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In the early part of the 20th century huge advances
were made in theoretical physics that have led to
vast mathematical developments and exciting open
problems. Einstein’s development of relativistic the-
ory in the first decade was followed by Schrödinger’s
quantum mechanical theory in 1925. Einstein’s the-
ory could be used to describe bodies moving at great
speeds, while Schrödinger’s theory described the evo-
lution of very small particles. Both models break
down when attempting to describe the evolution of
small particles moving at great speeds. In 1927, Paul
Dirac sought to reconcile these theories and intro-
duced the Dirac equation to describe relativitistic
quantum mechanics.

Dirac’s formulation of a hyperbolic system of par-
tial differential equations has provided fundamental
models and insights in a variety of fields from parti-
cle physics and quantum field theory to more recent
applications to nanotechnology, specifically the study
of graphene.

Dirac Equation

To formulate the Dirac equation consistent with a
quantum mechanical interpretation, the wave func-
tion at time t = 0 should determine the wave function
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at all times, and hence the model needs to be first or-
der in time, [Tha92]. In addition, it should conserve
the L2 norm of solutions. Dirac combined the quan-
tum mechanical notions of energy and momentum
operators E = i~∂t, p = −i~∇x with the relativis-
tic Pythagorean energy relation E2 = (cp)2 + (E0)2

where E0 = mc2 is the rest energy.
Inserting the energy and momentum operators into

the energy relation leads to a Klein–Gordon equation

−~2ψtt = (−~2∆x +m2c4)ψ.

The Klein–Gordon equation is second order, and does
not have an L2-conservation law. To remedy these
shortcomings, Dirac sought to develop an operator1

Dm = −ic~α1∂x1
− ic~α2∂x2

− ic~α3∂x3
+mc2β

which could formally act as a square root of the Klein-
Gordon operator, that is, satisfy D2

m = −c2~2∆ +
m2c4. This is possible if the coefficients αj , β are
4 × 4 matrices satisfying α2

j = β2 = I and the anti-
commutation relationship (for j 6= k)

αjαk = −αkαj , αjβ = −βαj .

Typically the Pauli matrices,

σ1 =

[
0 −i
i 0

]
, σ2 =

[
0 1
1 0

]
, σ3 =

[
1 0
0 −1

]
,

are used to formulate the Dirac system

i~ψt(x, t) =

(
− ic~

3∑
k=1

αk∂xk
+mc2β

)
ψ(x, t), (1)

1For concreteness, we only consider the case of three spatial
dimensions, that is when x ∈ R3.
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where

β =

[
IC2 0
0 −IC2

]
, αi =

[
0 σi
σi 0

]
.

For notational convenience we choose physical
units c = ~ = 1, and denote

∑3
k=1 αk∂xk

= α · ∇,
to write the equation as

iψt(x, t) = (−iα · ∇+mβ)ψ(x, t). (2)

By the representation (2), it is clear that the Dirac
operator does not act on a complex-valued wave func-
tion as the Schrödinger operator does, but rather acts
on spinor fields. That is the solution to (2) is a C4-
valued function.

In contrast to the Schrödinger model, in which the
free operatorH0 = −∆ is non-negative, the free Dirac
operatorDm = −iα·∇+mβ is unbounded both above
and below. In particular, the spectrum is σ(Dm) =
(−∞,−m] ∪ [m,∞).

These peculiarities lead to an ambiguity in the
physical interpretation of the solution ψ. One inter-
pretation is that the solution couples the evolution
of a quantum particle with its anti-particle, namely
coupling the evolution of electrons and positrons,
[Tha92]. This interpretation predicted the existence
of the positron before its discovery in 1932.

The unboundedness in both directions creates chal-
lenges in the analysis of perturbations. For non-
linear perturbations, the concentration-compactness
method fails for Dirac as it relies on the operator be-
ing bounded below. Moreover, one can not define
the Friedrichs extension for symmetric perturbations
of Dirac operators since they are not bounded below,
[RS79].

The Dirac equation as a dispersive PDE

The Dirac equation is an example of a dispersive par-
tial differential equation. By dispersive, we mean
equations for which different frequency components
of the initial data (wave) propagate with different ve-
locities. We can envision the solution as being made
up of wave packets, where the frequency of vibration
is directly related to the speed at which the wave
packet moves.

A model dispersive PDE is the free Schrödinger
equation:

iψt = −∆ψ. (3)

A plane wave of the form ψ(x, t) = exp(ik · x− iωt)
formally solves the equation provided that the “dis-
persion relation”, ω = |k|2, holds. Writing exp(ik ·
x− iωt) = exp(ik · (x−kt)), this relationship may be
interpreted as saying the speed of the wave is equal
to the frequency of vibration.

