)|dξdν(u)

. Iα(µ) sup
ξ

(
|ξ|n−α

∫
|φ̂(Ru− ξ)|dν(u)

)
.

Note that the Schwartz decay, |φ̂(x)| ≤ CM (1 + |x|)−M , and the density assumption on

ν imply that

(52)
∫
|φ̂(Ru− ξ)|dν(u) .

{
R−b , |ξ| . R

|ξ|−M , |ξ| >> R

}
. Rd−α−b|ξ|α−d,

if M has been chosen large enough. Substituting (52) in (51) yields the second bound.

�
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