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Abstract. We show that any L2 solution of the Gabitov-Turitsyn equation

describing dispersion managed solitons decay exponentially in space and fre-

quency domains. This confirms in the affirmative Lushnikov’s conjecture of

exponential decay of dispersion managed solitons.

1. Introduction

Consider the one-dimensional non-linear Schrödinger equation (NLS) with peri-
odically varying dispersion coefficient

(1.1) iut + d(t)uxx + |u|2u = 0.

It describes the amplitude of a signal transmitted via amplitude modulation of a
carrier wave through a fiber-optical cable where the dispersion is varied periodically
along the fiber, see, e.g., [3, 27, 30]. In (1.1) t corresponds to the distance along the
fiber, x denotes the (retarded) time, and d(t) is the dispersion along the wave-guide
which, for practical purposes, one can assume to be piecewise constant.

In fiber optic cables, the information can be transmitted using localized soli-
ton pulses in allocated time slots; the presence of a pulse corresponds to “1” and
the absence of a pulse corresponds to “0” in binary format. Solitary solutions
exist due to a delicate balance between the dispersion and nonlinearity. In order
to minimize the interaction between the individual pulses, one needs to keep the
pulses sufficiently far apart. A draw-back of solitary solutions for this application
is that the soliton solutions with small support have large L2 norm unless the dis-
persion constant is small. The technique of dispersion management was invented
to overcome this difficulty. The idea is to use alternating sections of constant but
(nearly) opposite dispersion. This introduces a rapidly varying dispersion d(t) with
small average dispersion, leading to well-localized stable soliton-like pulses chang-
ing periodically along the fiber. This idea has been enormously fruitful (see, e.g.,
[20, 1, 8, 9, 14, 17, 18, 23, 25]). Record breaking transmission rates had been
achieved using this technology [24] which is now widely used commercially.

To study strong dispersion management regime, it is convenient to write

d(t) =
1

ε
d0(t/ε) + dav,
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Here d0(t) is the mean zero part which we assume to be piecewise constant, and
dav the average dispersion over one period , and ε is a small parameter. Rescaling
t/ε to t, the envelope equation takes the form

(1.2) iut + d0(t)uxx + εdavuxx + ε|u|2u = 0.

Since the full equation (1.2) is very hard to study, Gabitov and Turitsyn sug-
gested to separate the free motion given by the solution of iut + d0(t)uxx = 0 in
(1.2), and to average over one period, see [8, 9]. In the case1 when d0(t) = 1 on
[−1, 0] and d0(t) = −1 on [0, 1] this yields the following equation for the “averaged”
solution v

ivt + εdavvxx + εQ(v, v, v) = 0, where(1.3)

Q(v1, v2, v3) :=

∫ 1

0

T−1
r

(
Trv1Trv2Trv3

)
ds,(1.4)

and Tr = eir∂2
x . In some sense, v is the slowly varying part of the amplitude and

the varying dispersion is interpreted as a fast background oscillation, justifying
formally the above averaging procedure. This is similar to Kapitza’s treatment of
the unstable pendulum, see [19]. This averaging procedure yielding (1.3) is well-
supported by numerical and theoretical studies, see, for example, [1, 29, 30], and
was rigorously justified in [31] in the limit of large local dispersion, i.e., as ε → 0.

One can find stationary solutions by making the ansatz v(t, x) = eiεωtf(x) in
(1.3). This yields the time independent equation

(1.5) −ωf = −davfxx − Q(f, f, f)

describing stationary soliton-like solutions, the so-called dispersion managed soli-
tons. Despite the enormous interest in dispersion managed solitons, there are few
rigorous results available. One reason for this is that it is a nonlinear and nonlocal
equation. Existence and smoothness of weak solutions of (1.5) had first been rigor-
ously established in [31] for positive average dispersion dav > 0. In the case dav = 0,
the existence was obtained in [15], also see [11] for a simplified proof. Smoothness
in the case dav = 0 was established in [26].

Remark 1.1. By a weak solution we mean f ∈ H1 in the case dav > 0, or f ∈ L2

in the case dav = 0, such that

(1.6) −ω〈g, f〉 = dav〈g′, f ′〉 − 〈g, Q(f, f, f)〉.
for all g ∈ H1. Here 〈g, f〉 =

∫
R

g(x)f(x) dx is the usual scalar product on L2(R).

