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Abstract. We prove Strichartz estimates for the Schrödinger equation in Rn, n ≥ 3,

with a Hamiltonian H = −∆+µ. The perturbation µ is a compactly supported measure

in Rn with dimension α > n − (1 + 1
n−1 ). The main intermediate step is a local decay

estimate in L2(µ) for both the free and perturbed Schrödinger evolution.

1. Introduction

The dispersive properties of the free Schrödinger semigroup eit∆ are described in many

ways, with one of the most versatile estimates being the family of Strichartz inequalities

(1) ‖eit∆u‖LptLqx . ‖u‖L2(Rn)

over the range 2 ≤ p, q ≤ ∞, 2
p

+ n
q

= n
2
, except for the endpoint (p, q) = (2,∞).

There is a substantial body of literature devoted to establishing Strichartz inequalities

and other dispersive bounds for the linear Schrödinger evolution of perturbed operators

H = −∆ + V (x). [21, 8, 15] prove Strichartz inequalities for the free evolution. The

latter two of these, as well as [19] create a framework for extending them to perturbed

Hamiltonians so long as the Schrödinger semigroup has suitable L1 → L∞ dispersive

bounds or L2(Rn × R) smoothing. This strategy has been used to establish Strichartz

estimates for the Schrödinger evolution for electric [13], magnetic [6] and time-periodic [9]

perturbations. Most commonly V (x) is assumed to exhibit pointwise polynomial decay or

satisfying an integrability criterion such as belonging to a space Lrloc(Rn) for some r ≥ n
2
.

Our goal in this paper is to show that Strichartz inequalities hold for a class of short-range

potentials V (x) that include measures µ(dx) as admissible local singularities.

Measure-valued potentials are often considered in one dimension; the operator − d2

dx2
+

cδ0 is often the subject of exercises in an introductory quantum mechanics course. In
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higher dimensions there are several plausible generalizations of this example. The three-

dimensional Schrödinger operator H = −∆ +
∑
cjδ(xj) is studied in [3] and [4], and in

two dimensions in [2]. Here, the singularity of the potential imposes boundary conditions

at each point xj for functions belonging to the domain of H. As an eventual consequence,

linear dispersive and Strichartz inequalities hold only on a subset of the range described

above.

The potentials considered in this paper are less singular than a delta-function in Rn, but

still not absolutely continuous with respect to Lebesgue measure. The surface measure

of a compact hypersurface Σ ⊂ Rn is a canonical example of an admissible potential

we consider. More generally we work with compactly supported fractal measures (on

Rn) of a sufficiently high dimension. The exact threshold will be determined in context.

Arguments regarding the self-adjointness of H require a dimension greater than n − 2

so that multiplication by µ remains compact relative to the Laplacian. We are forced

to increase the threshold dimension to n − (1 + 1
n−1

) in the proof of the local decay and

Strichartz estimates. Under these conditions, and a modest assumption about the spectral

properties of H, we prove that the entire family of Strichartz inequalities (1) is preserved

with the possible exception of the (p, q) = (2, 2n
n−2

) endpoint.

With B(x, r) a ball of radius r centered at x ∈ Rn, we say that a compactly supported

signed measure µ is α-dimensional if it satisfies

(2) |µ|(B(x, r)) ≤ Cµr
α for all r > 0 and x ∈ Rn

Nontrivial α-dimensional measures exist for any α ∈ [0, n].

The first obstruction to Strichartz estimates with a Hamiltonian H = −∆ + V is the

possible existence of bound states, functions ψ ∈ L2(Rn) that solve Hψ = Eψ for some

real number E. Each bound state gives rise to a solution of the Schrödinger equation

eitHψ(x) = eitEψ(x), which satisfies (1) only for (p, q) = (∞, 2) and no other choice of

exponents.

Our main result asserts that the perturbed evolution eitH satisfies Strichartz estimates

once all bound states of H are projected away. We impose additional spectral assumptions

that all eigenvalues of H are strictly negative, and that there is no resonance at zero. In

this paper we say a resonance occurs at λ when the equation

ψ + (−∆− (λ± i0))−1µψ = 0
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has nontrivial solutions belonging to the Sobolev space Ḣ1(Rn) but not to L2 itself.

