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Abstract. We study the initial-boundary value problem for the derivative nonlinear

Schrödinger (DNLS) equation. More precisely we study the wellposedness theory and the

regularity properties of the DNLS equation on the half line. We prove almost sharp local

wellposedness, nonlinear smoothing, and small data global wellposedness in the energy

space. One of the obstructions is that the crucial gauge transformation we use replaces

the boundary condition with a nonlocal one. We resolve this issue by running an additional

fixed point argument. Our method also implies almost sharp local and small energy global

wellposedness, and an improved smoothing estimate for the quintic Schrödinger equation

on the half line. In the last part of the paper we consider the DNLS equation on R and

prove smoothing estimates by combining the restricted norm method with a normal form

transformation.

1. Introduction

The main purpose of this paper is to study various aspects of the derivative nonlinear

Schrödinger (DNLS) equation as an initial-boundary value problem posed on the half line.

The Cauchy problem on R associated with this equation,

(1)

{
iqt + qxx − i(|q|2q)x = 0, x ∈ R, t ∈ R,
q(x, 0) = G(x),

describes a variety of physical phenomena and has been extensively studied in the last

20-30 years. The model (1) was derived in [39] and [40] as a model for the propagation

of circularly polarized Alfvén waves in magnetized plasma with a constant magnetic field.

It also arises in the study of wave propagation in optical fibers [1]. The equation appears

in many other contexts and for more information the reader can consult [42], [9], and the

references therein.
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author’s work was supported by a grant from the Simons Foundation (#355523 Nikolaos Tzirakis).
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We concentrate on the initial-boundary value problem with a Dirichlet boundary condi-

tion on the semi-infinite interval (0,∞):

(2)

{
iqt + qxx − i(|q|2q)x = 0, x ∈ R+, t ∈ R+,

q(x, 0) = G(x), q(0, t) = H(t).

Here G ∈ Hs(R+) and H ∈ H
2s+1

4 (R+), with the additional compatibility condition

G(0) = H(0) for s > 1
2
. The compatibility condition is necessary since the solutions we are

interested in are continuous space-time functions for s > 1
2
. This problem bears significant

physical importance as described in [9]: “Solutions of the DNLS equation under both the

vanishing boundary conditions (VBC) and the nonvanishing boundary conditions (NVBC)

are physically interesting topics. For problems of nonlinear Alfvén waves, weak nonlinear

electromagnetic waves in magnetic and dielectric media, waves propagating strictly parallel

to the ambient magnetic fields are modelled by the DNLS equation with VBC while those

oblique waves are modelled by the DNLS equation with NVBC. For problems in optical

fibres, pulses under bright background waves should be modelled by NVBC.”

The DNLS equation on R is known, [43], to be locally wellposed in Hs for any s ≥ 1
2
. This

result is sharp since for s < 1
2

the data to solution map fails to be uniformly continuous,

see [43] and [3] for the detailed argument. For earlier partial results on smoother spaces,

see [46, 47, 24, 23, 25, 41]. Global-in-time existence and uniqueness in the energy space

H1 was proved in [41] assuming the smallness condition ‖G‖L2 <
√

2π. This result was

improved in [44] to obtain global wellposedness below the energy space using the high low

frequency decomposition method of Bourgain [8]. Global wellposedness for any s > 1
2

was

obtained in [10, 11] using the almost conservation law method also known as the I-method.

The endpoint, s = 1
2
, global theory was established in [38]. All the above results have the

same smallness assumption which was needed because the energy functional is not positive

definite. The smallness condition was later weakened to ‖G‖L2 <
√

4π for energy data,

see [48] and [49]. For the analogous result with initial data in Hs, s ≥ 1
2
, see [22]. The

optimality of the constant
√

4π in the smallness condition is an open problem, in particular

there are no known blowup solutions even for negative energy. For global wellposedness

in weighted Sobolev spaces with the smallness assumption replaced by certain spectral

assumptions one can consult [36, 37].

The equation on the real line is completely integrable and it has infinitely many con-

servation laws. It thus can be analyzed by the inverse scattering transform, see e.g.