By a formal calculation, using the unicity of Tr in L2, we have

〈g, Q(f, f, f)〉 = Q(g, f, f, f),

where

(1.7) Q(f1, f2, f3, f4) =

1∫

0

∫

R

Trf1(x)Trf2(x)Trf3(x)Trf4(x)dxds.

The functional Q(f1, f2, f3, f4) is well-defined for fj ∈ L2(R) due to Strichartz
inequality, see [31, 10].

1In fact, our method can be extended to more general dispersion profiles. We will address this

issue together with the case dav > 0 in a later paper.
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The decay of the solutions was first addressed by Lusnikov in [21]. He gave
convincing but non-rigorous arguments that any solution f of (1.5) for dav = 0
satisfies

(1.8) f(x) ∼ |x| cos(a0x
2 + a1x + a2)e

−b|x| as x → ∞
for some suitable choice of real constants aj and b > 0, see also [22]. In particular,

he predicted that f and f̂ decay exponentially at infinity. For dav = 0, the first
rigorous x-space decay bounds were established in [10], where it was shown that

both f and f̂ decay faster than any polynomial in the case dav = 0. In particular
any weak solution is a Schwartz function.

Our main result confirms Lusnikov’s exponential decay prediction:

Theorem 1.2. Assume that dav = 0. Let f ∈ L2 be a weak solution of (1.5).
Then there exists µ > 0 such that

|f(x)| . e−µ|x|, |f̂(ξ)| . e−µ|ξ|,

where f̂ is the Fourier transform of f .

We have the following immediate corollary.

Corollary 1.3. Under the conditions of Theorem 1.2, both f and f̂ are analytic

in a strip containing the real line.

Remark 1.4. Weak solutions of 1.5 can be found with the help of a variational
principle. For dav = 0 it is given by

(1.9) Pλ := sup{Q(f, f, f, f)| ‖f‖2
2 = λ}

Note Q(f, f, f, f) =
∫ 1

0

∫
|eit∂2

xf(x)|4 dxdt = ‖eit∂2
xf‖4

L4
[0,1]

L4
x

and eit∂2
xf is the space-

time Fourier transform of a measure concentrated on the paraboloid {τ = k2} ⊂ R
2

with square-integrable density f̂ ,

eit∂2
xf(x) =

1

2π

∫∫
eixk+itτ δ(τ − k2)f̂(k) dτdk.

Since, by scaling, Pλ = P1λ
2, the variational problem (1.9) yields the best constant

in the L4 Fourier extension estimate

(1.10) ‖eit∂2
xf‖4

L4
[0,1]

L4
x
≤ P1‖f‖4

L2(R).

for measure with an L2 density on the paraboloid. Existence of maximizers for the
variational problem (1.9) was established in [15], see also [11]. Thus our Theorem
1.2 and Corollary 1.3 for any weak solutions of (1.5) for vanishing average dispersion
show, in particular, strong regularity properties for any maximizer of the Fourier
extension estimate (1.10).

The inequality (1.10) is, of course, closely related to the one-dimensional
Strichartz inequality

(1.11) ‖eit∂2
xf‖L6

tL6
x
≤ S1‖f‖L2(R),

for which the sharp constant and the maximizers have been classified in [4, 7,
12], and the Fourier extension problem for the sphere for which the existence of
maximizers and their properties has recently been discussed in [6].
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In the proof of Theorem 1.2, the central idea is, as in [2, 13], to obtain suit-
able exponentially weighted a-priori estimates for the weak solution. In [2, 13],
the commutator of the exponential weight with the Schrödinger operator is easily
calculated since the operator is local. Variations of Agmon’s method work also for
relativistic Schrödinger operators which are nonlocal. However, in these applica-
tions one relies on the pointwise decay of the corresponding kernel. In our case, a
major difficulty arises since our operator Q is nonlocal and the kernel of the free
Schrödinger evolution has no pointwise decay. We overcome this difficulty by using
the multi-linear structure of Q and the oscillation of the kernel. This is done in
Section 2, where we obtain exponentially weighted multi-linear estimates for Q.
Multi-linear refinements of the Strichartz estimate where first established in [5] and
later systematically studied in [28]. The results of these two papers focus, however,
on the Fourier side and do not allow exponential weights. More importantly, we
require bounds independent of the exponential weights, see Theorems 2.2 and 2.3
below. Our bounds are refinements of the x-space Strichartz estimates which were
developed in [10] and used in conjunction with well-known Fourier space Strichartz
estimates to prove that any weak solution is a Schwartz function. We would also
like to note that our proof uses only the fact that f ∈ L2 and as such does not
require any of the previous smoothness or decay results.