Thanks to the compact support of µ, one can easily show that resonances are impossible

at λ < 0, and can only occur at λ = 0 in dimensions 3 and 4. We show in Section 3 that

resonances do not occur when λ > 0. Eigenvalues at zero are possible provided the

negative part of the potential is large enough. Positive eigenvalues are known to be

absent for a wide class of potentials (see [16]) covering some (but not all) of the measures

considered here, see Remark 3.2.

To state our results, we define the following Lp spaces. For µ a signed measure on Rn,

we define

(3) Lp(µ) :=

{
f : Rn → C :

∫
Rn
|f |p d|µ| <∞

}
for 1 ≤ p < ∞. With the natural, minor modification one can define L∞(µ). It is

worthwhile to note that multiplication by µ is an isometry from Lp(µ) to Lp
′
(µ)∗ with p′

the Hölder conjugate of p for any 1 ≤ p ≤ ∞. This can be seen easily by using the natural

duality pairing. Throughout the paper we will take particular advantage of the fact that

multiplication by µ maps L2(µ) to its dual space. Finally, let Pac denotes projection onto

the continuous spectrum of −∆ + µ.

Theorem 1.1. Let µ be a compactly supported signed measure on Rn of dimension α >

n − (1 + 1
n−1

). If the Schrödinger operator −∆ + µ has no resonance at zero and no

eigenvalues at any λ ≥ 0, then for each f ∈ L2(Rn) we have the local decay bounds

‖eit∆f‖L2
tL

2(µ) . ‖f‖2(4)

‖eit(−∆+µ)Pacf‖L2
tL

2(µ) . ‖f‖2(5)

and the Strichartz inequalities

(6) ‖eit(−∆+µ)Pacf‖LptLqx . ‖f‖2

for admissible pairs (p, q) with 2
p

+ n
q

= n
2

and p > 2.

The second author considered L1 → L∞ dispersive estimates in R3 (under the same

set of assumptions when n = 3, including α > 3
2
) in [10]. Strichartz inequalities in this

case follow as a direct consequence by [15]. The results presented here in Rn, n ≥ 4, are

new and rely in part on recent advances in Fourier restriction problems such as [17, 5].

In particular the improved decay of spherical Fourier means allows us to capture the
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physically relevant α = n− 1 case where the potential might be supported on a compact

hypersurface in higher dimensions. It is known for dimensions n > 3 that L1 → L∞

dispersive estimates need not hold even for compactly supported potentials V if V is

not sufficiently differentiable, see [12, 7]. Whereas the smoothness is not required for

Strichartz estimates to hold in higher dimensions. Our argument works in dimensions

n ≥ 3, technical issues in dimension n = 2 (for example with the use of Ḣ1(Rn)) would

require different methods.

α-dimensional measures also satisfy a strong Kato-type property that for any γ < α,

(7) sup
y∈Rn

∫
|x−y|<r

|µ|(dx)

|x− y|γ
. Cµr

α−γ.

Furthermore, since µ has compact support, the integral over the entire space x ∈ Rn is

bounded uniformly in y. These integral bounds will be proved as Lemma 2.2 below. The

choice γ = n − 2 is significant due to its connection with the Green’s function of the

Laplacian in Rn when n ≥ 3.

We also characterize potentials in terms of the global Kato norm, defined on signed

measures in Rn by the quantity

(8) ‖µ‖K = sup
y∈Rn

∫
Rn

|µ|(dx)

|x− y|n−2

One can see that every element with finite global Kato norm is a (n − 2)-dimensional

measure with Cµ ≤ ‖µ‖K, by comparing |x− y|2−n to the characteristic function of a ball.

The converse is false, however the Kato class contains all compactly supported measures

of dimension α > n − 2. We examine this relationship in Lemma 2.2. We follow the

naming convention in Rodnianski-Schlag [19] where the global Kato norm is applied to

dispersive estimates in R3, as opposed to the local norms considered in Schechter [20].

There is a now well-known strategy to obtain the Strichartz estimates (6). One uses

the space-time L2 estimates (4) and (5) and the argument of Rodnianski-Schlag, [19].

There is a minor modification to the Rodnianski-Schlag framework in that instead of

factorizing the operator corresponding to multiplication by µ, we instead apply it directly

as a bounded map from L2
tL

2(µ) to its dual space.

