
A BILINEAR FOURIER EXTENSION THEOREM AND
APPLICATIONS TO THE DISTANCE SET PROBLEM

M. BURAK ERDOG̃AN

Abstract. In this paper, we obtain a weighted version of Tao’s

bilinear Fourier extension estimate for elliptic surfaces. This im-

plies improved partial results in the direction of Falconer’s distance

set conjecture in dimensions d ≥ 3.

1. Introduction

In [11], Tao proved the following bilinear Fourier extension estimate.

Let S = {x ∈ Rd : xd = x2
1 + ...+ x2

d−1} and dσ be the surface measure

on S. Let µ̂ denote the Fourier transform of the measure µ in Rd,

µ̂(ξ) =

∫
Rd

e−2πix·ξdµ(x), ξ ∈ Rd.

Theorem A. Let d ≥ 2. Let S1, S2 be compact subsets of S with

d(S1, S2) > 1. Then for all q > d+2
d

, we have

(1) ‖f̂1dσf̂2dσ‖Lq(Rd) ≤ Cq,d‖f1‖L2(dσ)‖f2‖L2(dσ),

for all fj ∈ L2(dσ) supported in Sj, j = 1, 2.

This theorem is proved in [11] for d ≥ 3. For d = 2, it has been

known for a long time and is basically the Carleson-Sjölin Theorem

[2]. Previously, in [15], Wolff obtained Theorem A for the light cone in

general dimensions. Tao’s proof relies on and extends the ideas in [15].
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We consider the following weighted version of the inequality (1). Fix

α ∈ (0, d). Suppose H : Rd → R satisfies

‖H‖∞ ≤ 1,(2) ∫
B(x,r)

|H(u)|du ≤ rα, ∀x ∈ Rd, ∀r > 0.(3)

For which q and α, the inequality

(4) ‖f̂1dσf̂2dσ‖Lq(Hdξ) ≤ Cα,q,d‖f1‖L2(dσ)‖f2‖L2(dσ)

holds for all fj ∈ L2(dσ) supported in Sj, j = 1, 2?

Obviously, (2) and Theorem A imply that (4) holds for q > d+2
d

. We

improve this range of q for α < d+2
2

.

Theorem 1. Let d ≥ 3 and α ∈ (0, d). Assume that H satisfies (2)

and (3). Then, under the hypothesis of Theorem A, (4) holds for any

q > q0(α, d) := max(1,min( 4α
d+2α−2

, d+2
d

)).

There is no reason for this theorem to be optimal. In fact, it should

be possible to improve the range of q for each α ∈ (0, d). However, this

theorem significantly improves the known estimates for the decay of

L2 spherical averages of the Fourier transform of fractal measures (see

Section 3). Using this we obtain improved partial results in the direc-

tion of Falconer’s distance set conjecture in dimensions 3 and higher.

Let E be a compact subset of Rd. The distance set, ∆(E), of E is

defined as

∆(E) = {|x− y| : x, y ∈ E}.

In [5], Falconer conjectured that:

Conjecture. Let d ≥ 2. Let E be a compact subset of Rd. Then,

dim(E) >
d

2
=⇒ |∆(E)| > 0.

Here |·| is the Lebesgue measure and dim(·) is the Hausdorff dimension.

Falconer’s conjecture is open in every dimension. In [5], Falconer

gave an example showing that d
2

in the conjecture is optimal and



BILINEAR EXTENSION THEOREM 3

proved that dim(E) > d+1
2

implies |∆(E)| > 0. Bourgain [1] improved

this result in every dimension, and in particular proved that in R2,

dim(E) > 13
9

suffices. Later, Wolff [14] proved that in R2, dim(E) > 4
3

suffices. This is still the best known result in R2. See [3] for a simplified

proof of Wolff’s theorem. In [4], using Theorem A the author proved

that dim(E) > d(d+2)
2(d+1)

suffices. See [14], [8], [3] and [4] for some varia-

tions and related results. In this paper, using (a variant of) Theorem 1,

we prove

Theorem 2. Let d ≥ 3. Let E be a compact subset of Rd with

dim(E) >
d

2
+

1

3
.

Then |∆(E)| > 0.