2. A-priori estimates for Q
We start with two alternative representations of Q inspired by the calculations

in [12].

Lemma 2.1.

Q(f1, f2, f3, f4) =

(2.1)

1

4π

1∫

0

∫

R4

1

t
e−i(η2

1−η2
2+η2

3−η2
4)/(4t)f1(η1)f2(η2)f3(η3)f4(η4)δ(η1 − η2 + η3 − η4) dηdt

Q(f1, f2, f3, f4) =

(2.2)

1

2π

1∫

0

∫

R4

eit(η2
1−η2

2+η2
3−η2

4)f̂1(η1)f̂2(η2)f̂3(η3)f̂4(η4)δ(η1 − η2 + η3 − η4) dηdt

Proof. Using the formula

Ttf(x) =
1√
4πit

∫

R

ei(x−y)2/(4t)f(y)dy,

we get

Ttf1(x)Ttf2(x)Ttf3(x)Ttf4(x) =

1

(4πt)2

∫

R4

eix(η1−η2+η3−η4)/(2t)e−i(η2
1−η2

2+η2
3−η2

4)/(4t)f1(η1)f2(η2)f3(η3)f4(η4)dη.

From which one obtains (2.1) by performing the x-integration.
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Similarly, one obtains (2.2) by using the formula

Ttf(x) =
1√
2π

∫

R

eixξe−itξ2

f̂(ξ)dξ.

To obtain exponential decay of dispersion managed solitons we need the following
‘twisted’ dispersion management functionals

Qµ,ε(h1, h2, h3, h4) := Q(eFµ,ε(X)h1, e
−Fµ,ε(X)h2, e

−Fµ,ε(X)h3, e
−Fµ,ε(X)h4)

Q̃µ,ε(h1, h2, h3, h4) := Q(eFµ,ε(P )h1, e
−Fµ,ε(P )h2, e

−Fµ,ε(P )h3, e
−Fµ,ε(P )h4).

Here X denotes multiplication by x and P = −i∂x is the one-dimensional momen-
tum operator, and

(2.3) Fµ,ε(x) := µ
|x|

1 + ε|x| , µ, ε ≥ 0.

We have the following theorems which are rather surprising at first sight. They are
the basis for our proof of exponential decay of dispersion management solitons.

Theorem 2.2. There exists a constant C such that the bounds

|Qµ,ε(h1, h2, h3, h4)| ≤ C

4∏

j=1

‖hj‖2,(2.4)

|Q̃µ,ε(h1, h2, h3, h4)| ≤ C
4∏

j=1

‖hj‖2(2.5)

hold for all µ, ε ≥ 0.

Theorem 2.3. There exists a constant C such that if for some l, k ∈ {1, 2, 3, 4}
τ = dist(supp (hl), supp (hk)) ≥ 1 then

(2.6) |Qµ,ε(h1, h2, h3, h4)| ≤
C√
τ

4∏

j=1

‖hj‖2

for all µ, ε ≥ 0. Moreover, if τ = dist(supp (ĥl), supp (ĥk)) ≥ 1 then also

(2.7) |Q̃µ,ε(h1, h2, h3, h4)| ≤
C√
τ

4∏

j=1

‖hj‖2

Remark 2.4. The point of Theorems 2.2 and 2.3 is that the constant in the bounds
is independent of µ, ε ≥ 0. We explicitly allow ε = 0, which at first seems to be
in conflict with the fact that we need eFµ,0h1 ∈ L2. However, in this case we can
restrict ourselves to compactly supported functions h1 and then use the a-priori
bound and the density of these functions in L2.

Let M be a multiplier in the variables η1, η2, η3, η4 and define the oscillatory
functionals

K1
M (h1, h2, h3, h4) :=

1∫

0

∫

R4

1

t
e−i(η2

1−η2
2+η2

3−η2
4)/(4t)M(η)h1(η1)h2(η2)h3(η3)h4(η4)δ(η1 − η2 + η3 − η4) dηdt
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K2
M (h1, h2, h3, h4) :=

1∫

0

∫

R4

eit(η2
1−η2

2+η2
3−η2

4)M(η)h1(η1)h2(η2)h3(η3)h4(η4)δ(η1 − η2 + η3 − η4) dηdt

Note that by Lemma 2.1, we can rewrite the twisted functionals as

Qµ,ε(h1, h2, h3, h4) =
1

4π
K1

Mµ,ε
(h1, h2, h3, h4),

Q̃µ,ε(h1, h2, h3, h4) =
1

2π
K2

Mµ,ε
(ĥ1, ĥ2, ĥ3, ĥ4),

where

Mµ,ε(η) = eFµ,ε(η1)−Fµ,ε(η2)−Fµ,ε(η3)−Fµ,ε(η4).