[28, 33, 31, 36, 37]. For initial-boundary value problems a variant of the inverse scat-

tering method has been developed in [20] and applied to many dispersive equations. In
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particular, for the smooth solutions of the DNLS equation on the half line see [34] and [35].

Our work in this paper does not rely on the integrability structure.

We study the DNLS equation on the half line by an adaptation of the restricted norm

method (Xs,b method) to the initial-boundary value problems developed in [18, 19]. The

method is based on ideas that were applied earlier to dispersive equations on the half

line and especially for the NLS and the KdV equations in low regularity spaces in the

papers [12, 26, 27, 4, 5]. A well known problem in the theory of the DNLS equation

is that the bilinear Xs,b estimates fail for the equation (1). Nevertheless one can use

a gauge transformation that replaces the problematic term (|q|2q)x with a quintic term

which contains no derivatives and a derivative term that has a better convolution structure

on the Fourier side, see equation (4). In this paper we follow the same approach and thus

define the gauge transformation1

Gαf(x) = f(x) exp
(
− iα

∫ ∞
x

|f(y)|2dy
)
, α ∈ R.

If q solves (2), then u = Gαq satisfies

(3)

{
iut + uxx − i(2α + 1)u2ux − i(2α + 2)|u|2ux + α

2
(2α + 1)|u|4u = 0, x, t ∈ R+,

u(x, 0) = g(x), u(0, t) = h(t),

where g(x) = GαG(x), and

h(t) = H(t) exp
(
− iα

∫ ∞
0

|q(y, t)|2dy
)

= H(t) exp
(
− iα

∫ ∞
0

|u(y, t)|2dy
)
.

The second equality holds since the gauge transformation is unitary. The equation (3) has

a counterpart on R, which is identical without the boundary value h.

We will first establish the local wellposedness of (3) in the case α = −1. The equation

then becomes

(4)

{
iut + uxx + iu2ux + 1

2
|u|4u = 0, x, t ∈ R+,

u(x, 0) = g(x), u(0, t) = h(t).

The second step will be to establish the theory for any other α. This is trivial in the case

of the real line case since the gauge transformation is a bi-Lipschitz map between Sobolev

spaces, see [10] and Lemma 7.2 in the Appendix. However, because of the dependence of

the boundary data on the L2 norm of the solution in the gauged equation, the local theory

on the half line for any other α requires an additional fixed point argument that allows us

to pick the boundary data for α = −1 problem suitably, see Section 4.2.

1We note that this gauge transformation is slightly different than the one that is commonly used in the

literature; this version is more suitable for the boundary value problem.



4 ERDOĞAN, GÜREL, TZIRAKIS

Wellposedness of (3) or (4) means local existence, uniqueness and continuity with re-

spect to the initial data of distributional solutions. More precisely we have the following

definition:

Definition 1.1. We say (3) is locally wellposed in Hs(R+), if

i) for any g ∈ Hs(R+) and h ∈ H 2s+1
4 (R+), with the compatibility condition g(0) = h(0),

the equation has a distributional solution

u ∈ C0
tH

s
x([0, T ]× R) ∩ C0

xH
2s+1

4
t (R× [0, T ]),

where T = T (‖g‖Hs(R+), ‖h‖
H

2s+1
4 (R+)),

ii) if gn → g in Hs(R+) and hn → h in H
2s+1

4 (R+), then un → u in the space above,

iii) u is the unique such solution.

Our first theorem establishes almost sharp local wellposedness (up to the endpoint s = 1
2
).

Theorem 1.2. Fix s ∈ (1
2
, 5

2
), s 6= 3

2
. Then for any fixed α ∈ R, (3) is locally wellposed in

Hs(R+) in the sense of Definition 1.1.

As mentioned above we start with the case α = −1, c.f. equation (4). In this particular

case we also obtain a smoothing estimate:

Theorem 1.3. Fix s ∈ (1
2
, 5

2
), s 6= 3

2
, and a < min(5

2
− s, 1

4
, 2s − 1). Then for any

g ∈ Hs(R+) and h ∈ H 2s+1
4 (R+), with the compatibility condition g(0) = h(0), the solution

u of (4) satisfies

u(x, t)−W t
0(g, h)(x) ∈ C0

tH
s+a
x ([0, T ]× R+),

where T is the local existence time, and W t
0(g, h) is the solution of the corresponding linear

equation.