Remark 1. Wolff’s result in [14] and Theorem 2 relies on a method

developed by Mattila [7, 8]. As it is noted in [14], 4
3

is the best possible

exponent (in R2) one can obtain using this method. In R3, the best

possible exponent is 5
3
. However, it may be possible to prove Falconer’s

conjecture in dimensions d ≥ 4 using Mattila’s approach. In particular,

it will be clear from the proof of Theorem 2 that the inequality (4) for

α = d/2 and for all q > 1, if true, implies Falconer’s conjecture in Rd,

d ≥ 4.

Remark 2. As in [4], the assertion of Theorem 2 can be extended

to distance sets with respect to general metrics. Let K be a convex

symmetric body. Assume that the boundary of K is smooth and has

non-vanishing Gaussian curvature. Define ∆K(E) = {dK(x, y) : x, y ∈
E}, where dK is the distance induced by K. Then, the statement of

Theorem 2 holds for ∆K .

We prove Theorem 1 in Section 5. In Section 2, we describe some

extensions of Theorem 1. In Section 3, we describe Mattila’s approach

and in Section 4, we prove Theorem 2.
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List of notations

χA: characteristic function of the set A.

B(x, r) := {y : |x− y| < r}.
d(A,B): the distance between the sets A and B.

AR(C) := {x ∈ Rd : ||x| −R| ≤ C}.
C: a constant which may vary from line to line.

A . B: A ≤ CB.

A ≈ B: A . B and B . A.

A� B: A ≤ 1
C
B, for some large constant C.

|A|: length of the vector A or the measure of the set A.

2. Some extensions and corollaries of Theorem 1

Following the remark on page 1381 of [11], one can easily extend

Theorem 1 to more general elliptic surfaces. First let us recall the

definition of elliptic surfaces from [13] and [4].

Definition 1. We say φ : B(0, 1) ⊂ Rd−1 → R is an (M, ε0)-elliptic

phase if φ satisfies

i) ‖φ‖C∞ < M ,

ii) φ(0) = ∇φ(0) = 0, and

iii) For all x ∈ B(0, 1), all eigenvalues of the Hessian φxixj(x) lie in

[1− ε0, 1 + ε0].

We say S is an (M, ε0)-elliptic surface if S = {(x, y) ∈ B(0, 1)×R ⊂
Rd : y = φ(x)} for some (M, ε0)-elliptic phase φ.

We recall the following properties of elliptic phases (see, e.g., [13, 4]):

I) Let φ be an (M, ε0)-elliptic phase and B(x0, η) ⊂ B(0, 1). Let

φ̃(x) :=
1

η2
(φ(xη + x0)− φ(x0)− ηx · ∇φ(x0)) , x ∈ B(0, 1).

Then φ̃ is a (CdM, ε0)-elliptic phase.

II) Let S be a smooth compact submanifold of Rd with strictly pos-

itive principal curvatures. Note that for any ε0 > 0 and for any s ∈ S
there is a neighborhood Us of s and an affine bijection as of Rd such



BILINEAR EXTENSION THEOREM 5

that as(Us) is an (M, ε0)-elliptic surface, where M depends only on d,

‖φ‖C∞ and the principal curvatures at s. Moreover, by using a par-

tition of unity, we can write S as a union of affine images of finitely

many (M, ε0)-elliptic surfaces.

We have the following generalization of Theorem 1.

Theorem 3. Let d ≥ 3 and α ∈ (0, d). Let H be a function satisfying

(2) and (3). For any M > 0, there exists ε0 > 0 such that the following

statement holds.

Let S1, S2 be compact subsets of diameter ≈ 1 of an (M, ε0)-elliptic

surface in Rd with d(S1, S2) > 1
100

. Let σ be the Lebesgue measure on

S. Then for all q > q0(α, d), we have

(5) ‖f̂1 dσ1f̂2 dσ2‖Lq(Rd,Hdx) ≤ CM,q,d‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ2),

for all fj ∈ L2(dσ) supported in Sj, j = 1, 2.

In the application to the distance set problem, we need the following

corollary of this theorem. Recall that

Definition 2. A compactly supported probability measure µ is called

α-dimensional if it satisfies

(6) µ(B(x, r)) ≤ Cµr
α, ∀r > 0,∀x ∈ Rd.