Note that by the triangle inequality the function Mµ,ε is bounded by 1 on the set
η1 − η2 + η3 − η4 = 0 for any µ, ε ≥ 0. Therefore Theorems 2.2 and 2.3 follow
immediately from the Propositions 2.5 and 2.6 below.

Proposition 2.5. Let M̃ := supη1−η2+η3−η4=0 M(η1, η2, η3, η4) < ∞. Then Kn
M ,

n = 1, 2, is well-defined for all hj ∈ L2(R). Moreover,

(2.8) |Kn
M (h1, h2, h3, h4)| . M̃

4∏

j=1

‖hj‖2

where the implicit constant is independent of M and hj, j = 1, 2, 3, 4.

Proof. By scaling, we can assume M̃ = 1. Let a(η) := η2
1 − η2

2 + η2
3 − η2

4 . We write

|K1
M | ≤

∫

R4

∣∣∣
1∫

0

1

t
e−ia(η)/(4t)dt

∣∣∣|M(η)|
4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη

≤ M̃

∫

R4

∣∣∣
1∫

0

1

t
e−ia(η)/(4t)dt

∣∣∣
4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη.(2.9)

Now we divide the t-integral into two pieces t ≤ |a(η)| where oscillations will be
important and t ≥ |a(η)|. More precisely,

(2.9) ≤
∫

R4

∣∣∣
min(1,|a(η)|)∫

0

e−ia(η)/(4t)

t
dt

∣∣∣
4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη(2.10)

+

∫

R4

1∫

min(1,|a(η)|)

dt

t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη.(2.11)

Let us introduce the following functionals, which, for later flexibility, we define in a
little bit more generality than needed at the moment. For any (measurable) subset
A ⊂ R

4 let

I1(A) :=

∫

A

min(1, |a(η)|−1)
4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη(2.12)
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I2(A) :=

1∫

0

∫

A∩{|a(η)|≤t}

1

t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dηdt.(2.13)

By Fubini-Tonelli

(2.11) =

1∫

0

1

t

∫

|a(η)|≤t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dηdt = I2(R
4).

To estimate (2.10) we employ the following bound, which follows by the change of
variable τ = 1/t and then an integration by parts.

∣∣∣
b∫

0

1

t
e−ia/(4t)dt

∣∣∣ ≤ 8|b|
|a| .(2.14)

Using this one sees

(2.10) . I1(R
4),

hence

(2.15) |K1
M | . I1(R

4) + I2(R
4)

We start to estimate the second term. Since |a(η)| = 2(η1 − η2)(η2 − η3) on the set
η1 − η2 + η3 − η4 = 0, we can estimate the η-integral in I2(R

4) by

∫

|a(η)|≤t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη ≤

∫

|η1−η2|≤
√

t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη

+

∫

|η2−η3|≤
√

t

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη

(2.16)

The first integral on the right hand side of (2.16) can be bounded by

∫

|η1−η2|≤
√

t

|h1(η1)||h2(η2)||h3(η3)||h4(η1 − η2 + η3)|dη1dη2dη3

≤ ‖h3‖2‖h4‖2

∫

|η1−η2|≤
√

t

|h1(η1)||h2(η2)|dη1dη2

≤ ‖h3‖2‖h4‖2

( ∫

|η1−η2|≤
√

t

|h1(η1)|2dη1dη2

)1/2( ∫

|η1−η2|≤
√

t

|h2(η2)|2dη1dη2

)1/2

= 2
√

t‖h1‖2‖h2‖2‖h3‖2‖h4‖2,
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where we used Cauchy-Schwarz inequality first in the dη3 integral, then in the
dη1dη2 integral. The second integral can be estimated similarly. Thus

I2(R
4) ≤ 4‖h1‖2‖h2‖2‖h3‖2‖h4‖2

1∫

0

1√
t
dt = 8‖h1‖2‖h2‖2‖h3‖2‖h4‖2.