Notice that Theorem 1.3 explicitly states that the nonlinear part of the solution is

smoother than the initial data and the corresponding linear solution. This smoothing

estimate plays a central role in the uniqueness part of Theorem 1.2 for α = −1 and thus

for any α, since it shows that if we approximate any solution with a smoother solution

(uniqueness of which is known by energy methods) the time interval on which this approx-

imation is valid depends only on the norm of the less regular solutions. This argument,

see [13], provides uniqueness for rough solutions at any regularity level that the solutions

exist. For details see Section 4.
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Remark 1.4. The a priori estimates we need to obtain in order to prove Theorem 1.3, in

particular Proposition 3.5 and Proposition 3.6, also imply almost sharp local wellposedness

and smoothing of order a < min(4s, 1
2
, 5

2
− s) for any s > 0 for the L2-critical quintic NLS

equation iut + uxx ± |u|4u = 0 on the half line, which as far as we know is a new result

by itself. In addition, these estimates imply a new smoothing estimate for the L2-critical

quintic NLS equation on R of order a < min(4s, 1
2
) improving earlier smoothing estimates

obtained in [29] and [14].

We next establish the global wellposedness in the energy space for the equation (3) for any

α, in particular for the equation (2). For boundary value problems with nonzero boundary

data this is not an immediate consequence of the local theory since the local differentiation

laws do not always lead to conservation laws. Nevertheless, in order to extend the solutions

to all times we only need an a priori bound of the H1 norm of the solution. On the half line

this is indeed the case as we prove the bound for small initial and boundary data in the

energy space. The proof is done in two steps. First we obtain the bounds in the case that

α = −1
2

where the differentiation laws take the simplest form, and then we prove similar

bounds for the DNLS equation (3) for any α by substituting the gauge in the local energy

identities:

Theorem 1.5. For any α ∈ R, there exists an absolute constant c > 0 so that (3) is

globally wellposed in H1(R+) provided that ‖g‖H1(R+) + ‖h‖H1(R+) ≤ c.

In the last part of the paper we consider the derivative Schrödinger equation on the full

line (1). We combine the Xs,b theory with the theory of normal forms as was developed in

[2] and [15] for the periodic KdV equation to obtain the following smoothing theorem:

Theorem 1.6. Fix s > 1
2

and a < min(1
2
, 2s− 1). For any g ∈ Hs(R) the solution u of

(5)

{
iut + uxx + iu2ux + 1

2
|u|4u = 0, x, t ∈ R,

u(x, 0) = g(x)

satisfies

u− eit∆g ∈ C0
tH

s+a
x ([0, T ]× R),

where T is the local existence time.

This result can be iterated to hold for all times, see [15], under the small L2 assumption

that guarantees global existence. Since the gauge transformation is continuous in Sobolev

spaces, see Lemma 7.2 in the Appendix, this theorem immediately implies that
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Corollary 1.7. Fix s > 1
2

and a < min(1
2
, 2s − 1). For any G ∈ Hs(R) the solution q of

(1) satisfies

(6) q − G1

(
eit∆(G−1G)

)
∈ C0

tH
s+a
x ([0, T ]× R).

This improves a smoothing result2 that was obtained in [44] for equation (1).

We now briefly discuss the organization of the paper. In Section 2 we define the notion

of a solution, discuss the solution of the linear equation, and obtain an integral formulation

on the full line that we need in order to run a fixed point argument, see equation (14). We

thus are looking for a fixed point in the space

(7) Xs,b(R× [0, T ]) ∩ C0
tH

s
x([0, T ]× R) ∩ C0

xH
2s+1

4
t (R× [0, T ]).

It is a well known fact that (see (15) below for the definition of the Xs,b norm) Xs,b(R×
[0, T ]) ⊂ C0

tH
s
x([0, T ] × R) for any b > 1

2
. However, to close the fixed point argument we

need to take b < 1
2

and prove the continuity of the solution directly by additional estimates.