The resolvent operators (−∆− λ)−1 and (−∆ + µ− λ)−1 are well defined for λ in the

resolvent sets. We define the limiting resolvent operators

(9) R±0 (λ) := lim
ε→0+

(−∆− (λ± iε))−1 and R±µ (λ) := lim
ε→0+

(−∆ + µ− (λ± iε))−1
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Following Kato’s derivation [14], L2 estimates such as (4) and (5) are valid precisely if

there are uniform bounds of the resolvent operators. We prove the following mapping

bounds for the resolvents R±0 (λ) and R±µ (λ).

Theorem 1.2. Under the hypotheses of Theorem 1.1

sup
λ≥0
‖((R+

0 (λ)−R−0 (λ))µ‖L2(µ)→L2(µ) <∞(10)

and sup
λ≥0
‖((R+

µ (λ)−R−µ (λ))µ‖L2(µ)→L2(µ) <∞.(11)

Due to the different challenges of establishing these bounds when the spectral parameter

is close to λ = 0 (small energy) or bounded away from zero (large energy), we require

different tools in each regime. We bound the low energy contribution in Section 3 in

Lemma 3.1, while the large energy is controlled in Section 4. Once the resolvent bounds

are established at all energies, we assemble the results to prove Theorem 1.1.

2. Self-Adjointness and Compactness

For any perturbation V (x) which is not a bounded function of x there are well known

difficulties identifying the domain of −∆ + V and its adjoint operator. The main goal

of this section is to prove Proposition 2.1 below. Along the way, we will prove some

compactness results that will be useful for describing the spectral measure of −∆ + µ.

Proposition 2.1. If µ is a compactly supported α-dimensional signed measure for some

α > n− 2, then there exists a unique self-adjoint extension of −∆ + µ.

The first step is to check that µ satisfies both a local and global “Kato condition.”

Lemma 2.2. Suppose µ is an α-dimensional signed measure with support in the ball

B(0,M), and γ is such that α > γ > 0. Then µ satisfies the estimates

(12)

sup
y∈Rn

∫
|x−y|<r

|µ|(dx)

|x− y|γ
. Cµr

α−γ for all r > 0

and sup
y∈Rn

∫
Rn

|µ|(dx)

|x− y|γ
. CµM

α−γ.
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Proof. For each point y ∈ Rn,∫
|x−y|<r

|µ|(dx)

|x− y|γ
= γ

∫ r

0

|µ|(B(y, t))

tγ+1
dt+ r−γ|µ|(B(y, r))

. Cµ

(∫ r

0

tα−γ−1 dt+ rα−γ
)

= Cµ

(
1 +

1

α− γ

)
rα−γ.

This establishes the first claim. For the second claim, if |y| < 2M , the global bound is

achieved by setting r = 3M . If |y| > 2M then the integral in (12) is easily bounded by

|y|−γ|µ|(B(0,M)) by observing that |x− y| ∼ |y| &M within the support of µ.

�

By choosing γ = n− 2, it follows that ‖µ‖K <∞.

Lemma 2.3. If µ is a compactly supported α-dimensional measure for some α > n− 2,

then Ḣ1(Rn) ⊂ L2(µ).

Proof. Two mapping bounds follow directly from the definition of the global Kato norm,

using that the integral kernel of (−∆)−1(x, y) is a scalar multiple of |x− y|2−n,

‖(−∆)−1µf‖L∞(µ) . ‖µ‖K‖f‖L∞(µ),

‖(−∆)−1µf‖L1(µ) . ‖µ‖K‖f‖L1(µ).

Interpolation between these two endpoints yields

(13) ‖(−∆)−1µf‖L2(µ) . ‖µ‖K‖f‖L2(µ),

This, along with a TT ∗ argument show that the square root (−∆)−
1
2 is a bounded operator

from L2(Rn) to L2(µ), by duality it is also bounded from L2(µ)∗ to L2(Rn). At the same

time (−∆)−
1
2 is an isometry from L2(Rn) onto Ḣ1(Rn). This suffices to prove the desired

inclusion. Further, (13) shows that

‖(−∆)−1g‖L2(µ) . ‖µ‖K‖g‖L2(µ)∗ .

�

Given a point z ∈ Rn, define the translation operator τzf(x) := f(x− z). Translation

operators are not bounded on L2(µ) in general, but they behave quite well when restricted

to the subspace Ḣ1. Let j : Ḣ1(Rn)→ L2(µ) be the natural inclusion operator.
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Lemma 2.4. If µ is a compactly supported α-dimensional measure for some α > n− 2,

(14) ‖(j − τz)ϕ‖L2(µ) .
√
Cµ|z|β‖ϕ‖Ḣ1

for any 0 < β < α−(n−2)
2

and |z| < 1.