Corollary 1. Let µ be an α-dimensional measure. Let β > 0 and

βR−1/2 . η . 1. Let I1, I2 be subsets of AR(β) = {x ∈ R : ||x| −R| <
β}, satisfying

diam(Ij) ≈ Rη, j = 1, 2, d(I1, I2) ≈ Rη.

Then for any q > q0(α, d)

(7) ‖f̂1f̂2‖Lq(dµ) . β(Rη)d−1−α
q η−

1
q ‖f1‖2‖f2‖2,

for any functions fj supported in Ij, j = 1, 2.
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We need the following version of the uncertainty principle in the

proof of the corollary. For a proof see, e.g., [4] and [16, Chapter 5]. Let

ϕ be a Schwartz function satisfying

ϕ(ξ) = 1, for |ξ| < 2 and ϕ(ξ) = 0, for |ξ| > 4.

For each ball D ⊂ Rd fix an affine bijection aD of Rd which maps D

to B(0, 1). Let ϕD := ϕ ◦ aD.

Lemma 2.1. Let µ be an α-dimensional measure in Rd. Let D be a

ball of radius s in Rd. Then the function µD := |ϕ∨D| ∗ µ satisfies

i) ‖µD‖∞ . sd−α,

ii) ‖µD‖1 . 1,

ii) µD(B) :=
∫
B µD(y) dy . rα, for any ball B of radius r ≥ 100s−1.

Proof of Corollary 1. Note that f1∗f2 is contained in a ball D of radius

≈ Rη. Therefore

‖f̂1f̂2‖Lq(dµ) = ‖(f̂1f̂2) ∗ ϕ∨D‖Lq(dµ)(8)

. ‖f̂1f̂2‖Lq(|ϕ∨D|∗dµ)‖ϕ∨D‖
1/q′

1

. ‖f̂1f̂2‖Lq(µD).

Let e be the unit vector in the direction of the center of mass of

I1 ∪ I2. Let {e1 = e, e2, ..., ed} be an orthogonal basis for Rd. Let

T : Rd → Rd be the linear map which satisfies

T (e1) =
1

Rη2
e1, T (ej) =

1

Rη
ej, j = 2, 3, ..., d,

In view of I) and II) above, Cj = TIj is contained in≈ β
Rη2 -neighborhood

of an affine image of a surface Sj, j = 1, 2, where the surfaces S1, S2 sat-

isfy the hypothesis of Theorem 3 (with M independent of R, η, I1, I2).

Let gj(x) = fj(T
−1x), j = 1, 2. Note that gj is supported in Cj,

j = 1, 2. We have

f̂j(ξ) =
1

det(T )
ĝj(T

−1(ξ)) = (Rη)dηĝj(T
−1ξ), j = 1, 2.
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Therefore,

‖f̂1f̂2‖Lq(µD) = (Rη)2dη2

[∫
|ĝ1(T−1x)ĝ2(T−1x)|qµD(x)dx

]1/q

(9)

= (Rη)2d− d
q η2− 1

q

[∫
|ĝ1(x)ĝ2(x)|qµD(Tx)dx

]1/q

= (Rη)2d− d
q η2− 1

q (Rη)
d−α
q ‖ĝ1ĝ2‖Lq(H dx),

where H(x) = (Rη)α−dµD(Tx). Using Lemma 2.1, it is easy to see that

H satisfies the conditions (2) and (3) (possibly with a constant other

than 1 which can be scaled out). Since gj is supported in Cj, using

Theorem 3 we obtain

(10) ‖ĝ1ĝ2‖Lq(Hdx) .
β

Rη2
‖g1‖2‖g2‖2.

We also have

‖gj‖2 = (Rη)−
d
2 η−

1
2‖fj‖2, j = 1, 2.(11)

Using (8), (9), (10) and (11), we have

‖f̂1f̂2‖Lq(dµ) . (Rη)2d− d
q η2− 1

q (Rη)
d−α
q

β

Rη2
(Rη)−dη−1‖f1‖2‖f2‖2

= β(Rη)d−1−α
q η−

1
q ‖f1‖2‖f2‖2.

