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Abstract. We consider the higher order Schrödinger operator H = (−∆)m +V (x) in n dimensions

with real-valued potential V when n > 2m, m ∈ N. We adapt our recent results for m > 1 to show

that the wave operators are bounded on Lp(Rn) for the full the range 1 ≤ p ≤ ∞ in both even

and odd dimensions without assuming the potential is small. The approach used works without

distinguishing even and odd cases, captures the endpoints p = 1,∞, and somehow simplifies the low

energy argument even in the classical case of m = 1.

1. Introduction

We consider equations of the form

iψt = (−∆)mψ + V ψ, x ∈ Rn, m ∈ N.

When m = 1 this is the classical Schrödinger equation. Here V is a real-valued potential with

polynomial decay, |V (x)| . 〈x〉−β for some sufficiently large β > 0. We denote the free operator by

H0 = (−∆)m and the perturbed operator by H = (−∆)m + V . We study the Lp boundedness of the

wave operators, which are defined by

W± = s – lim
t→±∞

eitHe−itH0 .

The wave operators are of interest in scattering theory. For the classes of potentials V we consider,

the wave operators exist and are asymptotically complete, [12, 14, 1, 8, 13]. In addition, we have the

intertwining identity

f(H)Pac(H) = W±f((−∆)m)W ∗±.

Here Pac(H) is the projection onto the absolutely continuous spectral subspace of H, and f is any

Borel function. This allows one to deduce Lp-based mapping properties of operators of the form

f(H)Pac(H) from those of the much simpler operators f((−∆)m).
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The usual starting point to study the Lp boundedness of the wave operators is the stationary

representation

W+u = u− 1

2πi

∫ ∞
0

R+
V (λ)V [R+

0 (λ)−R−0 (λ)]u dλ,(1)

where RV (λ) = ((−∆)m + V − λ)−1, R0(λ) = ((−∆)m − λ)−1, and the ‘+’ and ‘-’ denote the usual

limiting values as λ approaches the positive real line from above and below, [1, 4]. It suffices to

consider W+ as W− = CW+C, where Cu(x) = u(x) is the conjugation operator. Noting that the

identity operator is bounded for all 1 ≤ p ≤ ∞, one needs only control the contribution of the integral

involving the resolvent operators.

Using resolvent identity, we write

R+
V =

2k−1∑
j=0

(−1)jR+
0 (VR+

0 )j + (R+
0 V )kR+

V (VR+
0 )k.

We denote the contribution of the jth term of the finite sum to (1) by Wj and the contribution of

the remainder by Wr,k. To study the Lp boundedness of Wr,k we need to consider whether λ is in a

neighborhood of zero or not. To that end, let χ ∈ C∞0 be a smooth cut-off function for a sufficiently

small neighborhood of zero, with χ̃ = 1− χ the complementary cut-off away from zero. We define

Wlow,ku =
1

2πi

∫ ∞
0

χ(λ)(R+
0 (λ)V )kR+

V (λ)(VR+
0 (λ))kV [R+

0 (λ)−R−0 (λ)]u dλ,

Whigh,ku =
1

2πi

∫ ∞
0

χ̃(λ)(R+
0 (λ)V )kR+

V (λ)(VR+
0 (λ))kV [R+

0 (λ)−R−0 (λ)]u dλ.

Throughout the paper, we write 〈x〉 to denote (1 + |x|2)
1
2 , A . B to say that there exists a constant

C with A ≤ CB, and write a− := a− ε and a+ := a+ ε for some ε > 0. Our main result is

Theorem 1.1. Let n > 2m ≥ 2. Assume that |V (x)| . 〈x〉−β, where V is a real-valued potential on

Rn and β > n + 4 when n is odd and β > n + 3 when n is even. Also assume that zero is a regular

point of the spectrum of H. Then Wlow,k extends to a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞

provided that k is sufficiently large.

In fact the proof we supply works for all k if 2m < n < 4m. We need sufficiently large k when

n ≥ 4m due to local singularities of the free resolvents. We note that this result is new only in the

endpoint cases p = 1,∞ when m > 1 and n > 2m even. The main novelty is that our method applies

to all cases n > 2m,m ≥ 1, 1 ≤ p ≤ ∞ in one self-contained argument, see Proposition 2.1 below.

To put this result in the context we recall that the first Lp boundedness result is the seminal paper of

Yajima, [15], for m = 1. By controlling the Born series terms, the result was shown to hold for all 1 ≤

p ≤ ∞ for small potentials. To remove this smallness assumption, the main difficulty is in controlling

the contribution of Wlow,k. The behavior of this operator differs in even and odd dimensions. In
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[15, 16, 17], Yajima provided arguments that removed smallness or positivity assumptions on the

potential for all dimensions n ≥ 3. Yajima later simplified these arguments and considered the effect

of zero energy eigenvalues and/or resonances in [18] when n is odd and with Finco in [5] when n is

even for n > 4.