Proof. By a TT ∗ argument, it suffices to show that

‖(j − τz)(−∆)−1(j∗ − τ−z)g‖L2(µ) . Cµ|z|2β‖g‖L2(µ)∗ ,

where j∗ is the inclusion of L2(µ)∗ into Ḣ−1. Translations commute with powers of the

Laplacian, so there is another equivalent statement

‖(2− τz − τ−z)(−∆)−1µf‖L2(µ) . Cµ|z|2β‖f‖L2(µ).

Here we use that j and j∗ may be replaced with the operators τ0 or 1 on their respective

domains. We now show that

(15)
∣∣∣ ∫

Rn

( 2

|x− y|n−2
− 1

|x− (y − z)|n−2
− 1

|x− (y + z)|n−2

)
µ(dx)

∣∣∣ . Cµ|z|2β.

Indeed, Lemma 2.2 immediately proves this bound for the integral over the region where

|x − y| ≤ 2|z|2β/(α−n+2). Since the exponent 2β/(α − n + 2) is strictly less than 1, the

region includes all three singularities at x ∈ {y, y − z, y + z}.
Outside of the region, Taylor’s remainder theorem controls the integrand by a multiple

of |z|2
|x−y|n . We write

1

|x− y|n
=

1

|x− y|
α−n+2

β
+n−α−2

1

|x− y|α+2−α−n+2
β

,

and note that under the hypotheses, both exponents are positive. On the region of interest,

the first term is dominated by |z|2β−2. The estimate continues with∫
|x−y|>|z|

2β
α−n+2

|z|2

|x− y|n
|µ|(dx) .

∫
Rn

|z|2

|z|2−2β|x− y|α+2−a−n+2
β

|µ|(dx)

=

∫
Rn

|z|2β

|x− y|α+2−α−n+2
β

|µ|(dx) . Cµ|z|2β.

The last inequality follows from Lemma 2.2 since α−n+2
β

> 2, making the exponent in the

denominator less than α.

The bound in (15) implies that

‖(2− τz − τ−z)(−∆)−1µf‖L∞(µ) . Cµ|z|2β‖f‖L∞(µ),
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‖(2− τz − τ−z)(−∆)−1µf‖L1(µ) . Cµ|z|2β‖f‖L1(µ).

The desired L2(µ) bound follows by interpolation. �

Lemma 2.5. The embedding j : Ḣ1(Rn)→ L2(µ) is compact.

Proof. Let ηr be a standard mollifier supported in a ball of radius 0 < r < 1. Lemma 2.4

implies that

‖ϕ− (ηr ∗ ϕ)‖L2(µ) . rβ‖ϕ‖Ḣ1 .

Furthermore, if χ is any smooth cutoff that is identically 1 on the support of µ, then

multiplication by χ has no effect in L2(µ). Thus

‖ϕ− (ηr ∗ ϕ)χ‖L2(µ) . rβ‖ϕ‖Ḣ1 .

The operators mapping ϕ to (ηr ∗ ϕ)χ is compact on Ḣ1(Rn), so it is also compact from

Ḣ1 to L2(µ). We have just shown that they converge to the inclusion map j as r → 0. �

Corollary 2.6. For any fixed λ ≥ 0, the operator R+
0 (λ2)µ is compact on L2(µ).

Proof. Recall that R0(0) is the same as (−∆)−1 in dimensions n ≥ 3. Then R0(0)µ is the

composition j(−∆)−1j∗µ, with both inclusions j and j∗ being compact.

For λ > 0, the free resolvents R+
0 (λ2) map weighted Ḣ−1(Rn) into weighted Ḣ1(Rn).

Then, with χ again a smooth cutoff to the support of µ, χR+
0 (λ2)χ is a bounded map

from Ḣ−1 to Ḣ1 without additional weights due to the compact support of µ. We may

write

R+
0 (λ2)µ = j(χR+

0 (λ2)χ)j∗µ

with j and j∗ once again being compact. �

Remark 2.7. The derivative χ d
dλ
R+

0 (λ2)χ is also a bounded map from Ḣ−1 to Ḣ1. The

same argument as above shows that the family of operators R+
0 (λ2)µ : L2(µ)→ L2(µ) are

differentiable with respect to λ.