�

3. Application to the distance set problem

In [7] (also see ([16, 8]), Mattila developed a method to attack the

distance set problem. Mattila’s approach was used in [7, 1, 14, 6, 4].

We refer the reader to [14] and [4] for the following version of Mattila’s

theorem.

Theorem 4. Fix α ∈ [d
2
, d+1

2
] and q0 ∈ [1, 2] such that α(1 + 1

q0
) ≥ d.

Assume that for all q > q0, for all α-dimensional measures µ, for all

R > 1 and for all f supported in AR(1), we have

(12)
∣∣∣ ∫ f∨(u) dµ(u)

∣∣∣ ≤ Cq,µR
d−1

2
− α

2q ‖f‖2,
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where f∨ is the inverse Fourier transform of f . Then Falconer’s con-

jecture holds for α, i.e.

dim(E) > α⇒ |∆(E)| > 0.

In light of Theorem 4, Theorem 2 is a corollary of the following

Theorem 5. Let α ∈ (0, d) and q > q0(α, d). For all α-dimensional

measures µ, for all R > 1 and for all f supported in AR(1), (12) holds.

Like Theorem 2, Theorem 5 was first proved in [14] for d = 2.

Remark 3. By duality and the uncertainty principle (see [4]), the

inequality (12) implies that for every β < α
2q

‖µ̂(R·)‖L2(Sd−1) . R−β.

In fact, one can easily keep track of the constant Cq,µ in (12) and obtain

the statement

(13) ‖µ̂(R·)‖L2(Sd−1) ≤ Cα,βR
−β
√
Iα(µ),

for any β < α
2q

(see [14, 3]). Here Iα(µ) is the α-dimensional energy of

the measure µ,

Iα(µ) :=

∫ ∫
dµ(x)dµ(y)

|x− y|α
= Cα,d

∫
|µ̂(ξ)|2

|ξ|d−α
dξ.

Combining the result of Theorem 5 with the previously known partial

results [7, 9, 14, 10, 8, 3, 4], we see that the inequality (13) holds for

every

(14) β <


α
2
, α ∈ (0, d−1

2
],

d−1
4
, α ∈ [d−1

2
, d

2
],

d+2α−2
8

, α ∈ [d
2
, d+2

2
],

α−1
2
, α ∈ [d+2

2
, d).

The range of β is optimal for each α ∈ (0, 2) for d = 2 (see, e.g.,

[9, 14, 3]). In higher dimensions, the range is optimal for α ≤ d−1
2

(see

[9]). However, there is no reason to believe that the range is optimal

for α > d−1
2

and d ≥ 3.
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4. Proof of Theorem 5

The proof is same as the proof given in [4] except a minor change in

the inequality (22) below. Fix α ∈ (0, d). Let f be supported in AR(1)

with L2 norm 1. Below, we prove that for each q > q0(α, d)

(15) ‖f∨‖L2(dµ) . R
d−1

2
− α

2q .

(12) can be obtained from (15) using Cauchy-Schwarz inequality. As in

[4], we use the bilinear approach. It suffices to prove (15) for functions

f supported in a subset of AR(1) of diameter � R. Consider a dyadic

decomposition of AR(1) into spherical caps, I, with dimensions 2×2n×
...× 2n for

R
1
2 � 2n � R.

We say I has sidelength 2n and write `(I) = 2n. The unique cap of

sidelength 2n+1 which contains I is called the parent of I. Let I and J

be caps with the same sidelength. We say I and J are related, I ∼ J ,

if they are not adjacent but their parents are.

Let fI := fχI . As in [4], we have

‖f∨‖2
L2(dµ) ≤

∑
R

1
2�2n�R

∑
`(I)=2n,I∼J

‖f∨I f∨J ‖L1(dµ) +
∑
I∈IE

‖f∨I ‖2
L2(dµ)(16)

=: S1 + S2.

Here IE is a set of dyadic caps with sidelengths ≈ R
1
2 satisfying the

finite overlapping property:

(17)
ww∑

I∈IE

χI
ww
∞ . 1.

