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ABSTRACT. We consider the higher order Schrédinger operator H = (—A)™ + V(x) in n dimensions
with real-valued potential V' when n > 2m, m € N, m > 1. When n is odd, we prove that the wave
operators extend to bounded operators on LP(R™) for all 1 < p < oo under n and m dependent
conditions on the potential analogous to the case when m = 1. Further, if V is small in certain
norms, that depend n and m, the wave operators are bounded on the same range for even n. We
further show that if the smallness assumption is removed in even dimensions the wave operators

remain bounded in the range 1 < p < oo.

1. INTRODUCTION

We consider the higher order Schrodinger equation
Wy = (—A)") + Vb, x € R™, m>1, meN.

We restrict our focus to the case when the spatial dimension n > 2m. Here V is a real-valued, decaying
potential. We denote the free higher order Schrédinger operator by Hy = (—A)™ and the perturbed
operator by H = (—A)™ + V(z). We study the L? boundedness of the wave operators, which are
defined by
Wi —s 7t_1>iinoo pitH o—itHo_

For the classes of potentials V' we consider, the wave operators exist and are asymptotically complete,
see the work of Agmon, [1], Hérmander, [16] and Schechter, [25, 24].

We use the notation (z) to denote (1 + |z|2)2, F(f) or f to denote the Fourier transform of f.
We write A < B to say that there exists a constant C' with A < C'B, and write a— := a — ¢ and

a+ := a + € for some € > 0 throughout the paper. We use the norm ||f||s = ||[{-)°f(:)||2. We first

state a small potential result that is valid in all dimensions n > 2m.

Theorem 1.1. Let n > 2m. Assume that the V is a real-valued potential on R™ and fir 0 < § < 1.
Then 3C = C(§,n,m) > 0 so that the wave operators extend to bounded operators on LP(R™) for all
1 < p < o0, provided that
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i) H<>W+6V()H2 < C when 2m <n < 4m —1,
it) H<'>1HV(')HH5 < C whenn=4m —1,

iii) H]:(<.>UV('))||LTL’53{$ < C for some o0 > 2241 4 § when n > 4m — 1.

For boundedness on LP when 1 < p < 0o, we may remove the smallness assumption above provided
V' decays sufficiently at spatial infinity. We define zero energy to be regular if there are no non-trivial

distributional solutions to Ht = 0 with () ~2™~4(x) € L?. We show

Theorem 1.2. Let n > 2m. Assume that the V is a real-valued potential on R™ so that

i) |[V(2)| S <$>_5 for some B > n+ 3 when n is odd and for some 3 > n + 4 when n is even
i) ||(YFV ()| gor < oo when n = 4m — 1,

i) for some 0 < 3§ < 1 and o > =41 || F(()7V ()

P < oo whenn >4m —1,

n—

I 1-
L n—2m=—3

w) H=(—A)"4V(x) has no positive eigenvalues and zero energy is regular.

Then, the wave operators extend to bounded operators on LP(R™) for all 1 < p < o0.

Finally, with slightly more decay on the potential we recover the endpoints p = 1,00 in odd

dimensions:

Theorem 1.3. Let n > 2m be odd. Assume that V satisfies the hypothesis of Theorem 1.2 and in
addition |V (x)| < (x)~P for some B > n+ 5. Then, the wave operators extend to bounded operators
on LP(R™) for all 1 < p < co.

In even dimensions, we lose the boundedness on the endpoints of p = 1,00 due to the low energy.
In particular, the energies away from zero are bounded on the full range including p = 1, 00, see
Proposition 6.5 below. We hope to address the cases of p = 1,00 when n > 2m even and the case

when there are threshold obstructions in a future work.

n ( n—4m-+1 )

We note that the norm used when n > 4m—1 is finite when (x)?V (x) has more than —%— 5

derivatives in L?(R"). In all cases above, we also note that
V2@ S @)™, zeR™

This suffices to imply, [24, 1, 25], the existence, asymptotic completeness, and intertwining identity

for the wave operators. In particular, we have
(1) J(H)Poe(H) = W f((=A)™)WL.

Here P,.(H) is the projection onto the absolutely continuous spectral subspace of H, and f is any
Borel function. Using (1) one may obtain LP-based mapping properties for the more complicated,

perturbed operator f(H)P,.(H) from the simpler free operator f((—A)™). The boundedness of the
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wave operators on LP(R") for any choice of p > 2 with the function f(-) = e~#() yield the dispersive

estimate
(2) le™ " Pae(H)| por s o S 8720 F 5,

where p’ is the Holder conjugate of p. In particular in all odd dimensions n > 2m, under the hypothesis

of Theorem 1.3, we have

n

e Pao(H) || 2o S 872

Our work is inspired by recent work by Feng, Soffer, Wu and Yao on weighted L?-based “local
dispersive estimates” for higher order Schrédinger operators considered in [9], as well as the recent work
on the LP(R3) boundedness of the wave operators for the fourth order (m = 2) Schrédinger operators
by Goldberg and the second author [13], and the extensive works of Yajima, [26, 27, 28, 29, 30], in
the case of m = 1. The wave operators for the usual Schrodinger operator —A + V', when m = 1 are
well-studied, see for example [26, 27, 28, 18, 19, 5, 22] in all dimensions n > 1. On R?, Beceanu and
Schlag obtained detailed structure formulas for the wave operators, [2, 3, 4]. The L? existence and
other properties of the higher order wave operators have been studied by many authors, including
Agmon [1], Kuroda [20, 21], Hérmander [16], and Schechter, [24, 25]. We note that the only result on
the L? boundedness of the wave operators for higher order Schrodinger operators is the case of m = 2
and n = 3 by Goldberg and the second author, [13]. There appears to be three regimes in the analysis
of LP boundedness of the wave operators: n < 2m, n = 2m, and n > 2m. In the case n < 2m, as
in [13], zero energy is not regular for the free operator and the main difficulty in the analysis is the
small energies. However the large energy argument is more straightforward since the resolvent decays
in the spectral parameter A. In the range n > 2m the zero energy is regular for the free operator
and the resolvent remains bounded as A — 0. However, the large energies, and in particular the Born
series terms, are not easy to deal with. When n > 4m — 1 one needs a smoothness requirement on
the potential V as in the case m = 1 and n > 3, [26, 14], due to the growth of the resolvents as the
spectral variable goes to infinity. The case n = 2m is challenging in both the low and high energy
regimes.

Similar to the usual second order Schriodinger operator, for the types of potentials we consider there
is a Weyl criterion and c4.(H) = 04.(Hp) = [0,00). In contrast, decay of the potential is not sufficient
to ensure the lack of eigenvalues embedded in the continuous spectrum for the higher order operators,

[9]. Even perturbing with compactly supported, smooth potentials may induce embedded eigenvalues.

1During the review period of this article Mizutani, Wan and Yao proved results for the case of m = 2 and n = 1,

[23].
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We leave this as an overarching assumption and note that there are conditions that ensure the lack
of embedded eigenvalues, see Theorem 1.11 in [9)].

To prove Theorem 1.2 we use a time-independent representation of the wave operators based on
resolvent operators. We have the splitting identity for z € C\ [0, 00), (c.f. [9])

—1
WzRo(wéZ#)(x, Y)

3

(3) Ro(2)(, ) = (—A)™ — 2) " (2,5) = ——

1
mz_ﬁé

Il
=]

where w; = exp(i2rf/m) are the m‘" roots of unity, Ro(z) = (—A — 2)~! is the usual (2"¢ order)
Schrodinger resolvent. Using the change of variables z = A\2™ with A restricted to the sector in the

complex plane with 0 < arg(\) < 7/m,

4) RoA™)(z,y) = ((=A)™ = \2"™) " Ha,y) = ﬁ z_: weRo(weA?)(, ).
=0

By the well-known Bessel function expansions, for n > 3 odd we have

-
3 — 2
pizlz—y]

3
) o
(5) Bo(=*) () = = mms g eagle =yl S(z)>0.
Even dimensions are more complicated due to the appearance of logarithmic terms.

Our usual starting point to study the wave operators is the stationary representation
1 o0
Wiu=u—— RENVIRS (A) — R (W)]udA,
211 0
where Ry (M) = ((=A)™ +V — A)~!, where the ‘+” and ‘-’ denote the usual limiting values as A
approaches the positive real line from above and below, [9]. Since the identity operator is bounded on
LP, we need only bound the second term involving the integral. It is convenient to make the change

of variables A — A?>™ and consider the integral kernel of the operator

m [ o1 2 2
(6) - AT R‘J;()\ 7”)1/[736r — Ry (™) dA.

m Jo

Our result in Theorem 1.1 follows by using resolvent identities to expand R$ in an infinite series and
directly summing the series. To remove the smallness assumption to show that the operator defined
in (6) extends to a bounded operator on LP requires different strategies in the low (0 < A < 1) and
high (A 2 1) energy regimes. To delineate these cases, we use the even, smooth cut-off function x
with x(A) = 1 for |A| < Ag for some sufficiently small A\g < 1, and x(A) = 0 for |A| > 2Ag, as well as
the complimentary cut-off X(A) =1 — x(A).