We now give more details in the case m > 1 to state the new corollary of our result above on the

Lp boundedness of wave operators. Let Hδ be the Sobolev space of functions with ‖〈·〉δF(f)‖2 <∞,

where F(f) denotes the Fourier transform of f .

Assumption 1.2. For some 0 < δ � 1, assume that the real-valued potential V satisfies the condition

i)
∥∥〈·〉 4m+1−n

2 +δV (·)
∥∥

2
< C when 2m < n < 4m− 1,

ii)
∥∥〈·〉1+δV (·)

∥∥
Hδ

< C when n = 4m− 1,

iii)
∥∥F(〈·〉σV (·))

∥∥
L

n−1−δ
n−2m−δ

< C for some σ > 2n−4m
n−1−δ + δ when n > 4m− 1.

In [3], by adapting Yajima’s m = 1 argument in [15], it was shown that the contribution of the

terms of the Born series may be bounded by

‖Wj‖Lp→Lp ≤ Cj‖V ‖jn,m,

where ‖V ‖n,m denotes the norm used in Assumption 1.2 when m > 1 for the different ranges of n

considered. In addition, it was shown that if |V (x)| . 〈x〉−β for some β > n + 5 when n is odd and

β > n + 4 when n is even and if k is sufficiently large (depending on m and n), then Whigh,k is a

bounded operator on Lp for all 1 ≤ p ≤ ∞.

Combining these facts with Theorem 1.1, we have the following result which is new in the case n

is even.

Corollary 1.3. Fix m > 1 and let n > 2m. Assume that V satisfies Assumption 1.2 and in addition

i) |V (x)| . 〈x〉−β for some β > n+ 5 when n is odd and for some β > n+ 4 when n is even,

ii) H = (−∆)m + V (x) has no positive eigenvalues and zero energy is regular.

Then, the wave operators extend to bounded operators on Lp(Rn) for all 1 ≤ p ≤ ∞.

By applying the intertwining identity and the known L1 → L∞ dispersive bound of the free solution

operator e−it(−∆)m and for (−∆)
n(m−1)

2 e−it(−∆)m , we obtain the corollary below. The second bound

below was observed in [2] for the free operator, and was used to obtain counterexamples for the Lp

boundedness of wave operators.

Corollary 1.4. Under the assumptions of Corollary 1.3, we obtain the global dispersive estimates

‖e−itHPac(H)f‖∞ . |t|−
n

2m ‖f‖1.

‖H
n(m−1)

2m e−itHPac(H)f‖∞ . |t|−
n
2 ‖f‖1.
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The Lp boundedness of the wave operators in the higher order m > 1 case has only recently been

studied. The first result was in the case of m = 4 and n = 3 by Goldberg and the second author,

[6]. Here the wave operators were shown to be bounded on 1 < p < ∞. More recently in [3], we

proved 1 ≤ p ≤ ∞ boundedness in the cases when n > 2m and m > 1 for small potentials or n

odd for large potentials. In [11], Mizutani, Wan, and Yao considered the case of m = 4 and n = 1

showing that the wave operators are bounded when 1 < p <∞, but not when p = 1,∞, where weaker

estimates involving the Hardy space or BMO were proven. This recent work on higher order, m > 1,

Schrödinger operators has roots in the work of Feng, Soffer, Wu and Yao [4] which considered time

decay estimates between weighted L2 spaces.

The paper is organized as follows. In Section 2 we collect facts about resolvent operators needed to

prove Theorem 1.1. In Section 3 we establish the main technical tool, Proposition 2.1. In Section 4 we

prove several technical lemmas which, in particular, show that Proposition 2.1 implies Theorem 1.1.

2. Resolvent Expansions

In this section we lay the groundwork to prove the low energy result, Theorem 1.1. It is convenient

to use a change of variables to respresent Wlow,k as

m

πi

∫ ∞
0

χ(λ)λ2m−1(R+
0 (λ2m)V )kR+

V (λ2m)(VR+
0 (λ2m))kV [R+

0 (λ2m)−R−0 (λ2m)] dλ

We begin by using the symmetric resolvent identity on the perturbed resolvent R+
V (λ2m). With

v = |V | 12 , U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, we define M+(λ) = U + vR+
0 (λ2m)v.

Recall that M+ is invertible on L2 in a sufficiently small neighborhood of λ = 0 provided that zero is

a regular point of the spectrum. Using the symmetric resolvent identity, one has

R+
V (λ2m)V = R+

0 (λ2m)vM+(λ)−1v.

We select the cut-off χ to be supported in this neighborhood. Therefore, we have

Wlow,k =
m

πi

∫ ∞
0

χ(λ)λ2m−1R+
0 (λ2m)vΓk(λ)v[R+

0 (λ2m)−R−0 (λ2m)] dλ,

where Γ0(λ) := M+(λ)−1 and for k ≥ 1

(2) Γk(λ) := UvR+
0 (λ2m)

(
VR+

0 (λ2m)
)k−1

vM+(λ)−1v
(
R+

0 (λ2m)V
)k−1R+

0 (λ2m)vU.