First, we obtain a bound for S2. Since each I ∈ IE is contained in

a ball D of radius CR
1
2 , we have f∨I = f∨I ∗ ϕ∨D, (ϕD is defined in the

Section 2). Using this and Cauchy-Schwarz inequality, we have

(18) |f∨I | ≤ (|f∨I |2 ∗ |ϕ∨D|)
1
2‖ϕ∨D‖

1
2
1 . (|f∨I |2 ∗ |ϕ∨D|)

1
2 .
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Using this, Fubini’s theorem and Lemma 2.1, we obtain

(19)

‖f∨I ‖2
L2(dµ) ≤

∫
|f∨I (x)|2(µ ∗ |ϕ∨D|)(x)dx . ‖f∨I ‖2

2R
d−α

2 = ‖fI‖2
2R

d−α
2 .

Using (19) and (17), we obtain

S2 =
∑
I∈IE

‖f∨I ‖2
L2(dµ) . R

d−α
2

∑
I∈IE

‖fI‖2
2 . R

d−α
2 ‖f‖2

2 = R
d−α

2 .

This term is harmless since d−α
2
≤ d− 1− α

q0(α,d)
, for α ∈ (0, d).

In the remaining part of the paper we prove that for q > q0(α, d),

S1 . Rd−1−α
q . By a standard L2-orthogonality argument (see e.g. [13,

15, 3, 4]), it suffices to prove that for each q > q0(α, d), for each n and

I ∼ J with |I| = |J | = 2n

(20) ‖f∨I f∨J ‖L1(dµ) ≤ Cα,q,dR
d−1−α

q ‖fI‖2‖fJ‖2.

Let e be the unit vector which is in the direction of the center of

mass of I ∪ J . Consider a tiling of Rd with rectangles P of dimensions

100 × 1002n

R
× ... × 1002n

R
, the long axis being in the direction e. For

each P , let aP be an affine bijection from Rd to Rd which maps P to

the unit cube. Let φ be a Schwartz function satisfying

(21) φ(x) ≥ χB(0,1)(x), x ∈ R, and supp(φ̂) ⊂ B(0, 1).

Let φP := φ ◦ aP and fI,P := f̂∨I φP . Using (21) and the fact that the

rectangles P tile Rd, we obtain

‖f∨I f∨J ‖L1(dµ) .
∑
P

∫
|f∨I,P (x)f∨J,P (x)|φP (x)dµ(x)

.
∑
P

‖f∨I,Pf∨J,P‖Lq(µ)‖φP‖1/q′

L1(µ),(22)

where q′ = q
q−1

.

To estimate ‖f∨I,Pf∨J,P‖Lq(µ), we use Corollary 1 of Theorem 1. Let

IP be the support of fI,P . Note that IP is contained in I+ supp(φ̂P ) ⊂
I + Pdual, where Pdual is the dual of P centered at the origin. We have
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Lemma 4.1. I + Pdual is contained in a spherical cap of dimensions

10× 11
10

2n × ...× 11
10

2n in AR(10) which contains I.

See [4] for the elementary proof. Using Lemma 4.1 for I and J , we

see that IP and JP have diameter ≈ 2n; they are contained in AR(10)

and d(IP , JP ) ≈ 2n. Therefore, Corollary 1 implies that

‖f∨I,Pf∨J,P‖Lq(µ) . 2n(d−1−α
q

)
[2n

R

]− 1
q ‖fI,P‖2 ‖fJ,P‖2

= R
1
q 2n(d−1− 1

q
−α
q

)‖fI,P‖2 ‖fJ,P‖2.(23)

Now, we estimate ‖φP‖L1(µ). Using the Schwartz decay of φP , we

have

‖φP‖L1(µ) ≤
∞∑
j=1

2−Mj

∫
χ2jP (x) dµ(x).

Note that 2jP can be covered by ≈ R
2n

balls of radius ≈ 2j2n

R
. Since µ

is α dimensional, we get

‖φP‖L1(µ) .
∞∑
j=1

2−
Mj
2 2nα−nR1−α . 2nα−nR1−α.(24)

Using (22), (23), (24) and then Cauchy-Schwarz inequality, we get

‖f∨I f∨J ‖L1(dµ) . R
1− α

q′ 2n(α(1− 2
q

)+d−2)
∑
P

‖fI,P‖2‖fJ,P‖2

. R
1− α

q′ 2n(α(1− 2
q

)+d−2)
[∑

P

‖fI,P‖2
2

] 1
2
[∑

P

‖fJ,P‖2
2

] 1
2

Using the Schwartz decay of φ, the fact that the rectangles P tile Rd

and Plancherel formula, we get

(25) ‖f∨I f∨J ‖L1(dµ) . R
1− α

q′ 2n(α(1− 2
q

)+d−2)‖fI‖2‖fJ‖2.