We note that the different assumptions on the potential we impose based on the size of n versus m
are natural. When n < 2m the low energy expansions of the resolvent R are singular as the spectral
parameter A — 0. This complication necessitates a different strategy to invert certain operators and

develop expansions for both the free and perturbed resolvents, see [15, 7] for the case when m = 2
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and n = 4,3 respectively. Smoothness of the potential is required for the second order Schrodinger
operator in dimensions n > 3 since the kernel free resolvent Roi(/\z) grows like A"Z as the spectral
parameter A — co. This causes the L' — L™ dispersive estimates to fail in dimensions greater than
three without some smoothness assumptions on the potential, see the counterexample constructed by
Goldberg and Visan [14]. The higher order Schrédinger resolvent, Ro(A2™) grows like A*2" ~2™ when
n > 4m — 1, which necessitates a control over derivatives of the potential which we measure in terms
of the FL" norm similar to the conditions for the second order Schrédinger established by Yajima,
[26]. Our e-smoothness requirement in the case n = 4m — 1 could be an artifact of our methods.

We assume that zero energy is regular, that is there are no threshold resonances or eigenvalues.
These can be characterized in terms of distributional solutions to H = 0, with ¢ in weighted L?(R")
spaces, see section 8 of [9]. The effect of zero energy resonances or eigenvalues on the LP-boundedness
of the wave operators is well-studied in for m = 1 Schrdédinger operator. Generically, one sees the
range shrink to 1 < p < § when n > 3, while further orthogonality conditions allows one to obtain a
larger range. See, for example the work of Yajima [30, 31, 32], also Goldberg and the second author
[12]. In the higher order case, one would expect the wave operators to be bounded for 1 < p < 5=
in the presence of zero energy eigenvalues when n > 4m, with a larger upper bound on the range of
p when 2m < n < 4m or in the case of resonances, or sufficient cancellation properties between the
potential and zero energy eigenspace. In these cases only the bounds on the low energy portion of the
tail of the Born series would be affected. The effect of embedded eigenvalues has no analogue in the
m = 1 case, its effect on the LP-boundedness of the wave operators is unknown.

The paper is organized as follows. We first control the Born series terms that arise by iterating
the resolvent identity for the perturbed resolvent in the stationary representation, (6), of the wave
operator in Section 2. Next, we prove Theorem 1.2 and Theorem 1.3. First in odd dimensions,
in Section 3 and Section 4, we control the remainder in the low energy regime, when the spectral
parameter A\ is in a neighborhood of zero. In Section 5 we control the remainder in the high energy
regime, when A 2 1 in odd dimensions. In Section 6 we show how the arguments in Sections 3 and
5 may be adapted to the even dimensional case. Finally, in Section 7 we provide integral estimates

that are used throughout the paper.

2. BORN SERIES
By iterating the resolvent identity, one has the expansion
20

(7) Rv(2) =Y [Ro(2)(=VRo(2)’] = (Ro(2)V) Ry (2)(VRo(2))".
J=0
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Consider the contribution of an arbitrary summand in the Born series to (6),

Wy = (07 [ REQVIRE )~ Ry (V]
2w Jo

In this section by modifying the proof of Yajima in [26] to control the Born series terms for the second

order Schrodinger, we prove that W extends to a bounded operator on LP(R™), 1 < p < oc:

Theorem 2.1. Fiz 1 <p < oo and 0 < 6 < 1. Then 3C = C(§,n,m) > 0 so that for 2m < n <

4m — 1, we have

4m+1—n

IWsllzr—re < GG T2 Ve,
forn=4m — 1, we have

IWillzrsre < C7a) 0V I,

forn >4m — 1, we have

2n—4m

Wl < C7||F((2) "*1*5+6V)||Znn—1—s :

In what follows we will ignore most implicit constants; their affect on the final inequality is of
the form C”, where C' depends on n,m and the actual value of the implicit small constants in the
hypothesis above. Theorem 1.1 follows from this result.

Our approach is inspired by the paper [26], in which Yajima proved the result in the case of m = 1.
We will bound the adjoint operator Z; = Wj. Fix f € S and let

(8) Zyf(z)= lim --- lim lim Zjz f(z),

€1 —0t €;j—0tT eg—0T
where

ZJ7g7€0f(£E) = QLT['Z /R [Ro()\ - ZEQ)VRo(A + iGl) s VR()()\ + ZE])f:I (:c)d)\

The main result of this sections is to show this operator is bounded on LP(R™) for all 1 < p < oo.
As in [26], it suffices to prove that the limit above exists in L? and the bounds stated in the theorem
hold for f € S and V € C§°.
Taking the Fourier transform in x yields, up to constants,
1 . V(k;) n
R B e | B o [ SUIL

j= Jj=1

Applying Cauchy’s integral formula to the X integral in the definition of Z; and taking ¢y — 07 yield

_ 3 V(k;) T
F(Zref) () = /RJ” Ll;[l (6 S R Z_ej)}f(g - ij>dkl o odky.

J=1
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Now, we utilize the change of variables ZLI k¢ kj for j =1,...,J and define ky = 0 to obtain

: Vi(k; — k1) ;
Fene= [, | Uge=m = —= | e ket

We define the multiplier operator T;", by

~

e o 3
(9) Tk,ef*f 1<|§—k‘2m— |£2m_2'€>'

Let Kj(k1,ka,..., ky) = H;-le ‘A/(k‘j —kj_1) and fy, (z) = e**7 f(x). Then, we have

(10)  Z;f(x)

= lim --- lim Tl?ll’q{/ T]?;EZ{--' K](kl,kg,...Jii])T];nJ’lekJ dk]}}dkg}d/ﬁ,
R™ R R

€1HO+ EJ*)O-F

Now, we need to study the operators T;", in some detail. We note the algebraic identity

m—1
€ = KPP — €2 — e = (1€ — K = [€)( D] 1€ = KP|e[Pm272) — e
=0
R ik epu(&/IK])
=2 g T T )
where
(11) w=" e and pu(e) = !

|| St w — €[2¢ g 222t

n f_lf_l( (/RS )

L | )
24[k[2m T “T - — e

We therefore have

Writing (note that p,,(£) > 0)

0o epw

1 _EI g~ ka%m)t

i N R A e TTdt,
+iw - € — 2k[2m—1 0

we obtain

(/1K) F " -tk
f1< _ pu(¢/] I)fe(fz(g/k))(x)_/o - b fa o+ tw)dt,

ikl | o
—5 Tw- &= SpEeT

where * denotes convolution and

i = F* (pale/ lkeer=E/1D).
Lemma 2.2. We have the following bounds (with k = sw,s > 0,w € S*~1)

I =1

)

H sup hi,c
e>0

<sI,5=1,2,...

|l
s2m—1 L1 ~

H sup |3§hsw7
e>0
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Furthermore, hy . converges to hy = hyo and 6§hsw7 < converges to & hy as e — 0 a.e. and in

s2m—

L', and hy, satisfies the same bounds above.
Proof. We first prove the claims for hj. Note that

ol = [ 72 )

Lt
A simple calculation shows that

1
N
|V5pw(€)|§<é_>2,m7_2+]\[7 N:O,l,Q,...

This is seen by considering cases based on the size of |£| and |w| = 1 in (11). Therefore, for N >

n—2m+3, |z|NF~1(p,)(z) is a bounded continuous function, and hence
F7Hpo) (@) = ut O(min(ja =~ [af 7)),

where u is a distribution supported at 0. Since p,,(§) — 0 as || — oo, we conclude that v = 0, which

yields the claim for j = 0. For j > 0, note that
1
0sF ~'pu(sz) = - [VF ' pu)(ws) = F 1 (V- Epu())(ws).

Similarly, 0*F ~1p,(sz) = s *F (V- €)'py,(€))(zs). Therefore,
J
|00 ()] S D0 8" sTHF TV - €) pu(€)) (29)]-
=0
The claim follows from this as above since (V - £)p,, (&) satisfies the same bounds as p,,(€).

Now, we consider hy .. Let H,(e,z) = F~! (pwe_E”W) (z). Using the bounds on the derivatives of

Pw, and noting that p,, (&) ~ (€)272™ and that sup,.,ae™® < 1, we conclude that

1
N —epu B
VE @ Ol S gz V=002,
Therefore we have
(12) |]:_1(pwe_€p“’)($)‘ S min(|I|—7L—17 |.,L,|—n+1)’

uniformly in € > 0. This yields the claim for j = 0 since hy = s"H, (€, sx).
Similarly, note that

|V [pu(€) (e © —1)]| < W N=012,....

This implies the a.e. and L' convergence of hi,e to hy.
For the jth derivative of hy. ., by chain rule and scaling as above, it suffices to prove that the L!

norms of sup, €197 (z - V)2 F 1 [p,e~P~](x) are < 1 for j1,j2 > 0. Note that

VYN0 (Ve - )72y (§)e™ ) e L!
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for N > n —2m + 3. The claim follows as above. Convergence of the s derivatives of hy . follow

similarly. O

We conclude that for f € S

T]z’)Lef(.’I] 2|k|2m 1/ / —Z‘k“t/Zh o (y)f(m_y‘i‘tbd) dydt,

z‘k‘Zm 1

and for all z € R™

i > k|2 _ —m
i T ) = g [ [ b — ) dyd = T 0),

Following the notation of [26], for e > 0, let
Gef = | Tpf(k,)dk,  Gof = [ Ty"f(k,-)dk
R"L R7l
Note that

(13) Gef(z) = /2|k|2m1/ / e 2, () f(k,x — y + tw) dy dt dk.
Rn n 2|k\m

Passing to polar coordinates, k = sw, and changing the order of integration, we have

/ / e(t,w, x) dt dw,
Snl

F.(t,w,x) :/ eTIS2gn=Impy ok f(sw, ) (@ + tw) ds.
0

where

) 5e2m—1

Also note that Gy f satisfies the same formula with F replacing F.