To state the main result of this section, we define an operator T : L2 → L2 with integral kernel T (x, y)

to be absolutely bounded if the operator with kernel |T (x, y)| is bounded on L2.

Proposition 2.1. Fix n > 2m ≥ 2 and let Γ be a λ dependent absolutely bounded operator. Let

Γ̃(x, y) := sup
0<λ<λ0

[
|Γ(λ)(x, y)|+ sup

1≤k≤dn2 e+1

∣∣λk−1∂kλΓ(λ)(x, y)
∣∣].
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For 2m < n < 4m assume that Γ̃ is bounded on L2, and for n ≥ 4m assume that Γ̃ satisfies

(3) Γ̃(x, y) . 〈x〉−n2−〈y〉−n2−.

Then the operator with kernel

(4) K(x, y) =

∫ ∞
0

χ(λ)λ2m−1
[
R+

0 (λ2m)vΓ(λ)v[R+
0 (λ2m)−R−0 (λ2m)]

]
(x, y)dλ

is bounded on Lp for 1 ≤ p ≤ ∞ provided that β > n.

Note that Theorem 1.1 follows from this proposition and the following

Lemma 2.2. Fix n > 2m ≥ 2. Assume that |V (x)| . 〈x〉−β, where β > n + 4 when n is odd and

β > n + 3 when n is even. Also assume that zero is a regular point of the spectrum of H. Then the

operator Γk(λ) defined in (2) satisfies the hypothesis of Proposition 2.1 for all k when 2m < n < 4m

and for all sufficiently large k when n ≥ 4m.

We prove Propostion 2.1 in Section 3, and provide the argument for Lemma 2.2 in Section 4. To

prove these results we need the following representations of the free resolvent given in Lemmas 3.2

and 6.2 in [3].

Lemma 2.3. Let n > 2m ≥ 2. Then, we have

R+
0 (λ2m)(y, u) =

eiλ|y−u|

|y − u|n−2m
F (λ|y − u|).

When r & 1, we have |F (N)(r)| . r
n+1
2 −2m−N for all N . When r � 1 and n is odd, we have

|F (N)(r)| . 1 for all N . When r � 1 and n is even, we have

|F (N)(r)| .


1 N = 0, 1, . . . , 2m− 1,

| log(r)| N = 2m,

r2m−N , N > 2m.

These estimates won’t suffice for our purposes; we also need to take advantage of cancellation in

the difference R+
0 (λ2m)−R−0 (λ2m).

Lemma 2.4. Let n > 2m ≥ 2. We have

[R+
0 (λ2m)−R−0 (λ2m)](y, u) = λn−2m

[
eiλ|y−u|F+(λ|y − u|) + e−iλ|y−u|F−(λ|y − u|)

]
,

where F± are C∞ functions on R satisfying for all j ≥ 0, r ∈ R

|∂jrF±(r)| . 〈r〉
1−n
2 −j .
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Proof. By the splitting identity, we have

(5) [R+
0 −R

−
0 ](λ2m)(y, u) =

1

mλ2m−2
[R+

0 −R
−
0 ](λ2)(y, u).

Since, [R+
0 − R

−
0 ](λ2) is a multiple of the imaginary part of R+

0 . Since this may be expressed as a

multiple of ( λ
|y−u| )

n−2
2 Jn−2

2
(λ|y − u|) with Jn−2

2
a Bessel function of the first kind, we have

[R+
0 −R

−
0 ](λ2m)(y, u) = Cm,nλ

2−2mλn−2
∞∑
j=0

cn,j(λ|y − u|)2j =: λn−2mF̃ (λ|y − u|),

where |cj | . 1
j! . This proves that F̃ is entire and with bounded derivatives for |r| . 1. Since cos(r) ≥ 1

2

for |r| � 1 we can write

F̃ (r)χ(r) = eir
χ(r)F̃ (r)

2 cos(r)
+ e−ir

χ(r)F̃ (r)

2 cos(r)
.

For |r| & 1, using the representation (ignoring constants)

[R+
0 −R

−
0 ](λ2)(y, u) =

( λ

|y − u|

)n
2−1(

eiλ|y−u|ω+(λ|y − u|) + e−iλ|y−u|ω−(λ|y − u|)
)
,

where ω±(r) = Õ(|r|−1/2), we see that

χ̃(r)F̃ (r) = eirχ̃(r)r1−n2 ω+(r) + e−irχ̃(r)r1−n2 ω−(r)).

This yields the bounds for |r| & 1 after identifying

F±(r) =
χ(r)F̃ (r)

2 cos(r)
+ χ̃(r)r1−n2 ω±(r).