The exponent of 2n in (25) is non-negative and 2n . R. Therefore

‖f∨I f∨J ‖L1(dµ) . R
1− α

q′Rα(1− 2
q

)+d−2‖fI‖2‖fJ‖2

= Rd−1−α
q ‖fI‖2‖fJ‖2.(26)

This finishes the proof of Theorem 5.
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5. Proof of Theorem 1

The proof of Theorem A is quite technical and lengthy. The proof of

Theorem 1 is a very simple modification of this proof. Therefore, we

just give a short sketch of the argument. We warn the reader that in

[11] the letter n is used for dimension. We use the letter d for dimension

and d = n+ 1. We also note that the “epsilon-removal” lemma in [12,

Lemma 2.4] which was used in [11] to reduce the proof to a localized

restriction estimate remains valid in our case. Thus, it suffices to prove

the following localized version of (4) for each η > 0

(27)

‖f̂1dσf̂2dσ‖Lq0(α,d)(B(0,R),Hdξ) ≤ Cη,α,dR
η‖f1‖L2(dσ)‖f2‖L2(dσ), ∀R > 1.

In fact, Theorem 2 can be proved using only the localized version (27)

since we don’t prove an endpoint result.

Fix α ≤ d+2
2

, and let q0 = q0(α, d). As in [15], (27) is proved by

induction on η. It is easy to see that (27) holds for each R > 0 and

for each ball B of radius R if η ≥ α/q0. Now, we prove that if (27)

holds for some η > 0 (and for each R and B), then it also holds for

max((1− δ)η, Cδ) + Cε for all 0 < δ, ε < 1. This implies (27) for each

η > 0.

The first step in the proof is a standard wave packet decomposition

in scale R (see [11, Lemma4.1])

f̂jdσ(ξ) =
∑
Tj

cTjφTj(ξ), ξ ∈ B, j = 1, 2.

Here, Tj are R1/2-separated R1/2×...×R1/2×R tubes. cTj are constants

and φTj are Knapp examples. Namely, each φTj is essentially supported

in the tube Tj with a Schwartz decay away from Tj and φ∨Tj is supported

in a dual rectangle of Tj of dimensions R−1/2× ...×R−1/2×R−1 which

is contained in O(R−1) neighborhood of the surface Sj. The tubes Tj

are called Sj-tubes. In [11], the wave packets are normalized so that

(28) ‖φTj‖2 ≈ R1/2,
∑
Tj

|cTj |2 . ‖fj‖2
L2(dσ).
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Moreover, the functions φTj are almost orthogonal in the sense that

(29)
∥∥∥∑φTj

∥∥∥2

2
.
∑∥∥φTj∥∥2

2
.

By dyadic pigeonholing and normalization, we can assume that each cj

is either 0 or 1. Therefore, it suffices to prove that

(30)∥∥∥ ∑
T1∈T1

∑
T2∈T2

φT1φT2

∥∥∥
Lq0 (B,Hdξ)

. Rmax((1−δ)η,Cδ)+Cε(#T1)1/2(#T2)1/2,

for all collections Tj of Sj-tubes and for each 0 < δ, ε < 1. Cover B

by a collection B of O(RCδ) finitely overlapping balls of radius R1−δ.

We need the following lemma which summarizes the main part of the

argument in [11].

Lemma 5.1. [11] There is a relation ∼ between the balls Q ∈ B and

the tubes in T1 ∪T2 such that for each T ∈ T1 ∪T2

(31) #{Q ∈ B : T ∼ Q} ≤ CεR
ε,

and the following L2 estimate holds

(32)
∥∥∥ ∑

(T1,T2)∈Q6∼
φT1φT2

∥∥∥
L2(Q)

. RCδ+CεR−(d−2)/4(#T1)1/2(#T2)1/2,

where Q6∼ = {(T1, T2) ∈ T1 ×T2 : T1 6∼ Q or T2 6∼ Q}.