In Section 3 we prove the linear and nonlinear a priori estimates that are useful in studying

wellposedness of the derivative NLS on the half line. In Section 4 we establish the local

wellposedness theory for general α, see Theorem 1.2. In Section 5 we obtain the global

wellposedness with small mass and energy by proving a priori bounds on the energy norm.

Section 6 is devoted to the derivative NLS equation on the real line. In particular, we apply

a normal form transformation and prove multilinear estimates that we use to obtain an

improved smoothing bound for the equation. Finally in the Appendix, we record a lemma

that we use repeatedly throughout the paper and prove another lemma on the Lipschitz

continuity of the gauge transformation in Sobolev spaces.

1.1. Notation. We define the Fourier transform on R by

ĝ(ξ) = Fg(ξ) =

∫
R
e−ixξg(x)dx.

We also define the Sobolev space Hs(R) via the norm:

‖g‖Hs = ‖g‖Hs(R) =
(∫

R
〈ξ〉2s|ĝ(ξ)|2dξ

)1/2

,

where 〈ξ〉 :=
√

1 + |ξ|2. We denote the linear Schrödinger propagator (for g ∈ L2(R)) by

WRg(x, t) = eit∆g(x) = F−1
[
e−it|·|

2

ĝ(·)
]
(x).

2Although it is not stated explicitly in [44], the assertion (6) follows from the a priori estimates obtained

there for the smaller range a < min( 1
4 , 2s− 1).
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For a space time function f , we set the notation

D0f(t) = f(0, t).

Finally, we reserve the symbol η for a smooth compactly supported function of time which

is equal to 1 on [−1, 1].

2. Notion of a solution

Throughout the paper we have s ∈ (0, 5
2
), s 6= 1

2
, 3

2
. We define Hs(R+) norm as

‖g‖Hs(R+) := inf
{
‖g̃‖Hs(R) : g̃(x) = g(x), x > 0

}
.

We say g̃ is an Hs(R) extension of g ∈ Hs(R+) if g̃(x) = g(x) for x > 0 and ‖g̃‖Hs ≤
2‖g‖Hs(R+). Note that, if g ∈ Hs(R+) for some s > 1

2
, then by Sobolev embedding any Hs

extension is continuous on R, and hence g(0) is well defined. We have the following lemma

concerning extensions of Hs(R+) functions, see [12] and [18]:

Lemma 2.1. Let h ∈ Hs(R+) for some −1
2
< s < 3

2
.

i) If −1
2
< s < 1

2
, then ‖χ(0,∞)h‖Hs(R) . ‖h‖Hs(R+).

ii) If 1
2
< s < 3

2
and h(0) = 0, then ‖χ(0,∞)h‖Hs(R) . ‖h‖Hs(R+).

To construct the solutions of (4) we first consider the linear problem:

(8)

{
iut + uxx = 0, x ∈ R+, t ∈ R+,

u(x, 0) = g(x) ∈ Hs(R+), u(0, t) = h(t) ∈ H 2s+1
4 (R+),

with the compatibility condition h(0) = g(0) for s > 1
2
. Note that the uniqueness of the

solutions of equation (8) follows by considering the equation with g = h = 0 with the

method of odd extension.

We refer the reader to [5] and [18] for the derivation of the solution of (8), for t ∈ [0, 1].

We write

u(t) = W t
0(g, h) = W t

0(0, h− p) +WR(t)ge,

where ge is an Hs extension of g to R satisfying ‖ge‖Hs(R) . ‖g‖Hs(R+). Moreover,

p(t) = η(t)D0(WRge) = η(t)[WR(t)ge]
∣∣
x=0

,

which is well defined and is in H
2s+1

4 (R+) by Lemma 3.1 below. In addition, following [5]

and [18] we write W t
0(0, h) = W1h+W2h, where

W1h(x, t) =
1

π

∫ ∞
0

e−iβ
2t+iβxβĥ(−β2)dβ,(9)
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W2h(x, t) =
1

π

∫ ∞
0

eiβ
2t−βxβĥ(β2)dβ.(10)

Here by a slight abuse of notation

(11) ĥ(ξ) = F
(
χ(0,∞)h

)
(ξ) =

∫ ∞
0

e−iξth(t)dt.