Proof of Proposition 2.1. We can take advantage of the KLMN theorem [18, Theorem

X.17] to produce a unique self-adjoint operator with the correct quadratic form on Ḣ1(Rn)

provided µ satisfies the form bound

(16)
∣∣∣ ∫

Rn
|ϕ(x)|2 dµ

∣∣∣ ≤ a‖ϕ‖2
Ḣ1 + b‖ϕ‖2

L2
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for some a < 1. For |z| < 1 and ϕ ∈ Ḣ1(Rn), by Lemma 2.4 we have∫
Rn
|ϕ(x)|2 dµ−

∫
Rn
|ϕ(x)|2 d(τzµ) =

∫
Rn

(
|ϕ(x)|2 − |ϕ(x+ z)|2

)
dµ

=

∫
Rn

(
ϕ(x)− ϕ(x+ z)

)
ϕ̄(x) dµ+

∫
Rn
ϕ(x+ z)

(
ϕ̄(x)− ϕ̄(x+ z)

)
dµ

≤ ‖(j − τ−z)ϕ‖L2(µ)

(
‖ϕ‖L2(µ) + ‖τ−zϕ‖L2(µ)

)
. |z|β‖ϕ‖2

Ḣ1 .

It follows that ∣∣∣ ∫
Rn
|ϕ(x)|2 dµ−

∫
Rn
|ϕ(x)|2(µ ∗ ηr)(x) dx

∣∣∣ . |r|β‖ϕ‖2
Ḣ1 ,

for a mollifier ηr supported in a ball radius r. At the same time µ ∗ ηr is a bounded

function for each r > 0, so there is a second estimate∣∣∣ ∫
Rn
|ϕ(x)|2(µ ∗ ηr)(x) dx

∣∣∣ ≤ Cr‖ϕ‖2
L2(Rn).

Allowing r to approach zero shows that (16) holds with any choice of a > 0. �

Proposition 2.8. If µ is a compactly supported α-dimensional signed measure for some

α > n− 2, then −∆ + µ has finitely many negative eigenvalues and no other spectrum in

(−∞, 0).

Proof. Since (16) holds for some 0 < a < 1, the operator −∆ + µ is bounded from below.

Then the range of the spectral projection P(−∞,0) is a closed subspace of L2 contained

inside the negative-definite subspace of the quadratic form ((−∆ + µ)ϕ, ϕ). On this

subspace we also have the bound

‖ϕ‖2
Ḣ1 ≤ ((−∆ + µ)ϕ, ϕ) + a‖ϕ‖2

Ḣ1 + b‖ϕ‖2
L2 ≤ a‖ϕ‖2

Ḣ1 + b‖ϕ‖2
L2

and it follows that ‖ϕ‖Ḣ1 . ‖ϕ‖L2 .

Consider the factorization

−∆ + µ = (−∆)1/2[I + (−∆)−1/2µ(−∆)−1/2](−∆)1/2.

The central operator is a compact and self-adjoint perturbation of the identity acting

on L2(Rn), namely I + (−∆)−1/2j∗µj(−∆)−1/2. Its negative-definite subspace is finite

dimensional. As observed above, the range of P(−∞,0) is contained in L2(Rn) ∩ Ḣ1(Rn).

The square-root of the Laplacian maps this space into L2 in a one-to-one manner. Thus
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the range of P(−∞,0) is also finite dimensional, with dimension no larger than the negative-

definite space of I + (−∆)−1/2µ(−∆)−1/2. �

3. Low energy estimates

At this point we establish a uniform bound on the low energy perturbed resolvent as

an operator on L2(µ). Specifically, we show

Lemma 3.1. Let µ be a real-valued measure on Rn, n ≥ 3, with dimension α > n− 2. If

(−∆ + µ) has no eigenvalues at λ ≥ 0, and (if n = 3, 4) no resonances at λ = 0, then

(17) sup
|λ|≤L

‖R+
µ (λ2)µ‖L2(µ)→L2(µ) ≤ CL <∞.

For any L > 0, with a fixed constant that depends on L.