Lemma 2.3. Let e >0 and f(k,z) € S(RY,S(RD)). For alln >2m+1 and 1 < p < oo, we have

dk
IGflor < Con | (1" szHDkf Moo s

Forn =2m+ 1, we have

dk

,l
IGfls < Cr [ () min(1, ) ZZIIDif Mo et

Moreover, Gef — Gof in LP ase— 0.

Proof. Note that

oo (oo}
|Fet,0,2) 1 S / S| SUp B el | 2 1 f (9, )| o ds S / "2 f (sw, )| o ds.
0 € 0

For ¢ > 1, and n > 2m + 1, we integrate by parts twice in the s integral to obtain

1 o _
|F€(t7w7$)| SJ tj/ / ’ag (Sn 2mhsw,7252;§71 (y)f(swmc —y+ tUJ))‘ ds dy

Let Hyy(y) = [Supcsg j=o,1,2 50! hsw e (y)|. Using this we obtain the bound
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|F. th|~t2// V2 im=2 L (y Z‘@j (sw, — y + tw)| ds dy

oo 2
S [T Hat S o s — 4 ) ds

=0

By Lemma 2.2, |Hsy||zr < 1, therefore uniformly in ¢ and w, we have

00 2
S ) A L DI CHICE T

§=0
which implies the claim for G.f when n > 2m + 1. The convergence of G.f to Gy f in L? also follows

by applying the same argument with h,,, e — hg, replacing h,, e _ and using dominated
’2s2m—

1 552m—1

convergence theorem.

We now consider the case n = 2m + 1. For ¢ > 1, after an integration by parts, we have

F.(t,w,z) = f%/ e 529, [sh e f(sw,)(z+tw)]ds.
0

SW; 5 am—1

We cannot integrate by parts again to gain another power of ¢ in this case. Therefore we utilize the

identity (with K(s) = 0s[shg, e * f(sw,)(z + tw)])

252

0o ) 1 27/t ) 1 0o )
/ e 2K (s)ds = 5/ e 2K (s)ds + B / e T2/ OY2[ [ (5 4+ 27 /t) — K (s)]ds.
0 0 0
This implies that
H/ eiiSt/QK(s)ds‘
0 Lz

27/t o L
| IR @z + [ (G 20l + 1K) ([

<

~

s+2m/t %
HapK(p)HLgdp) ds

1 1 e 1/2 1/2
Sth sup |K(s)|pp +7 / [ _sw K] [ s 10,K(p)]es]' " ds.
0

0<s<1 s<p<s+1 s<p<
Note that
IK(p)lle < o) (I1f (pw, )lze 4+ 18, (pw, )| Lv)
10,5 (p)| 1o < (p) min(L, )~ (1 (s e + 110, f (pw, )| o + (105 f (pw, )| Lo ).
Therefore,

1 1

oo 2
St_f/ (s)min(1,s)72 sup ZH@J (pw, )| Lo ds.
0 +1
7=0

s<p<s

0 .
H / e_”t/QK(s)ds)
0 L%

x

Noting that, for s < p<s+1

s+1 3

Znaf pio, HmZHaﬂ sw, e + / Znaf p, e dp,
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and applying Fubini’s theorem yield the claim bounding G in LP. Convergence in L? follows similarly.

O

We now return to the operator Z; defined in (10). For fixed kq,...k;_1, the inner most integral is
GGJJ?;CJ where f;w (kj,x) = e*1 2K (ki ka,...,k;)f(x). By Lemma 2.3, it converges to Goﬁw in LP

for f € S. Using Lemma 2.3, we also take €;_1,...,€;1 — 0T to obtain

(14) ZJf(x):/HTQ{/R”T,:;{---/”TQ;J%J ko}~-~}dkg}dk1.

We rewrite the inner most integral using (13) (with e = 0) as

(15) Golf, (z)

= /R W /Oo / eI ()t @O K k) fa—y gt gwy) dy by di
/ /sw ! /w / ZSJ e s @b () Kk sgwi) fa—y+tywy) dsy diy dyg dw,.

Letting t; + 2wy - (x — yy) — —t;, we have

2wy (x—yyg)
(15) = / / / Fy(ky, .. kyo1,ty,y5,wn)f(@ -7 —tywy) dtydyydwy,
gn—1 Jrn

where T = x — 2wy (x - wy) and

o0
sjtyg
FJ(kl,--~7kJ—1,tJ,yJ,wJ)=/ sh2me T b (ya) Ky (ke ko1, s5wy) dsy.
0

Now, using (13) (with e = 0) we rewrite the integral in k;_; in (14) to obtain

N\ 2
1
(15) = (2) / / Fj 1 f(T —vy-1)dtydyydwsdty_dyy_1dwy_1,
Sn=1xR" X (0,00) /S~ xR X (—00,07-1)

where for j =1,...,J — 1,

J—1 J-1
V=Y tgws + Z Yo — tewy, oj=—2wy-(z—ys— Z(ye — tewr)),
(=5 =y
and
F;_= FJ71(7<?1,---,kaz,tthwahyJ—l,tJ,wwyJ)

/ 85T 2m6_1 2]thwj(yj)]KJ(k17~~~7kJ72aSJfIWJflaSJWJ)dSJdSJfl'
(0,00)2 = J 1

Continuing in this manner we have

ij(l') = (Z)J/ / Ff(f—wl)dtjddewJ...dtldyldwh
27 J(sn=1xRr % (0,00)) 71 J 11 xR7 X (—o00,01)

where
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F= F(thwhyla"'7tJ7w.]7yJ)

J
= / H [s?_Qme*i ER s, (yj)}KJ(slwl, s, Sqwy)dsy - dsy.
(OxOO)J ]:1
Taking the absolute values and then extending the integrals in ¢;, j =1,2,...,J to R, we have

|ZJf($)|§/(S - R)I|F(t17w1,y17~-~>tJ,wJ7yJ)||f(f—71)|dtdedeJ-"dfldy1dw1~
n—1%R" XR)-

Therefore, by Minkowski’s integral inequality and noting that @ — T is an isometry), we have
1Z5flle SNF Lt ((sn—1xrrxry) || fl -
The following lemma finishes the proof of LP boundedness of 7.
Lemma 2.4. For 2m <n < 4m — 1, we have
L P S o [C a4 O] [

forn=4m — 1, we have

”FHLl((S”*lanxR)J) < CJ||<1‘>1+VHi10+7

forn>4m—1 and o > ";_21", we have

IF | L ((sn-1xrn xR) 7Y < OJH]:(@)QGV)Hi

nn—721n -
Here C' depends on n,m and the actual values of + signs.
Proof. We write F as a sum of 2/ operators of the form (for each subset J of {1,2,...,J})
Fj(tlawlayh' .. 7tJ70JJ7yJ) = F(tlawlayh' .. ,tJ,UJvaJ)[ H X(y_])} [ H %(y])]
JjeT JeT
It suffices to prove that each F7 satisfies the claim.
Fix r > 2 and % + 1 = 1. By Hausdorff-Young inequality, we have (with LF(Q)L%(D) =
LP(Q, LY(D)))

J
1Fllssn sy S |/ S (7))
L( XR™) L (R7) (st xzy L oseys [11;[1 ] 5 (5)]

1/q . ol
|Kj(s1w1, ..., Sqwy)|dsy ... dSJ] [ H X(yj)] [ H X(yj)}dydw.
jeg ieT

Note that, by (12) in the proof of Lemma 2.2 above (for 0 < § < 1)

hsw ()] S 8™ min((s[y) ™72, (slyl) ") S x @)yl "0 + X))y 7080
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Since x(y)|y|™"% € L' and X(y)|y|~"~% € L for any & > 0, we can bound the norm above by

J J 1/q
/ [/ [ H S§n72m+5)¢q [ H Sgn—zm—é)q] K (s101, .. .,SJ(UJ)|qd§i| di.
(8n=1)7 =H0,00)7 ic7 T
By Holder in w; integrals we conclude that
J J
(16) ||F||Ll(snfl xRn)J L™ (RT) S {/ [ H |kj|(nf2m+5)Q7n+1] [ H |kj|(n72mf5)117n+1} %
BT jeg ieT

1/q
\KJ(/cl,...,kJ)Pdkl...ko] :

Similarly, (here o; = 0 or 1 independently)

||Z‘:‘1)‘1 .. .t?JFJHLl(Sn—l XRn).]Lr(RJ) S
J
1 n—2m
Lo L ot T2 )
(sm=1xR")7 LJ(0,00): e