�

Remark 2.5. The effect of λ derivatives on F (λr) and F±(λr) can be bounded by division by λ, i.e.,

for all N = 0, 1, 2, ..., and for all n > 2m ≥ 2, we have

(6) |∂Nλ F (λr)| . λ−N 〈λr〉
n+1
2 −2m, |∂Nλ F±(λr)| . λ−N 〈λr〉

1−n
2 .

This is clear for F± and also for F except when n is even, N ≥ 2m and λr � 1, in which case the

bound also holds since

rN |F (N)(λr)| . rN (λr)2m−N− . rN (rλ)−N = λ−N .

Another corollary of Lemma 2.3 is

Corollary 2.6. Let E(λ)(r) := R+
0 (λ2m)(r)−R+

0 (0)(r). Then, for λr � 1, we have

|∂Nλ E(λ)(r)| . λ1−Nr2m−n+1, N = 0, 1, 2, ...

When λr & 1, we have

|E(λ)(r)| . r
1−n
2 λ

n+1
2 −2m + r2m−n, and
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|∂Nλ E(λ)(r)| . r
1−n
2 +Nλ

n+1
2 −2m, N = 1, 2, ...

Proof. First consider the case λr � 1. For N = 0, the claim follows from the mean value theorem

and Lemma 2.3. For N ≥ 1, again by Lemma 2.3, we have for odd n

λN |∂Nλ E(λ)| . λNrNr2m−n . λr2m−n+1.

The proof for n even is similar, using an adjustment for N ≥ 2m as in the remark above.

When λr & 1, the worst case is when the derivatives hit the exponential, which gives the inequality

when N ≥ 1. When N = 0 the two summands correspond to the contributions of R+
0 (λ2m)(r) and

R+
0 (0)(r). �

3. Proof of Proposition 2.1

We say an operator K with integral kernel K(x, y) is admissible if

sup
x∈Rn

∫
Rn
|K(x, y)| dy + sup

y∈Rn

∫
Rn
|K(x, y)| dx <∞.

By the Schur test, it follows that an operator with admissible kernel is bounded on Lp(Rn) for all

1 ≤ p ≤ ∞. We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Using the representations in Lemma 2.3 and Lemma 2.4 with r1 = |x− z1|

and r2 := |z2 − y| we see that K(x, y) is the difference of

(7) K±(x, y) =

∫
R2n

v(z1)v(z2)

rn−2m
1

∫ ∞
0

eiλ(r1±r2)χ(λ)λn−1Γ(λ)(z1, z2)F (λr1)F±(λr2)dλdz1dz2.

We write

K(x, y) =:

4∑
j=1

Kj(x, y),

where the integrand in K1 is restricted to the set r1, r2 . 1, in K2 to the set r1 ≈ r2 � 1, in K3 to

the set r2 � 〈r1〉, in K4 to the set r1 � 〈r2〉. We define Kj,± analogously.

Using the bounds of Lemmas 2.3 and 2.4 for λr � 1, we bound the contribution of |K1,±(x, y)| by∫
R2n

v(z1)v(z2)χr1,r2.1

rn−2m
1

Γ̃(z1, z2)dz1dz2.

Therefore ∫
|K1,±(x, y)|dx .

∥∥| · |2m−n∥∥
L1(B(0,1))

‖v‖2L2‖Γ̃‖L2→L2 . 1,

uniformly in y. Similarly, provided that 2m < n < 4m,∫
|K1,±(x, y)|dy . ‖Γ̃‖L2→L2‖v‖L2‖v(·)|x− ·|2m−n‖L2 . 1
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holds uniformly in x. When n ≥ 4m, we use the decay bound (3) on Γ̃ to obtain∫
|K1,±(x, y)|dy .

∫
〈z1〉−n−〈z2〉−n−r2m−n

1 dz1dz2 . 1,

which implies that K1 is admissible.

For K2, we restrict ourself to K2,− since the + sign is easier to handle. We integrate by parts twice

in the λ integral when λ|r1 − r2| & 1 (using (6) and the definition of Γ̃) and estimate directly when

λ|r1 − r2| � 1 to obtain

|K2,−(x, y)| .
∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2�1

rn−2m
1

∫ ∞
0

χ(λ)λn−1χ(λ|r1 − r2|)〈λr1〉1−2mdλdz1dz2

+

∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2�1

rn−2m
1

∫ ∞
0

χ(λ)λn−3χ̃(λ|r1 − r2|)〈λr1〉1−2m

|r1 − r2|2
dλdz1dz2

.
∫
R2n

v(z1)Γ̃(z1, z2)v(z2)χr1≈r2�1

rn−2m
1

∫ ∞
0

χ(λ)λn−1〈λr1〉1−2m

〈λ(r1 − r2)〉2
dλdz1dz2.

Therefore, passing to the polar coordinates in x integral (centered at z1) and noting 1− 2m < 0, we

have ∫
|K2,−(x, y)|dx .