Proof. The estimation of perturbed resolvents on a finite interval follows a standard pro-

cedure. First, we express the perturbed resolvent R+
µ (λ2)µ using the identity

(18) R+
µ (λ2)µ = (I +R+

0 (λ2)µ)−1R+
0 (λ2)µ.

The operators R+
0 (λ2)µ : L2(µ) → L2(µ) are continuous with respect to λ, so they are

uniformly bounded over any finite interval. If an inverse (I + R+
0 (λ2)µ)−1 exists at each

λ ≥ 0, then the inverses will be continuous, and uniformly bounded on each finite interval.

Suppose I +R+
0 (λ2

0)µ fails to be invertible on L2(µ) for some λ0 > 0. By the Fredholm

alternative, there must exist a nontrivial ψ ∈ L2(µ) belonging to its null space. This

function satisfies the bootstrapping relation

ψ = −R+
0 (λ2

0)µψ.

Assuming µ is real-valued, the duality pairing (µψ, ψ) =
∫
Rn |ψ

2(x)| dµ is real-valued

as well. It is also equal to the pairing

−(µψ,R+
0 (λ2

0)µψ) =

∫
Rn

|µ̂ψ(ξ)|2

|ξ|2 − (λ0 + i0)2
dξ

whose imaginary part is a multiple of
∫
{|ξ|=λ0} |µ̂ψ(ξ)|2. In order for this quantity to be

real, the Fourier transform of µψ must vanish on the sphere of radius λ0.

Let η be a mollifier whose Fourier transform is identically 1 when |ξ| ≤ 2λ0. Convolution

against η is a bounded operator on Ḣ−1 and it maps finite measures on Rn to Lp(Rn), 1 ≤
p ≤ ∞. In particular, η ∗ µψ ∈ L

2n+2
n+5 (Rn), along with the fact that its Fourier transform
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vanishes on the sphere of radius λ0, it follows from [11, Theorem 2] that R+
0 (λ2

0)(η ∗µψ) ∈
L2(Rn).

Meanwhile µψ − (η ∗ µψ) ∈ Ḣ−1(Rn), and it has Fourier support where |ξ| > 2λ0. On

this region the free resolvent multiplier (|ξ|2 − λ2
0)−1 is dominated by |ξ|−1, hence we see

that R+
0 (λ2

0)(µψ − (η ∗ µψ)) ∈ L2(Rn). This shows that R+
0 (λ2

0)µψ ∈ L2(Rn) and hence

ψ ∈ L2(Rn), which contradicts the assumption that λ0 > 0 is not an eigenvalue. Hence

I +R+
0 (λ2

0)µ is invertible.

�

Remark 3.2. With the stronger assumption α > n − 2
n−1

, one can follow the argument

in [11, Proposition 7] to show that W
1

n+1
, 2n+2
n−1 ⊂ L2(µ), then apply [16] to conclude that

there are no positive eigenvalues of (−∆ + µ).

4. High energy estimates

The estimates for R+
0 (λ2)µ in the preceding sections are adequate for finite intervals of

λ, however the sharp weighted L2(Rn) resolvent bound from [1] only implies that

‖R+
0 (λ2)‖Ḣ−1→Ḣ1 . 1 + |λ|.

At high energy one needs to take advantage of the fact that for f ∈ L2(µ), µf is not

a generic element of Ḣ−1(Rn). Our main observation at high energy is that the free

resolvent in fact has asymptotic decay as an operator on L2(µ).

Theorem 4.1. Suppose µ is a compactly supported measure of dimension α > n − (1 +
1

n−1
). There exists ε > 0 so that the free resolvent satisfies

(19) ‖R+
0 (λ2)µf‖L2(µ) . 〈λ〉−ε‖f‖L2(µ).

There are close connection between the free resolvent R+
0 (λ2) and the restriction of

Fourier transforms to the sphere λS2. We make use of a Fourier restriction estimate

proved by Du and Zhang [5]. Theorem 2.3 of [5] asserts that for a function f ∈ L2(Rn−1)

with Fourier support in the unit ball, and a measure µR = Rαµ( · /R),

‖eit∆f‖L2(µR) . R
α
2n‖f‖L2(Rn−1),

for sufficiently large R. The Schrödinger evolution eit∆f is the inverse Fourier transform

(in Rn) of the measure f̂ ∈ L2(Rn−1) lifted onto the paraboloid Σ = {ξn = |ξ1|2 + · · · +



12 M. BURAK ERDOĞAN, MICHAEL GOLDBERG, WILLIAM R. GREEN

|ξ|2n−1}. The theorem is then equivalent to the statement

‖(ĝdΣ)‖L2(µR) . R
α
2n‖g‖L2(Σ)

for functions g ∈ L2(Σ ∩ B(0, 1)). The use of forward versus inverse Fourier transform

does not affect the inequality.