1/q . ol
|Kj(siw1,..., s wy)|%dsy ... dSJ] [ H X(yj)] [ H X(yj)}dydw.
JjeT ¢TI

Since Oshg,, satisfies the same bounds as %hsw, proceeding as above, we obtain the estimate

65" 85 Foliscsnsanonren S [ [ TTL Il 2meonma [ T phyn-2meohnmri]
R jeg igT
J
s o q 1/q
TLOV3 + ks ) Ko,k by g
j=1

Using Hardy’s inequality, this implies that

(17) ||t?1 .. .t?'le”Ll(sn—l XRTZ)JLT(RJ) 5 |:/ [ H |k.j|(n—2m+6)q_n+1:| [ H |kj|(n_2m—5)q—n+1:| y
K ged J2T
! aj q 1/q
\Hvk;KJ(kl,...,k-J)] k. dieg]
j=1

Let 2m < n < 4m — 1. Applying (16) with 0 < § < 1 and ¢ = r = 2, we obtain

[ H |kj‘nf4m+1+26] [ H |kj|n74m+1726] |KJ(k'17 s kJ)|2dE

IF7 170 51 xmn) 7 L2 () 5/
JjET Je¢T

RnJ

Note that by Hardy’s inequality the integral in k; is bounded by

4dm—1—n 4m—1—mn

/HDkJ TV (ko — k) Pdks SIC) T EVOIZ SO T VOl

Repeated application of this inequality yields

dm—1—n

IE7 0 L1 (sn-1xrmyrpz@sy SNCY T 2 OV



14 M. B. ERDOGAN, W. R. GREEN

Similarly, applying (17) with r = ¢ =2 and 0 < § < 1 yield

47n71771.

[t t5 Frllosn-1xreyrc2esy S I )t VL
Writing
J
H1+|t| D
Jj=1 ay,...,ag€{0,1}
these inequalities imply with that
J 4 1
m—1-n s
H FHLI(Sn—IXRn)JLZ(]RJ) f, ||<> * V( )HZ%

which by multilinear complex interpolation leads to

1 dm—l-n_ g
J>2+F~7||L1(Sn71><]Rn)JL2(RJ) S T= +V(')||i2~

.
I <
—_

o~

~

This proves the claim for n < 4m — 1 by Cauchy-Schwarz in ¢ integrals.
For n = 4m — 1, with ¢ = 2—, r = 2+, (16) implies

1F7 177 gn- 1an)fL2+(RJ)S/R H\k O K (K1, ... kg) >~ dky ... dky.
" igT

By Hardy’s inequality, the integral in k; is

< / 1D, I F(V (e o=1) (k) [*dkey < / |F((OTV (e =1 (k) [ dky

2
§/|.7-'(<.>0+V(.))(kj)| dky S {/ k) O F (O V() (k)| d]g]} 2 SOV 50y
Repeating the same argument in the remaining variables yield
1Fllr(snmrsmmyrzoe ey S IOV llror

Similar modifications in the other inequalities imply the claim in this case.

When n > 4m — 1, we apply the inequalities with 0 < § < 1 and ¢ = 2=1=9 y = 2=1=9_ t; obtain

n—2m’ 2m—1—4

1/q
|1 F7llLi(sn-1xrmysLr@sy S [/}R , 1T ‘kj|07|KJ(k1,-~~akJ)|qdk1.~-ko] < IF(OH V)L,
"ieg
Similarly, we obtain

13" 85 Fallns(sn-1xzmyrr@sy S IFO?FV )L

which implies that

J
< 2+ J
11<t JHLl gn— IXR")]LW(RU H]:(<SC> V)H[/z:z;f .
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n—2m )

Interpolating the two bounds we obtain (with o > =%

JL2m=1-3 (RJ

J
o 20 J
||j1;[1<tj> FJ||L1(S,HW) S ) SIFC@VI aoses s

which implies the claim by Hdélder’s inequality in ¢ integrals.

O

Keeping track of the relationship between ¢, r, o and ¢ in the proof above leads to the statement in

Theorem 2.1.

3. Low ENERGIES: ODD DIMENSIONS

Throughout this section we consider odd dimensions n, as the Schrédinger resolvent has a closed
form representation, (5), that is entire. We prove that the low energy part of the wave operators are
bounded on the range 1 < p < oo for odd n. We show in Section 6 how to adapt the arguments here
to account for the logarithmic singularities present in even dimensions. Further, in Section 4 we show
that for odd n it is possible to capture boundedness on the endpoints of p = 1, co.

Having controlled the contribution of the Born series terms to (6), to establish the claim of Theo-
rem 1.2 we need to show the boundedness of the tail of the Born series in (7). Noting that spectral
localization, multiplying by the cut-off x(A) in (6) is bounded on LP, we need only control the contri-
bution of

2[RI VIRY - R0 i
Withv = |V|2, U(z) = 1if V(z) > 0 and U(z) = —1if V() < 0, we define M+ (\) = U+vRg (A2™)o.

We also define w(x) = U(x)v(z). Using the symmetric resolvent identity, one has
REN™MV = REN)wMT(N) o,
which is valid in a sufficiently small neighborhood of A = 0. We show

Proposition 3.1. Let n > 2m be odd. If |V (x)| < (z)=F for some B > n + 2, then the operator
defined by
= [ XOONTTIRE (M ()T R — Ry (™) d
T Jo

extends to a bounded operator on LP(R™) for all 1 < p < oc.

We utilize the representation of the m‘" order resolvent frequently. for notational convenience we

denote ()" F(r) by F™(r).
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Lemma 3.2. Let n > 2m be odd. Then, we have the following representation of the free resolvent

cily—ul

R /\2m ,U) = ——F(\|y — ul).
71.«2}»17

Here |F(N)(7")| < (r)

~

=N N =0,1,2,..

Proof. By the splitting identity, and (5) we have

m—1
. 1
Ry W)y u) = —m= [Rg (W) (y, + ) weR (wed?) (y, u)]
=1
ei)‘ly_ul

3 _DAly—u 1
= ey e e Ml +Zwe’<“’f DA Pacs (w0 Ay = )]

Here Py(s) indicates a polynomial of degree k in s, the exact coefficients are not important. Therefore,

1

mr?m—Q

F(r)=

1
Pn 3 + Z W@el(wgzil TPn 3( Z%T):I = g(r) .

r2m—2

Note that g is entire and bounded by a constant multiple of (r) *2° on the positive real line. Moreover,
|ONg(r)| < <T>T_N for each N € N and » > 0. By a Taylor series expansion, see for example
Proposition 2.4 in [9], the resolvent is bounded in £ as |£| — 0 between suitable weighted L? spaces,
and has a series expansion in |[£||y — u| near £ = 0. This implies that g has a zero of degree > 2m — 2

at 0, which implies the first claim. O

To prove Proposition 3.1, we need to understand the operator M+ (A\)~!. By the assumption that
zero energy is regular, M+ (\)~! is a bounded operator. To show this, we use the following low energy

bounds on the resolvent.

Lemma 3.3. Let n > 2m be odd. We have the following bounds on the derivatives of the resolvent.
Fork=1,2,..., we have
sup (NIRRT (@, y)| S o =y 4 |z -y
0<A<1

Proof. In all cases we use the expansions in Lemma 3.2. By the product and chain rules, we have

[0S Ro(AN™) (2, )| =

k .
EET Z( ) (03~ ") (95 F (A — )

£=0

< |x_y|2m—n+k Z<)\|x_y> 1 y|2m "+k<)\|x—y\> 2m'
£=0

From here, it follows that

— m — m—n L‘*’l, m
INTERRAN™) (2, y)| S A Ha — y[MHEm T (N —y[) T 2



WAVE OPERATORS FOR HIGHER ORDER SCHRODINGER OPERATORS 17
When Az — y| < 1, we cannot use the terms in the bracket, but instead rearrange to see
XAz = y)NTTRRo(A*™) (@, )| € Xx(Na =y Az =y o -y S o — g2,
Here we used that & —1 > 0. When Az — y| > 1, we have
KAz = gD Ro (V™) (2,9) | £ T — ) (A — )P~ 7245 o — g P

Here we consider cases, either £ — 1 — 2m + "TH < 0 hence the first term is bounded by one and we

have the bound |z — y['™2™~". On the other hand, if k — 1 — 2m + 21 > 0 we bound by
> —1—2m+2fL _(n=1
XAz — yDAETI2m 50 g — gm0,

Since the exponent on A is non-negative, taking the supremum on 0 < A < 1 yields the bound of

n—1

2 — =2, u

To control the low energy, we define the following terms. First, we define an operator T : L? — L2
with integral kernel T'(-, -) to be absolutely bounded if the operator with kernel |T'(,-)]| is also bounded

on L?. Further, we define the operator
Ty := U +vR{ (0)v = M1(0).

Here v = V|2 and V = vw, recall that |w| = v. By the assumption that zero energy is regular, Tj is
invertible, see e.g. [9].