∫
R2n

∫ 1

0

∫
r1≈r2�1

v(z1)Γ̃(z1, z2)v(z2)
λn−2m

〈λ(r1 − r2)〉2
dr1dλdz1dz2

.
∫
R2n

∫ 1

0

∫
R
v(z1)Γ̃(z1, z2)v(z2)

λn−2m−1

〈η〉2
dηdλdz1dz2 . 1,

uniformly in y. In the second line we defined η = λ(r1−r2) in the r1 integral and used n−2m−1 ≥ 0.

Since r1 ≈ r2, the integral in y can be bounded uniformly in x and hence the contribution of K2 is

admissible. We now consider the contribution of

(8) K4,±(x, y) =

∫
R2n

v(z1)v(z2)χr1�〈r2〉

rn−2m
1 ∫ ∞

0

eiλ(r1±r2)F (λr1)χ(λ)Γ(λ)(z1, z2)λn−1F±(λr2) dλdz1dz2.

When λr1 . 1, using (6), we bound |F±(λr2)|, |F (λr1)| . 1 and estimate the λ integral by r−n1 Γ̃(z1, z2),

whose contribution to K4 is bounded by∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χr1�〈r2〉

rn+1
1

dz1dz2.

Which, by Lemma 4.1, is admissible.

When λr1 & 1, we integrate by parts N = dn/2e+ 1 times (using (6)) to obtain the bound

1

|r1 ± r2|N

∫ ∞
0

∣∣∣∂Nλ [F (λr1)χ̃(λr1)χ(λ)λn−1Γ(λ)(z1, z2)F±(λr2)
]∣∣∣dλ

. r−N1

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
n+1
2 −2m−j1r

n+1
2 −2m

1 λn−1−j2
∣∣∂j3λ Γ(λ)(z1, z2)

∣∣ λ−j4

〈λr2〉
n−1
2

dλ
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. r
n+1
2 −2m−N

1 Γ̃(z1, z2)
∑

0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r1

λ
3n−1

2 −2m−j1−j2−j3−j4dλ

. r
n+1
2 −2m−N

1 Γ̃(z1, z2)

∫ 1

1
r1

λ
3n−1

2 −2m−Ndλ . r
n+1
2 −2m−N

1 log(r1)Γ̃(z1, z2).

In the last inequality we noted that 3n−1
2 −2m−N ≥ −1, so the λ integral is either bounded or grows

like log(r1) . r0−
1 for r1 � 1. Noting that dn2 e+ n+1

2 ≥ n+ 1
2 , the contribution of this to (8) is

.
∫
R2n

v(z1)v(z2)χr1�〈r2〉

r
n+ 1

2−
1

dz1dz2.

By Lemma 4.1, this is admissible.

We now consider K3, which is the most challenging case. Using (5) in (4), we write

(9) K3(x, y) =

∫
R2n

χr2�〈r1〉v(z1)v(z2)∫ ∞
0

λχ(λ)R+
0 (λ2m)(r1)Γ(λ)(z1, z2)[R+

0 (λ2)−R−0 (λ2)](r2) dλdz1dz2.

We write

R+
0 (λ2m) = R+

0 (0) + [R+
0 (λ2m)−R+

0 (0)] =: G0 + E(λ),

Γ(λ) = Γ(0) + [Γ(λ)− Γ(0)] =: Γ(0) + Γ1(λ).

Here G0 = R+
0 (0) = cn,mr

n−2m
1 . By considering R+

0 (λ2m)Γ(λ) as a perturbation of R+
0 (0)Γ(0), we

can show the kernel is admissible and capture the endpoint, p = 1,∞, boundedness. We first consider

the contribution of G0Γ(0) to K3:∫
R2n

χr2�〈r1〉v(z1)v(z2)G0(r1)Γ(0)(z1, z2)

∫ ∞
0

λχ(λ)[R+
0 (λ2)−R−0 (λ2)](r2) dλdz1dz2.

Identifying the λ integral as a constant multiple of the kernel of χ(
√
−∆), we may bound it as

O(〈r2〉−N ) for all N since χ(|ξ|) is Schwartz. Therefore, we have the bound∫
R2n

χr2�〈r1〉v(z1)v(z2)r2m−n
1 r−n−1

2 Γ̃(z1, z2)dz1dz2,

which is admissible by Lemma 4.1.

It remains to consider the contributions of R+
0 (λ2m)Γ1(λ) and of E(λ)Γ(0). The former can be

written as∫
R2n

v(z1)v(z2)χr2�〈r1〉

rn−2m
1

∫ ∞
0

eiλ(r1±r2)F (λr1)χ(λ)λn−1Γ1(λ)(z1, z2)F±(λr2) dλdz1dz2.