To estimate I1(R
4) we split the η-integral into two disjoint regions

A1 := {η ∈ R
4 : |η1 − η2| ≤ 1 or |η2 − η3| ≤ 1}

= {η ∈ R
4 : |η1 − η2| ≤ 1} ∪ {η ∈ R

4 : |η2 − η3| ≤ 1}
A2 := {η ∈ R

4 : |η1 − η2| > 1 and |η2 − η3| > 1}.

Obviously, I1(R
4) = I1(A1)+ I1(A2). For I1(A1), we bound the minimum in (2.12)

by 1 and then estimate the remaining integral as in (2.16) but now for t = 1. This
shows

I1(A1) . ‖h1‖2‖h2‖2‖h3‖2‖h4‖2.

On the other hand

I1(A2) ≤
∫

A2

|h1(η1)||h2(η2)||h3(η3)||h4(η4)|
|a(η)| δ(η1 − η2 + η3 − η4)dη

.

∫

|η1−η2|≥1

|η2−η3|≥1

|h1(η1)||h2(η2)||h3(η3)||h4(η1 − η2 + η3)|
|η1 − η2||η2 − η3|

dη1dη2dη3

≤ ‖h1‖2‖h2‖2‖h4‖2

( ∫

|η1−η2|≥1

|η2−η3|≥1

|h3(η3)|2
|η1 − η2|2|η2 − η3|2

dη1dη2dη3

)1/2

. ‖h1‖2‖h2‖2‖h3‖2‖h4‖2.

(2.17)

This finishes the proof for K1
M . The proof for K2

M is simpler. Using the inequality

(2.18)
∣∣∣

1∫

0

eiatdt
∣∣∣ . min(1, |a|−1),

one realizes |K2
M | . I1(R

4) and then proceeds as in the bound of I1(R
4).

A refinement of this proposition, when at least two of the functions, say, hj and
hk, have separated supports, is

Proposition 2.6. Assume that M̃ := supη1−η2+η3−η4=0 M(η1, η2, η3, η4) < ∞ and

that there exist l, k ∈ {1, 2, 3, 4} with τ = dist(supp (hl), supp (hk)) ≥ 1. Then,

(2.19) |Kn
M (h1, h2, h3, h4)| .

M̃√
τ

4∏

j=1

‖hj‖2, n = 1, 2.

Proof. Again we can assume M̃ = 1. For A ⊂ R
4 let

(2.20) I(A) :=

∫

A

∣∣∣
1∫

0

1

t
e−ia(η)/(4t)dt

∣∣∣
4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη.
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Let Jτ
l,k := {η ∈ R

4 : |ηl − ηk| ≥ τ}. Then |K1
M | ≤ I(Jτ

l,k). By symmetry in (2.20),

it is enough to consider the cases (l, k) = (1, 2) and (l, k) = (1, 3). First we consider
the case (l, k) = (1, 2).

Recalling the definitions (2.12) and (2.13), we can, as in the proof of Proposi-
tion 2.5, bound I(Jτ

1,2) by

(2.21) I(Jτ
1,2) . I1(J

τ
1,2) + I2(J

τ
1,2)

In the integral defining I2(J
τ
1,2), we have t ≥ |a(η)| = 2|η1−η2||η2−η3| ≥ 2τ |η2−η3|,

which implies |η2 − η3| . t/τ . This yields

I2(J
τ
1,2) .

1∫

0

1

t

∫

|η2−η3|.t/τ

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dηdt

.
1

τ
‖h1‖2‖h2‖2‖h3‖2‖h4‖2,

where we obtained the last line as in the estimate of (2.16) with
√

t replaced by
t/τ .

To estimate I1(J
τ
1,2) let

Aτ
1 := {|η1 − η2| ≥ τ} ∩ {|η2 − η3| ≤ 1}(2.22)

Aτ
2 := {|η1 − η2| ≥ τ} ∩ {|η2 − η3| > 1}.(2.23)

Then, obviously,

I1(J
τ
1,2) = I1(A

τ
1) + I1(A

τ
2 ).

Similar to (2.17), we bound I1(A
τ
2) by

I1(A
τ
2) . ‖h1‖2‖h2‖2‖h4‖2

( ∫

|η1−η2|≥τ

|η2−η3|≥1

|h3(η3)|2
|η1 − η2|2|η2 − η3|2

dη1dη2dη3

)1/2

.
1√
τ
‖h1‖2‖h2‖2‖h3‖2‖h4‖2

For estimating I1(A
τ
1) we bound the minimum in (2.12) by |a(η)|−1/2 to see

I1(A
τ
1) .