The bounds in Lemma 3.3 imply that the operator Ry with kernel
(18) Ry(z,y) := v(x)o(y) sup [N*LOYRo(A*™)(z, )]

0<A<1

is bounded on L?(R?) for 1 < k < ™ provided that |V (z)| < (z)~# for some 8 > n + 2. We note
that when n is large compared to m, we identify |z — y|*™ 1" as a multiple of the fractional integral
operator g1 : L% — L?7° see Propositions 3.2 and 3.3 in [14] for example. Using the decay
of v(x)v(y) suffices when identifying o = o’ = g, to apply the Propositions in [14] and establish
boundedness on L2.

Note that by a Neumann series expansion and the invertibility of T, we have

o0

(M =) (DM BT Y,

k=0
where E()\) = v[R¢ (A\2™) — R (0)]v for 0 < A < Ag. By (18) and the mean value theorem we have
Eo(z,y) == sup |[EQA)(z,9)] S Aola(z,y)
0<A< Ao
is a bounded operator on L? with norm < \g. Therefore,

To(z,y) = | sup M) (2, )]
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is bounded on L? for sufficiently small \o.
Similarly, note that by the resolvent identity the operator AN [MT(A)] 7! is a linear combination

of operators of the form
J
) T [0 RS 2ol (V)]
j=1
where ) k; = N and each k; > 1. Therefore using (18) we see that
(19) In(a,y) = sup AVOY[MT (V)] (2, y)|

0<A< Ao

is bounded in L? for N =0, 1, ..., "T'H provided that 8 > n+2. Further, for N > 1 we may replace AV
with AN~! and the operator remains bounded on L?. This bound suffices to prove Proposition 3.1 for
n < 4m, odd. However, for odd n > 4m we need to modify the approach to account for the fact that

|z — +|>™~™ is no longer locally L?(R™). We iterate the Born series further and utilize the following
(20) AN, 21, 2) = [(Rg (AP™MV) "R (A*™)] (21, 22).-

By repeated iterations of Lemma 7.2 using the representation of Lemma 3.2, each iteration of the
resolvent smooths out 2m power of the singularity. Selecting x large enough ensures that A is bounded.

That is, we have

n+3

Lemma 3.4. Fiz oddn > 4m. If k € N is sufficiently large depending onn,m and |V (z)| < ()72 —,
then

sup |05A(N, 21, 22)| S (21)(22),
0<A<1

n+1
fOTOSES 5 -

We will prove this lemma at the end of this section. We say an operator K is admissible if its

integral kernel K (z,y) satisfies

sup/ |K (z,y)| dy + sup/ |K (z,y)] dz < .
zeRn JRn yeRn Jrn

By the Schur test, an admissible operator is bounded on LP for all 1 < p < co.

By iterating the Born series sufficiently many times it suffices to prove that the operator with kernel
/ N VRGPV AN M ™ AwANVRF (A2™)] (2, y) dA.
0
is bounded on LP, 1 < p < oo. Letting (recall that |w| = v)

I'=wANvM ' A\vAN)w,
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and using Lemma 3.4 and (19) we see that T" satisfies

(21) D(z,y):= sup  sup [MOT(\)(w,y)| S ()72 (y) 27,
O<)‘<)‘00§’€§%

provided that 8 > n + 2. Hence, Proposition 3.1 is a consequence of the following bound.

Lemma 3.5. Fizn odd and let T be a A dependent absolutely bounded operator. Let

[(z,y) :== sup sup ‘)\kaff‘(/\)(x,yﬂ.
0<A<A0 <k 2L

For 2m < n < 4m assume that T is bounded on L2, and for n > 4m assume that r satisfies (21).

Then the operator with kernel
K(a,y) = / XV RE (A2 )uTuRy (A2 (i, y)dA
0
s bounded on LP for 1 < p < oo provided that 8 > n.

Proof. Using the representation in Lemma 3.2 with r; = |x — 21| and 73 := |22 — y| we have

(22)  K(z,y) = / ] % / e M=)y (NAZTIT(N) (21, 20) F (A ) F(Arg)dAdz1 dz,.
R2n T 2 0

Using the bounds in Lemma 3.2, (21), and the assumption 8 > n, we bound the A-integral above by

- 1 A2m—1
23 I'(21, 2 / — —d\
( ) ( ! 2) 0 <)\T1>2m7%<>\7“2>2m7%

n+1
2

Also note that by integrating by parts N < times in A when Alr; — rg| > 1 and using (23) when

Alr1 — ro] < 1, and recalling the bounds for the derivatives of F', we obtain

2m—1
24)  |K(2,y) S / pla)Tzr, 22)v(z2) / AR —dAdzds,
R Ty Ty 0 (A(r1 —r2))V (Arq)?m= 7 (Arg)?m 2

Note that there are no boundary terms here since we include the cutoff x(A(r; —r2)) in the integration
by parts argument above. Also note that we can choose N depending on z1, z5. We write
K(o,y) = 3 Ki(o,y),
j=1
where the integrand in K7 is restricted to the set 71,72 < 1, in K5 to the set 71 =~ 79 > 1, in K3 to
the set 7o > (r1), in K4 to the set r; > (rs).
Note that K is admissible using (24) with N = 0: For n < 4m we have

T
[imies [ [ e g g,
R2n Jry<1 71 1)

SOy = P2 Tl e o ellle = "2z S 1,

provided that 8 > n. For n > 4m, we instead have
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< —n 22> n—
| K1 (z,y)|de < g —dwdzydzy
R2n Jry <1 r? "y

SI-P s mo,an 1O Ty =P [ 1607 e S1,

uniformly in y. The y-integrals can be estimated similarly.

Similarly K5 is admissible using (24) with N = 2: For n < 4m we have

v(21)T (21, 22)v(22) /1 \zm—1
Ky(z,y)|dx < / / dAdzxdzidz
/l 2(®, )] R27 Jry g >1 ’"%n i o (A(r1—72))2(Ar)dm—n=1 e

)\Qm 1 4m n—1
< / (21) z1 ZQ ZQ / / "1 d)\drldzleQ
R2n , ATy >1 A(ry = rg))?(Ary)tm=n=t

- )\n72m71n4m7n71
= v(z1)I'(21, 22)v(2 dndidzidze S 1,
/]Rm (1)l 22) (2)/ /nmm» (0= Arg)2(gpim—n—1 A

provided that 8 > n. When n > 4m we bound the last integral by

)\n 2m— 1774m n—1
z1) "7 dndAdz1dz
/Rzn“ / / marasa (11— Ara)2{g)im=n=1 o

)\n—Qm—ld )\2m—2d
5/ (z1) 7" (22)~ ”‘/ [/ 7;7+/ %}dxdzld@gl.
R27 0 1 (n—Arg) 1>nRAT S (n — Ara)

The y-integrals can be estimated similarly.

We will prove that K3 and K4 are bounded in L? for 1 < p < oco. By symmetry we will only
consider K3. By using (24) with N = 2 we have the bound

v(21)T (21, 22)v (zQ)/ AZm=1(\py) "2 —2m

25 K < dAdz1dz,.
(25) e e e R e Az
When n < 4m, we bound this by

f 1 )\2m 1

Kol 5 [ UG [T neiaz,
R2n Ty D) o (Arg)?™
< / v(zl)f(zl;zz)m(zQ)log(rg) derdzy < / v(zl)f(zl:LZQ)v(zi oo,
R27 T 7"2 R2n T? <T‘1>77<T2>P'

By Holder we have

Ks(z,y)f(y)dy|| < fllze
I/ ..

" ledZQH
p

n |@ — 2 P72 — z) v

/ v(21)T (21, 22)v(22)
R

When |z — 21| > 1 the bound is easy by Minkowski integral inequality. Similarly, when |z — z1| < 1

and p < ——%—. When |z — 21| < 1 and p > 45—, we estimate the integral by

f 21, % T—2z vz
R2n

‘x _ Zl|n72m

|2m n” R
LB(O 1)

ST 2 2 vl 22l 21 (x) P2 < (2)7P/2 e LP,
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provided that 8/2 > %, which holds if 3 > n.
For n > 4m, we bound the A-integral in (25) by

_ n—1_ ntl o ntl_o
Pt AT dog(r) | myt
A 2m 2m ~ 2m 2m
o (Arz) 0 T3 ry T3
Therefore,
< —n— —n— log(TQ) 1
K@ y)l S [ ()7 ()" [ + | ddzs.
R2n T To ,rl 2 TSL
This can be bounded as above considering the cases |z — z1| > 1 and |z — 21| < 1 separately. O

We now complete the proof of Proposition 3.1 by proving Lemma 3.4:

Proof of Lemma 8.4. Using Lemma 3.2, we note that when A\ < 1 we have (with ug = 21 and w41 =

29)

(26)

(f[ (™) (g 17UJ)V(Uj)R0()‘2m)(UmZ2)>’

_ aﬁ(eME Ly — uJ\H F(ANuj—1 —u;[)V (uy) F(/\|u,€—u,§+1))’

luj—1 = ug[" 72 U — g [P
-5 s — ) Y ()] (g — ) 2
SO w1 =yl H o n2m — nom
. - luj—1 — uyl | — U1

We only consider the case when j = k + 1 in the first sum above; the other cases boils down to this

case. We need to bound

ntl _om

/H Uj— l—uj 21_2m|v(uj)|<u'€_u”+1> ’ duy ... duy.

|uj 1 —Us; |n 2m ‘un _ un+1|n72m7€

Note that for a = 1,..., [n/2m] — 1, we have
< 07u>%72ma< >7nTﬂi<u—ul>nT+lf <’u,07’ul>nTJrl
lug — u[n—2ma " [ — up [—2m ~ g — g [r2mlatD)

2m —2m(a+1)

)

namely the power of the singularity decreases by 2m but the decay rate does not change. To see this

inequality consider the cases |ug — u| < 1, |ug — u| > 1 separately and same for |u — u1]. Also note

—1

that if @ > |n/2m] , then the bound is (ug —u;)~ "7 .