When λr2 � 1, using |Γ1(λ)| . λΓ̃, which follows from the mean value theorem, and (6) to directly

integrating in λ, we obtain the bound∫
R2n

v(z1)v(z2)χr2�〈r1〉

rn−2m
1 rn+1

2

Γ̃(z1, z2)dz1dz2,
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which is admissible by Lemma 4.1. When λr2 & 1, integrating by parts N = dn/2e+ 1 times, we have

the bound

(10)

∫
R2n

v(z1)v(z2)χr2�〈r1〉

rn−2m
1 |r1 ± r2|N

∫ ∞
0

∣∣∣∂Nλ [F (λr1)χ(λ)χ̃(λr2)λn−1Γ1(λ)(z1, z2)F±(λr2)
]∣∣∣ dλdz1dz2.

We estimate the λ integral by (noting that λj3 |∂j3λ Γ1| . λΓ̃ and using (6))

. r
−n−1

2
2 Γ̃(z1, z2)

∑
0≤j1+j2+j3+j4≤N, ji≥0

∫ 1

1
r2

〈λr1〉
n+1
2 −2mλ−j1λn−1−j2λ1−j3λ−

n−1
2 −j4dλ

. r
−n−1

2
2 Γ̃(z1, z2)

∫ 1

1
r2

〈λr1〉
n+1
2 −2mλ

n+1
2 −d

n
2 e−1dλ

. r
−n−1

2
2 Γ̃(z1, z2)

(∫ min( 1
r1
,1)

1
r2

λ
n
2−d

n
2 e−

1
2 dλ+

∫ 1

min( 1
r1
,1)

r
n+1
2 −2m

1 λb
n
2 c−2mdλ

)
.

Note that n − dn2 e = bn2 c is used in the final integral. The first integral is at most log(r2). Since

n−1
2 +N ≥ n+ 1

2 , its contribution to (10) is at most∫
R2n

v(z1)v(z2)χr2�〈r1〉

rn−2m
1 r

n+ 1
2−

2

Γ̃(z1, z2)dz1dz2,

which is admissible by Lemma 4.1. Similarly, the second integral is bounded by rn−2m
1 after multiplying

the integrand by (λr1)
n−1
2 . Contribution of this to (10) is at most∫

R2n

v(z1)v(z2)χr2�〈r1〉

r
n+ 1

2
2

Γ̃(z1, z2)dz1dz2,

which, by Lemma 4.1, is also admissible.

We now consider the contribution of E(λ)Γ(0):

(11)

∫
R2n

v(z1)v(z2)χr2�〈r1〉Γ(0)(z1, z2)

∫ ∞
0

e±iλr2E(λ)(r1)χ(λ)λn−1F±(λr2) dλdz1dz2.

Using Lemma 2.3 and Corollary 2.6 when λr1 � 1. Using this when λr2 � 1 and using |Γ(0)(z1, z2)| ≤

Γ̃(z1, z2), we bound (11) by direct estimate by∫
R2n

v(z1)v(z2)χr2�〈r1〉Γ̃(z1, z2)

rn−2m−1
1 rn+1

2

dz1dz2,

which is admissible by Lemma 4.1 since n− 2m ≥ 1.

When λr2 & 1 and λr1 � 1, we integrate by parts N = dn/2e+ 1 times to obtain∫
R2n

r−N2 v(z1)v(z2)χr2�〈r1〉Γ̃(z1, z2)

∫ ∞
0

∣∣∣∂Nλ [E(λ)(r1)χ(λ)χ(λr1)χ̃(λr2)λn−1F±(λr2)
]∣∣∣ dλdz1dz2.

Using Corollary 2.6 and (6), we bound this by∫
R2n

r−N2 r1+2m−n
1 v(z1)v(z2)χr2�〈r1〉Γ̃(z1, z2)

∫ 1

r−1
2

λn−dn/2e−1(λr2)
1−n
2 dλdz1dz2

.
∫
R2n

r
−n− 1

2
2 r1+2m−n

1 v(z1)v(z2)χr2�〈r1〉Γ̃(z1, z2)dz1dz2,
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which is again admissible by Lemma 4.1.

It remains to consider the case λr1 & 1. Integrating by parts once we rewrite the λ integral in (11)

as

1

r2

∫ ∞
0

e±iλr2∂λ[E(λ)(r1)] χ̃(λr1)χ(λ)λn−1F±(λr2) dλ(12)

+
1

r2

∫ ∞
0

e±iλr2E(λ)(r1) ∂λ
[
χ̃(λr1)χ(λ)λn−1F±(λr2)

]
dλ.(13)

For the second integral, (13), we integrate by parts N = dn2 e more times using (6), to obtain the

bound

1

r
N+n

2 + 1
2

2

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

∣∣∂j1λ [E(λ)(r1)]
∣∣ λn−3

2 −j2 dλ.

Using Corollary 2.6 we bound this by

.
1

r
N+n

2 + 1
2

2

[ ∫ 1

r−1
1

r2m−n
1 λ

n−3
2 −N dλ+

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

r
j1+ 1−n

2
1 λn−2m−1−j2 dλ

]
.