It is well known that the bounded subset of the paraboloid Σ can be replaced with any

other uniformly convex bounded smooth surface. In this case we wish to apply the result

to the unit sphere instead. For any g ∈ L2(Sn−1),

‖ĝ‖L2(µR) . R
α
2n‖g‖L2(Sn−1).

The dual statement is ∥∥µ̂Rf ∣∣|ξ|=1

∥∥
L2(Sn−1)

. R
α
2n‖f‖L2(µR).

Now we reverse some of the scaling relations. Given f ∈ L2(µ), let fR(x) = R−
α
2 f(x/R)

so that ‖fR‖L2(µR) = ‖f‖L2(µ). Then µ̂RfR(ξ) = R
α
2 µ̂f(Rξ). It follows that

(20)
∥∥µ̂f ∣∣|ξ|=R∥∥L2(RSn−1)

= R
n−1−α

2

∥∥µ̂RfR∣∣|ξ|=1

∥∥
L2(Sn−1)

. R
n−1
2
−α

2
(1− 1

n
)‖f‖L2(µ).

Thanks to the compact support of µ, the L2(µ) norm of (1+ |x|)f is comparable to that

of f . That allows for control of the derivatives of µ̂f with the same restriction bound as

in (20). In particular we can bound the outward normal gradient of µ̂f as

(21)
∥∥∥ ξ
|ξ| · ∇ξ(µ̂f)(ξ)

∣∣
|ξ|=R

∥∥∥
L2(RSn−1)

. R
n−1
2
−α

2
(1− 1

n
)‖f‖L2(µ).

Proof of Theorem 4.1. In light of Lemma 3.1, we need only consider |λ| & 1. The specific

inequality we derive has the form

(22) ‖R+
0 (λ2)µf‖L2(µ) . λn−2−α(n−1

n
) log λ‖f‖L2(µ)

Our assumption α > n − (1 + 1
n−1

) is chosen to make the exponent negative on the

right-hand side.

The free resolvent R±0 (λ2) acts by multiplying Fourier transforms pointwise by the

distribution
1

|ξ|2 − λ2
± iπ

λ
dσ(|ξ| = |λ|).

The surface measure term is C
λ

times the T ∗T composition of the operator in (20). Thus

it has an operator norm bound controlled by λ[n−1−α(n−1
n

)]−1.
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The multiplier term can be split into two parts depending on whether |ξ| ∼ λ or not.

Let φ be a smooth function supported in the annulus 1
2
≤ |ξ| < 2 that is identically 1

when 3
4
≤ |ξ| ≤ 3

2
. Note that there is an upper bound

1− φ(ξ/λ)

|ξ|2 − λ2
. min(λ−2, |ξ|−2) ≤ 1

λγ−(n−2)|ξ|n−γ

for any n−2 ≤ γ ≤ n. Hence this part of the free resolvent maps Ḣ−
n−γ
2 (Rn) to Ḣ

n−γ
2 (Rn)

with an operator norm less than λ−(γ−(n−2)).

The proof of Lemma 2.3 can be modified trivially to show that there is a continuous

embedding j : H
n−γ
2 (Rn) 7→ L2(µ) whenever γ < α (as required by Lemma 2.2). Since

α > n− 2 this includes a nonempty interval γ ∈ [n− 2, α).

By expanding out the free resolvent as R+
0 (λ2)µ = jR+

0 (λ2)j∗µ, we see that frequencies

|ξ| 6∼ λ give rise to an operator on L2(µ) with norm bound λ−(γ−(n−2)).

The portion of the free resolvent with frequency |ξ| ∼ λ will be handled by restricting

µ̂f to spheres of radius s, then integrating the results. For each λ
2
< s < 2λ define

Fs(x) := µf ∗ ďσ( · /s)

with dσ being the surface measure of the unit sphere. This way, sn−1F̂s is the restriction

of µ̂f to the sphere |ξ| = s. By the Parseval identity we have an inner product formula

for f, g ∈ L2(µ),

〈Fs, g〉L2(µ) =

∫
Sn−1

µ̂f(sω)µ̂g(sω) dω = s1−n〈µ̂f , µ̂g〉L2(sSn−1).