Using this bound in wq,...,usx—1 integrals, and assuming « is large, we obtain the bound

_n—1 _nt3_ (Uxg — U 2
/<u0 7un> 2 <ur€> 2 < . K+1>' —2m—/{ duys.

Thisis <1if £=0,1,..., 252 If £ = 2 then the bound is (uy41).

If j # 1,k + 1, we start integrating from the farther end to the jth term and obtain the bound
SL 0
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4. Low ENERGY: ENDPOINT ESTIMATES IN ODD DIMENSIONS

In this section we prove that the low energy portion of the wave operators in odd dimensions is
bounded at the endpoint values of p = 1, co. The proof relies on the explicit closed form representation

of the odd dimensional resolvents. Namely, we show

Proposition 4.1. Let n > 2m be odd. If |V (x)| < (z)=# for some B > n + 4, then the operator
defined by

ST NTIRE (oM )R Ry (27 d
extends to a bounded open(;tor on LP(R™) for all 1 < p < oc.

Unlike Proposition 3.1, this proposition relies on a detailed analysis of the cancellation in Rar -Rq -

Remark: (Correction 08/11/2022)
The statement of Lemma 4.2 should be:
Let n > 2m be odd. We have
[Rg (A*™) = Ry (™) (g, u) = X2 e M Fy (Aly — u]) + e AW (Aly — u])],
where fi are functions satisfying

IFL(r)| S () =9, reR.

This representation follows from the proof below. It results in a slight change to the proof of
Lemma 4.3. More explicitly in the analysis of the operators Ky ; which make up Ky in (28), the
phase is )\(w;/er + ry) instead of )\w;/er. The rest of the argument follows through since in this

, 1/2
regime, |w/ ryEro| Ay,

We start with the following

Lemma 4.2. Let n > 2m be odd. We have
[Rg (A*™) = Ry (A*™)](y,u) = A" > F(Aly — ul),
where F is an entire function satisfying
()| S (r) 2, reR

Proof. By the splitting identity (4) and the explicit form of the odd dimensional Schrodinger resolvent,

we may write:

(27) Ry = RgJ(\*™)(y, u) = [Rg — Ry J(\*)(y,u)

mAQm—Q
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A= Py s (Aly — uf) — e~ M= Py (< Aly — u])

— An72m
(Aly = w2

n—3

Here Pu_s () is a polynomial of order "3

whose coefficients may be computed exactly. We identify

_ € Pns(r) — e " Pu_s(—T)
F(r)= 2 2 .

rn—2

For r > 1 the bounds are clear. For 0 < r < 1, a careful Taylor series expansion as in [17, 10] shows
that for c¢; € R,

Ry (X)) (y, u)

Oy —apyr2 _@F 1Ay = ul) + 2Ny = u)? + - + cns(Nly — ul)" >

T Z (o (£iXy — u))* + cojr1(Ny — ul)?Th).

j:2

From which we deduce, for 0 <r < 1,
ﬁ(?") = Z 2i02j+n_27'2j,
§=0

which suffices to prove the claim.

As in the previous section, the proposition follows from the following

Lemma 4.3. Fizn odd and let ' be a \ dependent absolutely bounded operator. Let

Fa,y) = sw [T (@,y)|+ [0 (@ p)] +  sup  [N250 () (@, p)] .

0<A< Ao QSkSHTH

For 2m < n < 4m assume that T is bounded on L2, and for n > 4m assume that r satisfies (21).

Then the operator with kernel
K(x,y) = / KAZPL[RE (A2 T0[RE — Ry (A2™)] (2, y)dA
0
is admissible, and hence it is bounded on LP for 1 < p < oo provided that 8 > n.

Note that the assumption on T' is stronger than the one in Lemma 3.5. By a straightforward
modification of Lemma 3.3 and Lemma 3.4, which requires 8 > n + 4, the operator I' = v M (\)~1v
satisfies the assumption for 2m < n < 4m. When n > 4m the operator I' = wA\)vM 1 (\)vA(\w,

satisfies the hypotheses for sufficiently large £ when n > 4m.

Proof of Lemma 4.3. We define K1, ..., K, as in the proof of Lemma 3.5 and use the notation r; =
| — z1], 7o = |y — 22|. Since we already proved the admissibility of K7 and K», it remains to consider

K3 restricted to the region 79 > (r1) and K4 restricted to the region r1 > (r9). We first consider
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K,4. Using the splitting identity for the resolvent on the left and Lemma 4.2 on the right, we write

the kernel of K4 as follows (ignoring constants):
m—1

(28) Ki(x,y) = >  wix
£=0

X)AZPTID(A) (21, 22) A" 2 F (Arg)dAdz1 dzs.

/ 0(21)0(22) X (ra) /oo e "X Py (wy/?Ar)
R2n 0

r;l 2 )\Zm 2

Here iwl}/ ? has nonpositive real part and P% is a polynomial of degree "7*3 Therefore it suffices to

prove the admissibility of operators with kernel

K4,j(a:,y>=/m U(Zl):fZ)zXT»W /0 e (NATTITIT2MD(N) (21, 20) F(Ara)dAdz1dzs,
" 1

for j = 0,1,..., "ng, le] = 1,R(c) < 0. This suffices to control all the terms that arise in the
polynomial and for different choices of ¢ in (28). Integrating by parts in A integral j 4+ 3 times we

rewrite the lambda integral as

Jj+2

RS ) ~
- (E) O3 XA 2D (N F ()]
=0
—1\J+3 [ . , ~
+(;) / e [ (WA HFIZ2MT (N F (Arg) ] dA.
1 0

Note that the boundary terms are zero when ¢ < n+j+4+1—2m. Sincen+j+1—2m > j+ 2,
there is a nonzero boundary term, £ = j + 2, only when n = 2m + 1, and it is a constant multiple of

r777°0(0) (21, 22). The contribution of this to Ky ; is of the form

v(21)|T'(0)(21, 22)|v(22) Xy (-
J IR LRI P,
R2n 7"1

which is admissible. We now consider the integral term.Using the bound for F in Lemma 4.2 and

noting that [x*)(\)| < 1, we bound the integral by

/1 T‘%S >\n+j+1—2m—j1|1"(j2)()\)|
0

T{-"—S <)\T2>n771+j3

d.

J1+i2+i3<j+3
Here, j1,72,53 > 0 and j1 < n+ 7+ 1 —2m. Note that the condition on j; is relevant only when
n = 2m+ 1. Assume first that n > 2m + 3, so that n+1—2m+j5 > j+4. We bound the integral by

~ 4 i3
['(21,22) Z / —73 N0 g\ < T2y, 20)r7 Y
fitiatis<i+3”0 "1

whose contribution to Ky ; is admissible. When n = 2m + 1, either j, > 1 or j3 > 1. In both cases

we can bound the integral by

[(z1, 22) Z / ]+3)\J+2 n=tis =g\ < T2, 22) <7’ié7
0"

J
J1+ge+iz<j+3 ™
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which has admissible contribution to K ;. Hence, we conclude that the operator K, is admissible.

We now consider K3. Using (27), we may write

_ 1 B
[RSFO‘Qm) - Ry ()‘2m)](z2ay) = W[Rar()\2) - R, ()\2)](227y)
1 LA —iATo
N W[e M2 Pas (Arg) = €7 Pacs (< Ar)

and using Lemma 3.2 for the resolvent on the left, it suffices to prove the admissibility of kernels of

the form

K3,j (33, y) =
/ ’U(Z1)’U(32)Xr2>><7"1>
R2n

n—2m n—2—j
1 )

(oo}
/ [ 72) — (1)) | ()N () F (A ) dAdz1dzs,
0

for 5 =0,1,..., ”ng In contrast to K, ; there is decay in both r; and rp present. Integrating by

parts in A integral j + 3 times we rewrite the lambda integral as

jiz(_l)e [(7‘1 JirT'Q)ZJrl N (_1)j (m i T9 )e+1} a§ [X(A)Aj+1F(A)F()‘T1)] ’A:O

I /OOO () ey (L) )| g2 [ (VT F (A )] A

1+ T2 L — T2
Once again, many of the boundary terms are zero. The only nonzero boundary terms occur when
{=j41orj+2. When {=j+2, it is of the form

[~ OV s O F O],

We can bound the magnitude of this by r;j_?’(rlﬂ"(zl, z2), whose contribution to K3 ; is admissible
as before. On the other hand, we need to utilize cancellation for £ = j + 1 to see

1 (=D¥*2 1 m

r%“ ‘ 1+ %)j+2 (1-— %)jJrQ ~ r%‘-s—?)'