The first integral takes care of the additional term that arises in Corollary 2.6 (for λr & 1) in the case

j1 = 0. Letting {n/2} = n/2− bn/2c, we bound this by

.
r
{n/2}+ 1

2 +2m−n
1 + r

{n/2}+ 1
2

1

r
n+{n/2}+ 1

2
2

.
r
{n/2}+ 1

2
1

r
n+{n/2}+ 1

2
2

,

whose contribution is admissable by Lemma 4.2 since r2 � 〈r1〉.

For the first integral, (12), we integrate by parts N = dn2 e more times after pulling out the phase

eiλr1 to obtain the bound

1

r
n
2 + 1

2
2 |r1 ± r2|N

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

∣∣∂j1λ [Ẽ(λ)(r1)]
∣∣ λn−1

2 −j2 dλ

Ẽ(λ)(r1) := e−iλr1∂λ[E(λ)(r1)]

Using Corollary 2.6, we bound this by

1

r
n+{n/2}+ 1

2
2

∑
j1+j2≤N, 0≤j1,j2

∫ 1

r−1
1

r1
(λr1)

n+1
2 −2m

rn−2m
1

λ
n−1
2 −j1−j2 dλ

.
1

r
n+{n/2}+ 1

2
2 r

n−3
2

1

∫ 1

r−1
1

λ
n
2−2m−{n/2} dλ .

1

r
n+{n/2}+ 1

2
2

,

which is admissible by Lemma 4.1. �



12 M. B. ERDOĞAN, W. R. GREEN

4. Technical Lemmas

It remains only to prove Lemma 2.2 stating that the operators Γk(λ) defined in (2) satisfy the

bounds needed to apply Proposition 2.1. This follows, with some modifications, from the discussion

preceeding Lemma 3.5 in [3]. For the convenience of the reader, we sketch the argument here. In

addition, we will state and prove two lemmas on admissable kernels that were used in the proof of

Proposition 2.1.

We write n? to denote n + 4 if n is odd and n + 3 if n is even. The bounds in Lemma 2.3 and

Corollary 2.6 imply that the operator Rj with kernel

(14) Rj(x, y) := v(x)v(y) sup
0<λ<1

|λmax(0,j−1)∂jλR
+
0 (λ2m)(x, y)|

satisfies

Rj(x, y) . v(x)v(y)
(
|x− y|2m+1−n + |x− y|j−(n−1

2 )
)
, j ≥ 1,

R0(x, y) . v(x)v(y)
(
|x− y|2m−n + |x− y|−(n−1

2 )
)
.

Therefore, Rj is bounded on L2(Rn) for 0 ≤ j ≤ dn2 e + 1 provided that |V (x)| . 〈x〉−β for some

β > n?. Indeed, when n < 4m, it follows because Rj is Hilbert-Schmidt. Also the second term

in the bounds above is always Hilbert-Schmidt. When n ≥ 4m, we identify |x − y|2m−n (similarly

|x− y|2m+1−n) as a multiple of the fractional integral operator I2m : L2,σ → L2,−σ. Using the decay

of v(x)v(y) and identifying σ = β
2 suffices to apply the Propositions 3.2 and 3.3 in [7] and establish

boundedness on L2.

Similarly, E(λ) := v[R+
0 (λ2m)−R+

0 (0)]v satisfies by the discussion above and Corollary 2.6 that

‖E(λ)‖L2→L2 . λ.

Now, we define the operator

T0 := U + vR+
0 (0)v = M+(0).

By the assumption that zero energy is regular, T0 is invertible, see e.g. [4]. Note that by a Neumann

series expansion and the invertibility of T0 we have

[M+(λ)]−1 =

∞∑
k=0

(−1)kT−1
0 (E(λ)T−1

0 )k.

The series converges in the operator norm on L2 for sufficiently small λ. By the resolvent identity the

operator ∂Nλ [M+(λ)]−1 is a linear combination of operators of the form

[M+(λ)]−1
J∏
j=1

[
v
(
∂
Nj
λ R

+
0 (λ2m)

)
v[M+(λ)]−1

]
,
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where
∑
Nj = N and each Nj ≥ 1. From the discussion above on Rj ’s this representation implies

that

(15) sup
0<λ<λ0

λmax(0,N−1)|∂Nλ [M+(λ)]−1(x, y)|

is bounded in L2 for N = 0, 1, . . . , dn2 e+ 1 provided that β > n?.

Recalling the definition of Γk(λ), (2), and noting the L2 boundedness of Rj ’s above we see that

sup
0<λ<λ0

λmax(0,N−1)
∣∣∂Nλ (UvR+

0 (λ2m)
(
VR+

0 (λ2m)
)k−1

v
)
(x, y)

∣∣
is bounded on L2. This yields Lemma 2.2 when 2m < n < 4m.