Using Fourier transform techniques, we can repre-
sent the initial data ψ(x, 0) = f(x) as a superposition
of plane waves exp(ik · x) for a broad class of ini-
tial data. Now, the dispersion relation dictates that
higher frequency (|k| large) portions of the solution
move more quickly than lower frequency portions of
the solution. A by-product is that a concentrated
initial profile f(x) will spread out, becoming smaller
and smoother in some sense. The smoothing effect is
more subtle compared to parabolic equations such as
the heat equation since the linear evolution preserves
the L2-based Sobolev norms. Various quantifications
of this decay and smoothing for linear equations are
useful in the study of nonlinear counterparts. Heuris-
tically, for equations with power nonlinearities the
nonlinear terms become smaller compared to the lin-
ear terms due to the decay.

The best way to measure this spread is to use the
Fourier transform techniques to represent the solu-
tion of (3) as a convolution integral. For x ∈ Rn,

ψ(x, t) = (−4πit)−
n
2

∫
Rn

ei|x−y|
2/4tf(y) dy. (4)

Using (4), one can see the global dispersive estimate

‖eit∆f‖L∞
x
≤ Cn|t|−

n
2 ‖f‖L1

x
.

This L1 → L∞ bound reflects the dispersion present
in the Schrödinger equation, since the sup norm de-
cays in time as the waves of varying frequencies
spread out in space. These estimates can be used
to obtain Strichartz estimates of the form

‖eit∆f‖Lq
tL

r
x
≤ C‖f‖L2

x
,
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for admissible exponents q, r ≥ 2, (q, r, n) 6=
(2,∞, 2), with 2

q = n( 1
2 −

1
r ).

Strichartz estimates were first obtained by
Strichartz via Fourier restriction theory of Stein.
Later, it was established that they can be obtained
using L1 → L∞ estimates. These mixed space-time
estimates provide another way to quantify the dis-
persive nature of the equation, and are ubiquitous in
the study of nonlinear equations.

One can also measure the dispersion via smooth-
ing estimates. Since a wave packet with frequency
k moves with speed ∼ |k| it spends at most ∼ |k|−1

units of time on a ball of radius one. Averaging in
time implies the Kato smoothing estimate

‖〈x〉− 1
2−ε(−∆)

1
4 eit∆f‖L2

t,x
≤ C‖f‖L2

x
.

This estimate can be interpreted to say that on av-
erage the solution is half a derivative smoother than
the initial data.

The dispersion in the Dirac equation is weaker than
that in the Schrödinger due to the hyperbolic nature
of the equation. Since the square of the free Dirac
operator D2

m = −∆ + m2 is a diagonal system of
Klein-Gordon operators, there is finite speed of prop-
agation and the large frequency behavior of solutions
does not travel arbitrarily fast as in the Schrödinger
evolution. This leads to weaker time decay and loss
of derivatives in dispersive estimates.

Linear perturbations

To account for particle interactions or external elec-
tromagnetic fields in three dimensions, one perturbs
(1) with a 4× 4 matrix-valued potential i.e.,

iψt = (Dm + V )ψ. (5)

For simplicity, we will assume that V is Hermi-
tian. Under mild decay and local singularity as-
sumptions on V the perturbed Dirac operator H :=
Dm + V is essentially self-adjoint, and σess(H) =
σ(Dm) by Weyl’s Theorem. In contrast to other
dispersive equations, such perturbations can pro-
duce infinitely many eigenvalues in the spectral gap
(−m,m), [Tha92]. Faster decay of the potential
ensures there are only finitely many eigenvalues,

[EGT19]. See [GM01] for a more thorough discus-
sion of further spectral issues.

Dispersive estimates discussed in the previous sec-
tion for (5) do not hold in general if the opera-
tor H has eigenvalues. One can project onto the
continuous spectrum to recover dispersive estimates,
though threshold eigenvalues or resonances (at ener-
gies λ = ±m) are known to affect the time decay,
[EGT19].

One can study the perturbed evolution through
a generalized eigenfunction expansion, or through
the resolvent operators and functional calculus tech-
niques. The free resolvent operators are defined by
R0(z) = (Dm − z)−1 for z ∈ C \ σ(Dm). Recall-
ing that Dm = −iα · ∇ + mβ, and the the anti-
commutation relations of the Pauli matrices, we see
that D2

m = −∆ +m, and

(Dm − λ)(Dm + λ) = −∆ +m2 − λ2.

Formally, this leads us to the relationship

R0(λ) = (Dm + λ)R0(λ2 −m2), (6)

where R0(z) = (−∆− z)−1 is the Schrödinger resol-
vent. By Agmon’s limiting absorption principle for
Schrödinger operators, we can define the limiting op-
erators as z approaches the essential spectrum from
upper and lower half plane.

In the massive case, when m > 0, for |λ| close to
m, the dominant contribution of the Dirac resolvent
behaves like the Schrödinger resolvent. This leads to
a generic time-decay rate of size |t|− 3

2 in three spa-
tial dimensions. When λ is away from the thresh-
old energies ±m, solutions behave like solutions to
a Klein–Gordon equation; hence smoothness of the
initial data is required to obtain a time-decay. In the
massless case, m = 0, the equation behaves like the
wave equation which has decay rate |t|−1 in R3.