1 1 - 1
(r1 +1r9)it2 (ry —ro)it2l

Hence we may bound it’s contribution by r§j73<r1>f(zl7 z9) as well.
Using the bounds for F' in Lemma 3.2, again noting that [x(*)(\)| < 1, we bound the integral term
by
y o4 /1 NTRTO ) —— L gy
j+3 (Ar1)2m— ntl s

Jitjatis<j+3’2 /0 >

Here ji1, 72,73 > 0 and j; < j+ 1. We consider the cases jo = 0,1 and j; > 2 seperately. In the former

case, we bound the sum by

E] 1 j+1—j1

~ r A :

[(z1,2 > 1 d.

( L 2) L ,r,]+3 0 <)\’I" >2m77n;rl+j3
Jitis<j+3 2 1
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When 7 <

~

1, this is bounded by 757 °T'(21, z) whose contribution to Ks; is admissible. When

r1 > 1, it is bounded by

L ) n4l
—ji—9 P —2m
- r{3 =20 piti-an s ri+ry?
F(zl722) E j+3 om— 1t L d77 ~ F(Z17z2) j+3 :
gitia<its T2 o {n) : "2

Here, using the 77™~" term in K3 j, this contribution to Kj ; is admissible. In the latter case, we
have the bound

- Jt3 P 1 1
1 i+1—j1—j2+2
F(ZlazQ) i+3 N e _ntl_ dA
D i+ Jo (A )2m= "5 4
J2=2 j1+js<j+3—j2 ' 2 1
J+3 1 1
T E: 2: j+3—j1 —jia—j = —j—3
SF(Zl,ZQ) j+3/ )\J"" J1—J2 jdd)\SF(Zl,Zg)TQ ,
0

J2=2j1+j3<j+3—j2 2

which has admissible contribution. O

5. HiGH ENERGY: ODD DIMENSIONS

Since we can control the contribution of the Born series to arbitrary length, we need only consider

the tail of the series in (7) and show that
| RORGVIVRE VRS VR dx

extend to bounded operators on LP(R™) provided ¢ is sufficiently large. To do this, we invoke the
limiting absorption principle established in [9]. In all cases we assume there are no positive eigenvalues
of H. In the statement below B(s,—s’) is the space of bounded linear operators mapping L?* —

LQ,—S'

Theorem 5.1 (Theorem 3.9 in [9]). For k =0,1,2,3..., let [V(z)| < (z)=# for some B > 2 + 2k,

then for s,s’ >k + %, ’Rgf)(z) € B(s,—s') is continuous for z > 0. Furthermore, we have

IRE )| orey por—wr S J2] 70 FR,

Note that, in particular, these bounds hold for the free resolvent. We now collect some useful
bounds on the free resolvent on high energy, when A = 1. Note that throughout this section, the
spectral parameter A 2 1. We define

eii)\(\zfz|f|w\)

Ga (A, 2) = eTAIRG (N2 (2, 2) = F(Az —yl)

‘.Z‘ _ Z‘n—Zm

Following the bounds of Lemma 3.2 and using A 2 1, we see that

(20) |a£[>z<x>gfu,z>]|sx"z“—Qm<z1>f( L, 1)

|z —2|"72™ |z — 2"
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n+1 —2m ]. ]. >
: - —
(|$_y|n_2m_é |z — y| 7t

We utilize the following fact. It may be viewed as an extension of Lemma 3.1 in [30] and Lemma 2.1

(30) ARG (™) (2, )] S A

in [13] to higher dimensions.

Lemma 5.2. Suppose that K is an integral operator whose kernel obeys the pointwise bounds

1
31 va 5 n—1 n—1 nt1 .
(1) el S = = e = e

Then K is a bounded operator on LP(R™) for 1 <p<oo ife >0, and on 1 < p < oo if e =0.

Proposition 5.3. We have the bound

32 ‘/ )\27n 1 RJr()\Qm)V)é—&-lR‘J;()\Qm)V(Rar()\Qm)v)énat()\%n)(x’y) d\

< 1
n—1 n—1 7

Y Jal -y (@) T ()T
provided ¢ is sufficiently large, and |V (x)| < (z)=# for some B > n + 5. In particular, this kernel is

admissible and hence the tail extends to a bounded operator on LP(R™) for all 1 < p < co.

Proof. We first establish the boundedness of the integral. We note that for o > 1 and ¢; = [ %] +1

we have

A (2 —2m)

()=

This follows using the representations (30) with £ = 0 and Lemma 7.2 repeatedly as in Lemma 3.4:

(33) IVRE* VRGN ()2 S

After {1 = |~ | + 1 iterations of Lemma 7.2 in the spatial variables z1, 2, ..., we arrive at a bound
for the kernel of the operator in (33). This bound is dominated by |y — zj|_(nT_1), which is locally
L?(R™). By Lemma 7.1, we may bound (33) by

(nfl A (5 —2m)

—1
N2 () Py — 25T e S

n—1 )

(y) =

provided that 8 > o + 5. Similarly,

)\Zl(ni-*—l*Qm)
(34) IREV)E (2, )| S oo

n—1

(z)=

By repeated uses of Theorem 5.1, we see that
(35) JREVIERE (VRE) 2 g0 S ACEFDO2m),

Let £ = £1 4 £2, then combining (33), (34) and (35) we see that

(36) ‘ / NAZTHRE (WPMV)IFERE (WY (RG (AP™)V) Ry (A2™) (2, ) d
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:/0 XN THREV)F2 (@ )] 234 [(REV)ERG(VRE) 2] 20

1
RS Sl

< (VRS TVRE W)y oy s dA

< 1 1 /00 A1 (n1—4m)+(2024+1)(1-2m) gy < -
1

()7 (y) ™= {x)72 (y) >

By selecting {5 large enough, the X integral converges. To complete the proof, we use the functions
n+3

G* and integrate by parts 75> times. That is,

/0 h XN HRE (WM VYHIREN™)V(RE (N™MV) R (™) (2, y) dA

= / e—iA(lxli‘y‘)%(A))\Qm—lg;‘r()\’Zl)V<Z1)(RE)F()\QWL)V)ER¢()\277L)V(R(~)‘r()\277L>V)€gyi()\7Z2Z+1)d}\
0
TLT<F3

(L % D 57 () ABEmaE (YUY (A2 T
<i(lxi|yl)> /o 2 (XW/\ G IVERENE™V)

REOZ™MV(RE (2™VYGE(A, -)) ax.

By the limiting absorption principle and the support of X(A), there are no boundary terms when
integrating by parts. To complete the argument, let k; € NU {0} be such that ) k; = ”T"‘?’, then the

contribution will be bounded by

1
==
] =1yl 72

O3 (RS (AP™MV) R (W) (VRS (AP™)) 2] |95 (VRS (A*™) V1830 Gy (A, )| | dA.

/0 RN a2 G+ (A, V| |04 (R (\2m) VY |

Invoking the bounds in (30) and an argument similar to the first case shows that we have the bound

1 > L
FErES | RO 042G (V108 (R OBV e

105 [Re (2™ V)2 RE (AP (VR (A*™))]

”Lz,—%fkéﬁ_)Lz,f%,;m,
O™ (VRS (A2 ) V03 Gy (A I 2.3 4, A

< 1
~ n+3 n—1 n—1"
[l =yl 72 () = (y) =

We note that the decay rate of [V (2)| < (2)~("+5)~ is necessitated when all derivatives act on Ry to
apply the limiting absorption principle, Theorem 5.1. This suffices to control the other extreme cases,
when all derivatives act on a single free resolvent, then by (29), (30) and Lemma 7.1 this decay rate
on V suffices to push forward decay in x or y respectively. Combining this with (36) establishes the
desired bound. Invoking Lemma 5.2 establishes the claim on L? boundedness.

O
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By integrating by parts one less time, one obtains the following which requires less decay of the

potential but fails to capture the endpoints.

Corollary 5.4. We have the bound

(37) \ / RN R (R IRE (R (RS (V) RE (V) (. ) dA

< 1
~ ntl n=1 n=1)
(lzl =lyl) = ()= (y) >

provided { is sufficiently large and |V (z)| < (x)=# for some 3 > n + 3. In particular, this kernel

extends to a bounded operator on LP(R™) for all 1 < p < oo.

6. EVEN DIMENSIONS

In this section we show how the low and high energy results for the tail of the Born series in odd
dimensions proven in Sections 3 and 5 may be applied to even dimensions. One requires minor modi-
fications to account for the logarithmic singularities of the resolvent. After developing an appropriate
representation of the free resolvent in Lemma 6.2, the arguments may be easily adapted.

First we sketch the argument for low energies. We will prove

Proposition 6.1. Let n > 2m be even. If |V (z)| < (x)™? for some 8 > n + 3, then the operator
defined by
S [ XA TIRG (M () o[RS — Ry J(A2™) dA

extends to a bounded operator on LP(R™) for all 1 < p < oo.
We have the following representation for the even dimensional free resolvent.

Lemma 6.2. Let n > 2m be even. Then, we have the following representation of the free resolvent

ei)“yfu‘

Ri (A*™)(y, ) F(\y — ).

T ly—ufrm

n+1
2

Here |[FMN ()| < ()" =2m=N N =0,1,2,...,2m — 1, and is valid for any N when r > 1, while
when r < 1 we have |[FC™ (r)| <log(r) and |[FN(r)| < r?™ =N for N > 2m.