∫

Aτ
1

1

|η1 − η2|1/2|η2 − η3|1/2

4∏

j=1

|hj(ηj)|δ(η1 − η2 + η3 − η4)dη

.
1√
τ

∫

|η2−η3|≤1

|h1(η1)h2(η2)h3(η3)h4(η1 − η2 + η3)|
|η2 − η3|1/2

dη1dη2dη3

≤ ‖h1‖2‖h4‖2√
τ

∫

|η2−η3|≤1

|h2(η2)h3(η3)|
|η2 − η3|1/2

dη2dη3

≤ ‖h1‖2‖h4‖2√
τ

( ∫

|η2−η3|≤1

|h3(η3)|2dη2dη3

|η2 − η3|1/2

)1/2( ∫

|η2−η3|≤1

|h2(η2)|2dη2dη3

|η2 − η3|1/2

)1/2

.
1√
τ
‖h1‖2‖h2‖2‖h3‖2‖h4‖2,
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where in the third inequality we used the Cauchy Schwarz bound with respect to
dη1 and in the forth inequality with respect to the measure |η2 − η3|−1/2dη2dη3.
This finishes the proof for K1

M .
Again the proof for K2

M is simpler. Using (2.18) and the separation condition
|η1− η2| ≥ τ for all (η1, η2) in the support of h1(η1)h2(η2) one sees |K2

M | . I1(J
τ
1,2)

and then proceeds as in the bound of I1(J
τ
1,2).

Now we prove the case (l, k) = (1, 3), that is, we assume that the supports of h1

and h3 are separated by τ . In this case we have |K1
M | ≤ I(Jτ

1,3) and |K2
M | ≤ I1(Jτ

1,3).

The triangle inequality yields Jτ
1,3 ⊂ J

τ/2
1,2 ∪ J

τ/2
2,3 , as subsets of R

4, hence

I(Jτ
1,3) ≤ I(J

τ/2
1,2 ) + I(J

τ/2
2,3 ) .

1√
τ

4∏

j=1

‖hj‖2,

and similarly for I1(Jτ
1,3). This finishes the proof of the proposition.

3. Proof of exponential decay.

Let f be a weak solution of the dispersion management equation. Let

(3.1) ‖f‖µ,ε := ‖eFµ,ε(X)f‖2,

with Fµ,ε defined in (2.3). The main step in our argument is to show that for some
positive µ, ‖f‖µ,ε is bounded in ε > 0.

Fix τ > 1 and define, for an arbitrary function f ,

f≪ := fχ[−τ/3,τ/3], f< := fχ[−τ,τ ], f> := fχ[−τ,τ ]c, f∼ := f< − f≪.

Lemma 3.1. Let f be a weak solution of the dispersion management equation for

some ω > 0 with ‖f‖ = 1. Then

ω‖f>‖µ,ε . ‖f>‖3
µ,ε + eµτ‖f>‖2

µ,ε + ‖f>‖µ,εe
2µτ

( 1√
τ

+ ‖f∼‖
)

+ e3µτ
( 1√

τ
+ ‖f∼‖

)
.

where the implicit constant does not depend on µ, ε, and τ .

Proof. Since f is a weak solution of the dispersion management equation for some
ω > 0, we have

ω〈ϕ, f〉 = Q(ϕ, f, f, f), for any ϕ ∈ L2.

Using this with ϕ = e2Fµ,εf>, we obtain

ω‖f>‖2
µ,ε = Q(e2Fµ,εf>, f, f, f)

= Qµ,ε(e
Fµ,εf>, eFµ,εf, eFµ,εf, eFµ,εf).

Let h := eFµ,εf . Then
ω‖h>‖2 = Qµ,ε(h>, h, h, h).