By a change of variable we have

(12)

√∫ ∞
0

〈β〉2s
∣∣βĥ(±β2)

∣∣2dβ . ‖χ(0,∞)h‖
H

2s+1
4 (R)

. ‖h‖
H

2s+1
4 (R+)

,

where the last inequality follows from Lemma 2.1 under the compatibility condition h(0) =

0.

Note that W1 is already well defined for all x, t ∈ R by (9). We also extend W2 to all x

as in [18] by

(13) W2h(x, t) =
1

π

∫ ∞
0

eiβ
2t−βxρ(βx)βĥ(β2)dβ,

where ρ(x) is a smooth function supported on (−2,∞), and ρ(x) = 1 for x > 0. Therefore

the solution W t
0(g, h) of (8) for t ∈ [0, 1] is now well defined for all x, t ∈ R, and its

restriction to R+ × [0, 1] is independent of the extension ge.

We now consider the integral equation

(14) u(t) = η(t)W t
0(g, h) + η(t)

∫ t

0

WR(t− t′)F (u) dt′ − η(t)W t
0

(
0, q
)
(t),

where

F (u) = η(t/T )(iu2ux +
1

2
|u|4u) and q(t) = η(t)D0

(∫ t

0

WR(t− t′)F (u) dt′
)
.

Here D0f(t) = f(0, t). In what follows we will prove that the integral equation (14) has a

unique solution in the Banach space (7) on R× R for some T < 1. Using the definition of

the boundary operator, it is clear that the restriction of u to R+× [0, T ] satisfies (4) in the

distributional sense. Also note that the smooth solutions of (14) satisfy (4) in the classical

sense.

We will work with the space Xs,b(R× R) (see [6, 7]):

(15) ‖u‖Xs,b =
∥∥û(τ, ξ)〈ξ〉s〈τ + ξ2〉b

∥∥
L2
τL

2
ξ

.

We recall the embedding Xs,b ⊂ C0
tH

s
x for b > 1

2
and the following inequalities from

[6, 21, 17]. For any s, b we have

(16) ‖η(t)WRg‖Xs,b . ‖g‖Hs .
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For any s ∈ R, 0 ≤ b1 <
1
2
, and 0 ≤ b2 ≤ 1− b1, we have

(17)
∥∥∥η(t)

∫ t

0

WR(t− t′)F (t′)dt′
∥∥∥
Xs,b2

. ‖F‖Xs,−b1 .

Moreover, for T < 1, and −1
2
< b1 < b2 <

1
2
, we have

(18) ‖η(t/T )F‖Xs,b1 . T b2−b1‖F‖Xs,b2 .

Finally, recall that, see e.g. [45, Lemma 2.9], for any translation invariant Banach space B
of functions on R× R, the a priori estimate ‖WRg‖B . ‖g‖Hs implies that

(19) ‖u‖B . ‖u‖Xs,b for any b >
1

2
.

3. A priori estimates

In this section we provide a priori estimates for the linear and nonlinear terms in (14).

3.1. Estimates for the linear terms. We start with the following Kato smoothing type

estimates which convert space derivatives to time derivatives. These estimates justify the

choice of spaces concerning g, h in Definition 1.1.

Lemma 3.1. (Kato smoothing inequality) Fix s ≥ 0. For any g ∈ Hs(R), we have

η(t)WRg ∈ C0
xH

2s+1
4

t (R× R), and∥∥ηWRg
∥∥
L∞x H

2s+1
4

t

. ‖g‖Hs(R).

In addition, for s ≥ 1
2
, and for any g ∈ Hs(R), we have η(t)∂xWRg ∈ C0

xH
2(s−1)+1

4
t (R×R),

and ∥∥η∂xWRg
∥∥
L∞x H

2(s−1)+1
4

t

. ‖g‖Hs(R).

Proof. The first part is the well known Kato smoothing theorem, see e.g. [18]. The second

part follows from the first part for s ≥ 1 since ∂x commutes with WR. For s ∈ [1
2
, 1), note

that

Ft
(
η∂xWRg

)
(τ) = i

∫
η̂(τ + ξ2)eixξξĝ(ξ)dξ

= i

∫
|ξ|<1

η̂(τ + ξ2)eixξξĝ(ξ)dξ + i

∫
|ξ|≥1

η̂(τ + ξ2)eixξξĝ(ξ)dξ.