When n ≥ 4m we need stronger bounds on the kernel of Γk(λ). We write the iterated resolvents

A(λ, z1, z2) =
[(
R+

0 (λ2m)V
)k−1R+

0 (λ2m)
]
(z1, z2).(16)

For odd n > 4m. If k − 1 is sufficiently large depending on n,m and |V (x)| . 〈x〉−
n?
2 −, then

sup
0<λ<1

|λmax{0,`−1}∂`λA(λ, z1, z2)| . 〈z1〉2〈z2〉2,

for 0 ≤ ` ≤ n+3
2 = dn2 e+ 1. This follows from the pointwise bounds on Rj above. The iteration of the

resolvents smooths out the local singularity |x− ·|2m−n. Each iteration improves the local singularity

by 2m, so that after j iterations the local singularity is of size |x − ·|2mj−n. Selecting k − 1 large

enough ensures that the local singularity is completely integrated away. See [3] for more details. For

even n ≥ 4m we get a better bound since we need fewer derivatives:

sup
0<λ<1

|λmax(0,`−1)∂`λA(λ, z1, z2)| . 〈z1〉
3
2 〈z2〉

3
2 ,

for 0 ≤ ` ≤ n+2
2 = dn2 e+ 1.

Finally, recalling that

Γk(λ) = UvA(λ)vM−1(λ)vA(λ)vU

yields Lemma 2.2 when n ≥ 4m.

The following lemmas were used frequently in the proof of Proposition 2.1:

Lemma 4.1. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| .
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|�〈z1−x〉}

|x− z1|n−2m−k|z2 − y|n+`
dz1 dz2

for some 0 ≤ k ≤ 2m − n and ` > 0. Then, under the hypotheses of Lemma 2.1, the kernel of K is

admissible, and consequently K is a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.
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Proof. We first consider integration in y,∫
Rn
|K(x, y)| dy .

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|�〈z1−x〉}

|x− z1|n−2m−k

∫
Rn

χ{|y−z2|�〈z1−x〉}

|z2 − y|n+`
dy dz1 dz2.

Writing the y integral in polar coordinates centered at z2, and noting that |z2− y| & 1, we bound this

by ∫
Rn
|K(x, y)| dy .

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)

|x− z1|n−2m−k

∫ ∞
1

r−1−` dr dz1 dz2

.
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)

|x− z1|n−2m−k dz1 dz2

If 2m < n < 4m, then the singularity in z1 is locally L2 and one bounds this as∫
Rn
|K(x, y)| dy . ‖v(·)|x− ·|k+2m−n‖2‖Γ̃‖2→2‖v(z2)‖2 . 1,

uniformly in x. If n ≥ 4m, one has∫
Rn
|K(x, y)| dy .

∫
R2n

v(z1)v(z2)〈z1〉−
n
2−〈z2〉−

n
2−

|x− z1|n−2m−k dz1 dz2 . 〈x〉k+2m−n . 1,

uniformly in x since k + 2m− n ≤ 0.

Next, integration in x follows identically when |x− z1| & 1 noting that since |y− z2| � |z1 − x| we

have

1

|x− z1|n−2m−k|z2 − y|n+`
≤ 1

|x− z1|n+`|z2 − y|n−2m−k .

If |x− z1| < 1, we use polar co-ordinate in x centered at z1 to bound with

∫
Rn
|K(x, y)| dx .

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|�1}

|z2 − y|n+`

∫ 1

0

r2m+k−1 dr dz1 dz2

.
∫
R2n

v(z1)v(z2)Γ̃(z1, z2) dz1 dz2.

Which is bounded uniformly in y.

�

We also need the following bound.

Lemma 4.2. Let K be an operator with integral kernel K(x, y) that satisfies the bound

|K(x, y)| .
∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|�〈z1−x〉}|x− z1|`

|z2 − y|n+`
dz1 dz2

for some ` > 0. Then, under the hypotheses of Lemma 2.1, the kernel of K is admissible, and

consequently K is a bounded operator on Lp(Rn) for all 1 ≤ p ≤ ∞.
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Proof. Without loss of generality, we may assume that |x−z1| > 1. If not, we may bound |x−z1|` . 1

and apply Lemma 4.1. We consider the y integral first and use polar co-ordinates centered at z2 to

see∫
Rn
|K(x, y)| dy .

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)|x− z1|`
∫ ∞
|x−z1|

r−1−` dz1 dz2

.
∫
R2n

v(z1)v(z2)Γ̃(z1, z2) dz1 dz2 . 1.

The bound holds uniformly in x.

For the x integral, we use polar co-ordinates centered at z1 to see∫
Rn
|K(x, y)| dx .

∫
R2n

v(z1)v(z2)Γ̃(z1, z2)χ{|y−z2|�〈z1−x〉}

|z2 − y|n+`

∫ |z2−y|
0

rn+`−1 dr dz1 dz2

.
∫
R2n

v(z1)v(z2)Γ̃(z1, z2) dz1 dz2 . 1,

uniformly in y.

�
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