Proof. To prove this we consider cases when Ay —u| < 1 and Ay —u| 2 1. We consider first the
second-order Schrodinger resolvent, which may be expressed in terms of the Bessel functions

n—2

)\ 2
) HL Ol - .

Ry (X)(y, u) = j;<27r|y—u
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Unlike in odd dimensions, we do not have a closed form representation for the Hankel function of the
first kind H&() Following the approach in [11], see also [17], for Aly — u| < 1, we have a series of
2
the form
co 1
Ry (X)(y,u) = 3 0> (Al —ul)¥ (a;log(Ay — ul) + b))*.
ly —u"=2 UI =
The constants a;, b;,c; may be computed explicitly. Of particular importance is that a; = 0 for

j <% —2. Combining this with the splitting identity (4), we have

oo 1
m 1
REOCE ) = ooy 2 30 3 ] Ny—ul) (a5 1o (Nly—ul)-+a; log(we)-+5,)"

Using the fact that

m—1
W™ #£0 ifandonlyif j=km—1, k=1,2...,
£=0

we may write (for Ay —u| < 1)

m—1
1
R O2) 020 = s (3 sy = ) + 3 sy — )1+ da oy — u)

ly = j=m

In particular, the first logarithm occurs at the term A2™. The claim on F for r < 1 follows since we

may write, for any choice of N

F(r)y=e" (Zd 2 4 Zd (r¥ (1 +dj log(r ))) +0(rN7)

Jj=0 Jj=m
where the remainder may be differentiated arbitrarily many times.

The large argument expansion of the resolvent is the same from the Bessel functions, one has for

Ay — u| = 1 that

Ay — ul) 2" —2m

ly — ulr2m

)\Q—QmR(—)k(/\Q)(y’ u) = Aly—u ( +(/\‘y - U|)7

where [0Fw, (r)] < r~27F. The splitting identity (4) along with the exponential decay of the other
resolvents suffices to establish the claim.

O

Lemma 6.3. Let n > 2m be even. We have the following bounds on the derivatives of the resolvent.

Fork=1,2,..., we have

n—1
sup [NTTOERO(AP™) (2, y)| S |lo — y|* T 4 o — y .
o<1
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Proof. Since |0F F(r)| satisfies the same bounds as in the odd case for k < 2m — 1 and for r > 1, we

can assume that k > 2m and Mz — y| < 1. We have

k
NTHAR (NP ()| S A Ha — g2 Y IO (Ao — )]
£=0

SNz — g2 1+ [log(Ala — y)| + (Alz — y])*" 7]

S Jo =y Ao =yl [N = 9)° + (O =)~ Sl =2

~

O

With this the invertibility of M (\) and the bounds on its derivatives follow by similar arguments
to the odd dimensional case, namely

(38) In(z,y) = sup AV[OX[MF(N)] 7 (2, y)l
0<A< Ao

is bounded in L? for N = 0,1, ..., ”T"‘Q, provided that 8 > n 4+ 3. This will suffice for n < 4m even.
For n > 4m even, we iterate the Born series and note that A(\, 21, 22) defined via (20) satisfies a

slightly modified version of the claim of Lemma 3.4:

3 3
2 2

sup |)\é8§A()\721722)|5<21> (22)2,

0<A<L1

for0 </ < ”T“ The inclusion of A\’ power takes care of the singularity arising from the logarithm in

Lemma 6.2 as in Lemma 6.3. Therefore letting
I'=wANvM ' A\vAN)w,

as above, we see that

(39) L(z,y):= sup sup [NOET(N)(z,y)| S (z)" 2
O<A<A00§kgﬁgz

|
I3
|
—~
<
~
|
[N~
|

provided that 8 > n + 3. The following variant of Lemma 3.5 finishes the proof:

Lemma 6.4. Fizn > 2m even and let " be a \ dependent absolutely bounded operator. Assume that

T(z,y):= sup sup |NFTN\)(z,y)|
O<A<A00§k§ﬁ%2

is bounded on L? for 2m < n < 4m and satisfies (39) for n > 4m. Then the operator with kernel
Klog) = [ xR OOl oRy (87, )dA
0

is bounded on LP for 1 < p < oo provided that B > n.
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Proof. Writing

n—2m,_n—2m

K(x,y):/ o) / ML)y (AP (A F (Ary ) F (g ) dAdzy dzs,
R2n T To 0

we see that the A integral satisfies the bound (23):

)\mel

1
I'(z1, 2 / — —d\.
(1,22) 0 (Arp)2m=5E (Arg)2m—E

We will use this for Alr; — ro| < 1 and integrate by parts N < ”TJFQ times otherwise. Note that by

n+1

Lemma 6.2, when A\r > 1 or when ¢ < 2m — 1, we have |NO{F(\r)| < ()2 ~2™. When Ar < 1 and

£ > 2m, we once again have

INOSF ()| S () (ITog(Ar)| + ()™ ~1) S 1S () ™2 2,
Therefore, we obtain the following bound essentially identical to (24):
T 1 2m—1
(40)  |K(z,y)| < / ”(zllfﬁi“ji);jﬁz?) / A __ ——d\dzidz,
R2m T T 0 (A(rr —r2))N{Ary )27 (Arg) P

forall0 < N < ”%“2, noting N need not be an integer. The rest of the proof is identical to the proof
of Lemma 3.5 using (40) with N =0 for K; with N =2 for Ky and N = "T'H for K3 and K . O

Proposition 6.5. We have the bound

/Ooo XOONHRG AP V)HIRE(W™MV (R (AP™)V ) Ry (A7) (2, ) dA

_ 1
~ n42 n—1 n—1 79
(o] = |yl =" (2) "% (y) ™2

provided ¢ is sufficiently large, and |V (z)| < (x)~7 for some B > n + 4. In particular, this kernel is

admissible and hence the tail extends to a bounded operator on LP(R™) for all 1 < p < co.

This proof is essentially identical to the proof of Proposition 5.3 in the odd dimensional case. Here,
by Lemma 6.2, the bounds (29) and (30) hold, hence the proposition follows by integrating by parts

242 times to invoke Lemma 5.2.

7. INTEGRAL ESTIMATES AND PROOFS OF TECHNICAL LEMMAS

We now present the proofs of some technical lemmas that are used throughout the paper. For

completeness we provide a proof of Lemma 5.2.

Proof of Lemma 5.2. We first consider the case when ¢ = 0, we decompose the integral into three

regions according to whether |z| > 2|y|, |z| < 3]y, or 1|y| < |z| < 2|y|. In the region where |z| ~ |y],
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switching to polar coordinates we see that

2|y| 2 n—1 2|y|
/ Klds S / T arg / !
lz|~|y| | |

e EESRRCPN R v rdr S
Y iz (r =y W)=t Sz (r = |y =

uniformly in y. By symmetry in « and y, this part of the operator has an admissible kernel and is
bounded for any 1 < p < .

On the second region (using that | |z| — |y|| ~ |y| when |z]| < S|y|) we see

/ n—1 71.711 nt+1 d{E 5 / %dl‘ S <y>max(n— 3"2’1p,—np)7
lz|<dlyl (2) "= P(y) "= P(lz[ —|y[) =P lz|<Llyl (x)"2 P(y)"P

and (using that ||z| — |y|| = |z| when |z| > 2]y|)

1

1 3n—1

dx < / —————dx S (y)"” 2 P when p > 1.

n+1 ~ n—1 ~

Pllef = ly)) =7 jz|>2ly| (z)"P(y) = P

2

n—1 n—1
/|x|>2|y| (z) 2P (y) =

The constraint on the range of p occurs when |z| is large. Noting that <y>maX(”/”_L{17_") =
<y>max(’”/p'*(”’1)/2””) belongs to L?' (R™) for any 1 < p < oo so these parts of the operator K (z,y)
are bounded on LP(R™) as long as 1 < p < 0.

When € > 0 using polar coordinates we see that

dr < 1.
1 n—1 n—1 ntl ~
(lel = lyl) =+ yeRrn = (y) T (r—lyh =
The last inequality follows by breaking up into regions based on whether r < L|y[, r & [y| or 7 > 2|y|.

1 o] Tnfl
sup e - dr = sup Cp
ek Jrr (2) 72 (y) 2 o (r)

Similar to the previous case, integrability for large r requires € > 0. By symmetry in z and y, K has
an admissible kernel and is bounded for 1 < p < co.

Finally, the following elementary integral estimates are used throughout the paper.

Lemma 7.1 (Lemma 3.8 in [14]). Let k, 8 be such that k <n and n < 8+ k. Then
/ du _) @R p<n
()Pl —ult gy -k B>n

Lemma 7.2 (Lemma 6.3 in [6]). Fiz uj,us € R", and let 0 < k,{ <n, 8 >0, k+{+ 5 > n,
k+4{¢#n. We have

s max(0,k+£—n)
/ () Pde ) ()
R

\ul—ug| |U1 — UQ| S 1
—uy|k|z —uglt ™ in(k, 0 k++8—
n |z —ur|F|z — ugl \U11u2|)mm( n) luy — ug| > 1
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