Writing h = h> + h<, and using the multilinearity of Qµ,ε, we obtain

ω‖h>‖2 = Qµ,ε(h>, h>, h>, h>) + Qµ,ε(h>, h<, h<, h<)(3.2)

+ Qµ,ε(h>, h>, h>, h<) + Qµ,ε(h>, h>, h<, h<)

+ (similar terms with permutations of the last three entrees)

Note that by Theorem 2.2, we have

|Qµ,ε(h>, h>, h>, h>)| . ‖h>‖4,

|Qµ,ε(h>, h>, h>, h<)| . ‖h>‖3‖h<‖.
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To estimate the remaining terms, we will further split one of the h< they contain
into h≪ + h∼:

|Qµ,ε(h>, h<, h<, h<)| ≤ |Qµ,ε(h>, h<, h<, h≪)| + |Qµ,ε(h>, h<, h<, h∼)|

.
1√
τ
‖h>‖‖h<‖2‖h≪‖ + ‖h>‖‖h<‖2‖h∼‖,

using Theorem 2.2, Theorem 2.3, and the fact that the supports of h> and h≪ are
separated by 2τ/3. Similarly,

|Qµ,ε(h>, h>, h<, h<)| ≤ |Qµ,ε(h>, h>, h<, h≪)| + |Qµ,ε(h>, h>, h<, h∼)|

.
1√
τ
‖h>‖2‖h<‖‖h≪‖ + ‖h>‖2‖h<‖‖h∼‖

Similar estimates hold for the permutations. Using these estimates in (3.2), we
obtain

ω‖h>‖2 . ‖h>‖4 + ‖h>‖3‖h<‖ +
1√
τ
‖h>‖2‖h<‖‖h≪‖ + ‖h>‖2‖h<‖‖h∼‖(3.3)

+
1√
τ
‖h>‖‖h<‖2‖h≪‖ + ‖h>‖‖h<‖2‖h∼‖

(3.4)

Dividing both sides by ‖h>‖ and using h<, h≪ ≤ eµτf , h∼ ≤ eµτf∼, and ‖f‖ = 1,
we obtain

ω‖h>‖ . ‖h>‖3 + ‖h>‖2eµτ + ‖h>‖e2µτ
( 1√

τ
+ ‖f∼‖

)
+ e3µτ

( 1√
τ

+ ‖f∼‖
)
,

which finishes the proof.

Proof of Theorem 1.2. Step 1. We will first determine τ > 1 and we pick µ so
that eµτ = 2. We can rewrite the bound from Lemma 3.1 as (with the notation
ν = ‖h>‖)

(3.5)
(
ω − C√

τ
− C‖f∼‖

)
ν − Cν2 − Cν3 ≤ C

( 1√
τ

+ ‖f∼‖
)
.

Step 2. Let G(ν) = w
2 ν − Cν2 − Cν3. Let νmax be the maxima of G on R

+.
Step 3. Let ν0 = νmax/2, and pick τ > 1 so that

i) C
( 1√

τ
+ ‖f∼‖

)
≤ min(ω/2, G(ν0)),

ii) ‖f>‖ ≤ ν0/2.

With this choice, we rewrite (3.5) as

(3.6) G(‖f>‖µ,ε) ≤ G(ν0),

which is valid for any ε > 0. This is depicted in figure 1.
Step 4. Note that by ii) above and our choice of µ in step 1, we have

(3.7) ‖f>‖µ,1 ≤ ‖eµ |x|
1+|x| ‖∞‖f>‖ ≤ eµν0/2 < ν0.

Finally since ‖f>‖µ,ε depends continuously on ε for ε > 0, and (3.7), the inequality
(3.6) shows that ‖f>‖µ,ε is in the same connected component of G−1([0, G(ν0)]),
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Gmax

G(ν0)

νmaxν0 ν10

[0, ν0] ∪ [ν1,∞) = G−1
(
[0, G(ν0)]

)

Figure 1. Graph of G(ν) and the trapping region G−1
(
[0, G(ν0)]

)
.

that is ‖f>‖µ,ε ∈ [0, ν0] for all ε > 0. This implies by monotone convergence
theorem that

‖f>‖µ,0 = sup
ε>0

‖f>‖µ,ε ≤ ν0.

This shows that eµ|·|f ∈ L2. With the obvious change of notation, a similar ar-

gument using Theorems 2.2, 2.3 for Q̃µ,ε shows that eµ̃|·|f̂ ∈ L2, for some µ̃ > 0.
Finally, the pointwise exponential bounds follows from the one-dimensional Sobolev
embedding theorem, or simply by the following

eµ|x||f(x)|2 = eµ|x|
∣∣∣
∫ ∞

x

d

ds
|f(s)|2ds

∣∣∣

≤ 2

∫ ∞

x

eµ|s||f(s)||f ′(s)|ds ≤ 2‖eµ|·|f‖ ‖f ′‖ < ∞.

Similarly one gets pointwise exponential decay of f̂ .
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