Remark 4. We use this lemma without any modification in the proof.

It may be possible to get an estimate for ‖
∑

(T1,T2)∈Q6∼ φT1φT2‖L2(Q,Hdξ)

which is better than (32). This would improve the range of q in The-

orem 1 and it may give a better partial result in the direction of Fal-

coner’s distance set problem.
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We have∥∥ ∑
T1∈T1

∑
T2∈T2

φT1φT2

∥∥
Lq0 (B,Hdξ)

≤
∑
Q∈B

∥∥ ∑
T1∈T1

∑
T2∈T2

φT1φT2

∥∥
Lq0 (Q,Hdξ)

≤
∑
Q∈B

∥∥ ∑
T1∼Q

∑
T2∼Q

φT1φT2

∥∥
Lq0 (Q,Hdξ)

+
∑
Q∈B

∥∥ ∑
(T1,T2)∈Q6∼

φT1φT2

∥∥
Lq0 (Q,Hdξ)

=:I1 + I2.

The estimate for I1 follows from the induction hypothesis. Remember

that Q is a R1−δ-ball, and φTj is supported in O(R−1) neighborhood of

Sj, j = 1, 2. Therefore

I1 . R−1R(1−δ)η
∑
Q∈B

∥∥ ∑
T1∼Q

φT1

∥∥
2

∥∥ ∑
T2∼Q

φT2

∥∥
2

. R−1R(1−δ)η
∑
Q∈B

( ∑
T1∼Q

∥∥φT1

∥∥2

2

∑
T2∼Q

∥∥φT2

∥∥2

2

)1/2

. R(1−δ)η
∑
Q∈B

(#{T1 ∈ T1 : T1 ∼ Q}#{T2 ∈ T2 : T2 ∼ Q})1/2

. R(1−δ)η+Cε(#T1)1/2(#T2)1/2.

The second inequality follows from (29), the third from (28) and the

last from (31) and Cauchy-Schwarz. Now, we estimate I2. This is the

only part of the proof which differs from the proof in [11]. Let

FQ :=
∑

(T1,T2)∈Q6∼
φT1φT2 .

Using Hölder’s inequality, (2) and (3), we have

I2 .
∑
Q∈B

‖FQ‖L2(Q,dξ)

[∫
Q

|H(ξ)|2/(2−q0)dξ

] 1
q0
− 1

2

≤
∑
Q∈B

‖F‖L2(Q,dξ)

[∫
Q

|H(ξ)|dξ
] 1
q0
− 1

2

.
∑
Q∈B

‖F‖L2(Q,dξ)R
α
q0
−α

2 .(33)
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Using Lemma 5.1 and the definition of q0 = q0(α, d) for α ≤ (d+ 2)/2,

we have

(33) . RCδ+CεR−(d−2)/4R
α
q0
−α

2 (#T1)1/2(#T2)1/2

. RCδ+Cε(#T1)1/2(#T2)1/2.

This finishes the proof of (30).

References

[1] J. Bourgain, Hausdorff dimension and distance sets, Israel J. Math. 87 (1994),

193-201.
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[10] P. Sjölin, F. Soria, Estimates of averages of Fourier transforms with respect to

general measures, Proc. Royal Soc. of Edinburg 133A (2003), 943-950.

[11] T. Tao, A sharp bilinear restriction estimate for paraboloids Geom. Funct.

Anal. 13 (2003), 1359-1384.

[12] T. Tao, A. Vargas, A bilinear approach to cone multipliers I. Restriction esti-

mates, Geom. Funct. Anal. 10 (2000), 185-215.

[13] T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya

conjectures, J. Amer. Math. Soc. 11 (1998), 967-5000.



16 M. BURAK ERDOG̃AN

[14] T. Wolff, Decay of circular means of Fourier transforms of measures, Internat.

Math. Res. Notices 1999, 547-567.

[15] , A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153

(2001), 661-698.

[16] , Lectures on harmonic analysis, University Lecture Series 29, Ameri-

can Mathematical Society, 2003.

Department of Mathematics, University of Illinois at Urbana Cham-

paign, Urbana, IL 61801

E-mail address: berdogan@math.uiuc.edu