Although the relationship between the resolvents,
(6), leads one to expect that there should be analo-
gous results for the dynamics of solutions to the Dirac
equation to those known about the Schrödinger equa-
tion, at least at the linear level, the analysis of the
Dirac equation presents many non-trivial technical
challenges.
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Perturbations of linear differential operators with
the Coulomb potential appear naturally in many ar-
eas of physics. For the Dirac operator in R3 the
Coulomb potential takes the form V (x) = γ

|x|I4 mod-

els electric and/or gravitational interaction between
the electron and proton in hydrogenic atoms. The
gradient scales like 1

|x| , so the Coloumb potential is

critical for the Dirac operator. The coupling constant
γ determines whether the corresponding operator is
well-defined or not. In fact, Dm + γ

|x|I4 is essentially

self-adjoint if and only if |γ| ≤
√

3
2 , [Tha92].

A similar situation occurs for the Schrödinger op-
erator with inverse square potential, −∆ + β

|x|2 . This

operator is essentially self-adjoint in R3 if β ≥ 3
4 ,

[RS79]. For − 1
4 ≤ β < 3

4 , one can define Friedrichs

extension since −∆ + β
|x|2 remains a positive opera-

tor. Since the Dirac operator is unbounded below,
the Friedrichs extension can not be defined. There
are infinitely many self-adjoint extensions if |γ| >

√
3

2 .

However, when
√

3
2 < |γ| < 1, there is a unique

distinguished self-adjoint extension analogous to the
Friedrichs extension, see e.g. [Gal17].

Non-linear models

Often a nonlinear Schrödinger equation is formed by
adding a nonlinear term:

iut = −∆u± f(u)u,

typically of the form f(τ) = |τ |γ . There are more
choices for how to create the nonlinearity out of the
C4-valued spinor. The Soler model from quantum
field theory is

iψt = Dmψ − f(ψ∗βψ)ψ, (7)

with f real-valued satisfying f(0) = 0, ψ∗ = ψT ,
and β is the matrix used in defining the Dirac opera-
tor. One dimensional analogues of this model include
the Gross-Neveu and massive Thirring equations for
scalar and vector self-interaction respectively. The
Soler model is well-posed provided the initial data
has enough Sobolev regularity, ψ(x, 0) ∈ Hs(Rn)
for s > n

2 , [BC19]. The Thirring and Soler (with

f(τ) = τ) nonlinearities are Lorentz covariant and
exhibit a null-structure, comparable to other geomet-
ric nonlinear wave equations.

Scattering results, that is the series of conclusions
that large time behavior of solutions approaches that
of a free wave, are known for (7) with f(τ) = τ in
low dimensions provided the initial data is small in
an appropriate Sobolev norm, [BH15].

A solitary wave is a solution of (7) of the form

ψ(x, t) = φ(x)e−iωt,

where ω is a real-valued parameter and φ solves a
stationary nonlinear Dirac equation. Such solitary
waves are known to exist for broad classes of nonlin-
earities, but the stability results are less developed.
Linearizing about such stationary solutions leads to
linear equations of the form considered in (5). Spec-
tral stability is known for classes of nonlinearity f
that are polynomial-like, [BC19]. Stronger stabil-
ity results, such as orbital and asymptotic stability
of these solutions for general f is thus far incom-
plete and less developed than other dispersive equa-
tions, [Dod19]. One cannot use the concentration-
compactness arguments that are standard for other
dispersive equations, [NS11], among other challenges.
Though, somehow unexpectedly, there seems to be a
lack of blow-up phenomenon in nonlinear Dirac equa-
tions which commonly occurs in other dispersive non-
linear models, [BC19].

Honeycomb potentials

Finally, we briefly note the appearance of a two-
dimensional Dirac equation in the study of waves in
periodic structures inspired by the study of graphene,
a material with layers of hexagonal lattices of car-
bon atoms. The evolution of waves in graphene is
modeled by a two-dimensional Schrödinger equation
−∆ + V with a periodic “honeycomb” potential, i.e.
V is periodic, even, and invariant under 2π/3 rota-
tions. In contrast to the previous discussion, V does
not decay as |x| → ∞.

When decomposing the solution of the Schrödinger
equation into Floquet-Bloch states there are Dirac
points of the honeycomb structure, where the disper-
sion surfaces intersect. This leads to an intersection
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of successive spectral energy bands at some energy µ
and the time-independent operator −∆+V −µ has a
two-dimensional nullspace spanned by Φ1(x),Φ2(x).
A wave-packet spectrally localized at this energy is
of the form (with δ a small parameter)

ψ(x, t) ≈ eiµt
2∑
j=1

δαj(δx, δt)Φj(x),

where αj are the amplitudes. Writing α = (α1, α2) ∈
C2, the evolution of α is governed by a two-
dimensional Dirac equation with zero mass. The
dynamics of such wave packets is believed to be re-
sponsible for the remarkable properties of graphene,
[FW14].
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