Inequality (20) shows that ‖Fs‖L2(µ) . s−α(n−1
n

)‖f‖L2(µ). If one takes a derivative with

respect to s, it is easy to apply the product rule to the middle expression. Then the

bounds (20) and (21) show that ‖ d
ds
Fs‖L2(µ) . s−α(n−1

n
)‖f‖L2(µ) as well.

Now the remaining part of the free resolvent appears as a principal value integral

(23)
∥∥∥p.v.∫ 2λ

λ/2

(sn−1φ( s
λ
)

s+ λ
Fs

) 1

s− λ
ds
∥∥∥
L2(µ)

.

Based on the discussion above, both sn−1φ( s
λ
)Fs/(s + λ) and d

ds

[
sn−1φ( s

λ
)Fs/(s + λ)

]
are bounded in L2(µ) with norm less than λn−2−α(n−1

n
) so long as s ∼ λ and λ ≥ 4. The

desired bound (22) follows by bringing these norms inside the integral when |s− λ| > 1,

and integrating by parts once in the more singular interval |s−λ| ≤ 1 before bringing the

norms inside. The resulting integral in each case is bounded by log λ. �
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We are now able to prove the uniform resolvent bounds in Theorem 1.2 and consequently

the Strichartz estimates in Theorem 1.1.

Proof of Theorem 1.2. The uniform bound (10) combines low-energy existence from

Corollary 2.6, uniformly on bounded intevals of λ from Remark 2.7, and decay as λ→∞
from Theorem 4.1. The low-energy part of (11) is stated as Lemma 3.1. At high energies,

we once again apply the resolvent identity (18). Theorem 4.1 provides decay of R+
0 (λ2)µ,

and once its norm is less than 1
2
, then the perturbation (I+R+

0 (λ2)µ)−1 and consequently

R±µ (λ2) are uniformly bounded as well. �

Proof of Theorem 1.1. The derivation of local decay estimates (4) and (5) for the

Schrödinger equation from uniform resolvent bounds follows Kato’s argument [14] with

minimal adaptation. One can freely interchange the order of the L2
t and L2(µ) norms.

Then by a TT ∗ argument, and using the fact that multiplication by µ is a unitary map

between L2(µ) and its dual space,

‖eit∆f‖L2(µ)L2
t
≤ C‖f‖2 if and only if

∥∥∥∫
R
ei(t−s)∆µg( · , s) ds

∥∥∥
L2(µ)L2

t

≤ C2‖g‖L2(µ)L2
t
.

After applying Plancherel’s identity to a partial Fourier transform in the time variable,

with λ as the dual variable to t, this is again equivalent (up to a constant) to the bound

sup
λ≥0
‖(R+

0 (λ)−R−0 (λ))µ‖L2(µ)→L2(µ) ≤ C2.

The derivation of (5) is identical except that the Fourier transform of ei(t−s)(−∆+µ)Pac

generates the difference of perturbed resolvents R+
µ (λ)−R−µ (λ). Negative values of λ are

excluded because the absolutely continuous spectrum of −∆ + µ is still [0,∞).

The Strichartz inequalities are proved via the argument by Rodnianski and Schlag [19].

Use Duhamel’s formula to write out the perturbed evolution as

eit(−∆+µ)Pacf = e−it∆Pacf + i

∫ t

0

e−i(t−s)∆µeis(−∆+µ)Pacf ds

for t > 0. Note that Pac is an orthogonal projection, so it is a bounded operator on L2(Rn).

The free evolution term satisfies all Strichartz inequalities including the p = 2 endpoint.

For the inhomogeneous term, our local decay bound (5) shows that µeis(−∆+µ)Pacf ∈
L2
tL

2(µ)∗. The dual statement to (4) together with the free Strichartz inequalities imply
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that ∥∥∥∫
R
e−i(t−s)∆G( · , s) ds

∥∥∥
LptL

q
x

. ‖G‖L2
tL

2(µ)∗ .

An application of the Christ-Kiselev lemma (for example as stated in [19], Lemma 4.2)

shows that the same bound holds for the desired domain of integration 0 ≤ s ≤ t provided

p > 2. �

References
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