We estimate the contribution of the first term to H
2s−1

4
t norm by∫

|ξ|<1

∥∥〈τ〉 2s−1
4 η̂(τ + ξ2)

∥∥
L2
τ
|ĝ(ξ)|dξ .

∫
|ξ|<1

|ĝ(ξ)|dξ . ‖ĝ‖L2 . ‖g‖Hs .
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By a change of variable, the contribution of the second term is bounded by∥∥∥∫ ∞
1

〈τ〉
2s−1

4 |η̂(τ + ρ)||ĝ(±√ρ)|dρ
∥∥∥
L2
τ

.
∥∥∥∫ ∞

1

〈τ + ρ〉
2s−1

4 |η̂(τ + ρ)|ρ
2s−1

4 |ĝ(±√ρ)|dρ
∥∥∥
L2
τ

.

By Young’s inequality, we estimate this by

‖〈·〉
2s−1

4 η̂‖L1

∥∥∥ρ 2s−1
4 ĝ(±√ρ)

∥∥∥
L2
ρ>1

. ‖g‖Hs .

The continuity statement follows from this and the dominated convergence theorem. �

Lemma 3.2 and Proposition 3.3 below show that the boundary operator belongs to the

space (7).

Lemma 3.2. Let s ≥ 0. Then for h satisfying χ(0,∞)h ∈ H
2s+1

4 (R), we have

W t
0(0, h) ∈ C0

tH
s
x(R× R) and η(t)W t

0(0, h) ∈ C0
xH

2s+1
4

t (R× R).

In addition, for s ≥ 1
2

and for h satisfying χ(0,∞)h ∈ H
2s+1

4 (R), we have

η(t)∂xW
t
0(0, h) ∈ C0

xH
2(s−1)+1

4
t (R× R).

Proof. For the first part see [18]. To prove that η(t)∂xW2h ∈ C0
xH

2s−1
4

t (R× R), write

W2h =

∫
R
f(βx)F

(
e−it∆ψ

)
(β)dβ =

∫
R

1

x
f̂(ξ/x)(e−it∆ψ)(ξ)dξ =

∫
R
f̂(ξ)(e−it∆ψ)(xξ)dξ,

where f(x) = e−xρ(x) and ψ̂(β) = βĥ(β2)χ[0,∞)(β). We therefore obtain

∂xW2h =

∫
R
ξf̂(ξ)(e−it∆ψ′)(xξ)dξ.

The claim follows from using the Kato smoothing Lemma 3.1 and dominated convergence

theorem noting that ξf̂(ξ) ∈ L1.

Finally, note that W1h = WRψ, where ψ̂(β) = βĥ(−β2)χ[0,∞)(β). The claim η(t)∂xW1h ∈
C0
xH

2s−1
4

t (R × R) follows as above from (11), (12), the continuity of WR(t), and Kato

smoothing Lemma 3.1. �

We also record the following bound from [18]:

Proposition 3.3. Let b ≤ 1
2

and s ≥ 0. Then for h satisfying χ(0,∞)h ∈ H
2s+1

4 (R), we

have

‖η(t)W t
0(0, h)‖Xs,b . ‖χ(0,∞)h‖

H
2s+1

4
t (R)

.

The following proposition is a Kato smoothing type estimate for the nonlinear Duhamel

term:
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Proposition 3.4. Fix b < 1
2
. For any smooth compactly supported function η, we have∥∥∥η ∫ t

0

WR(t− t′)Fdt′
∥∥∥
C0
xH

2s+1
4

t (R×R)
.

{
‖F‖Xs,−b , 0 ≤ s ≤ 1

2
,

‖F‖
X

1
2 ,

2s−1−4b
4

+ ‖F‖Xs,−b , 1
2
≤ s ≤ 5

2
.

In addition, we have∥∥∥η∂x ∫ t

0

WR(t− t′)Fdt′
∥∥∥
C0
xH

2s−1
4

t (R×R)
.

{
‖F‖Xs,−b , 1

2
≤ s ≤ 3

2
,

‖F‖
X

1
2 ,

2s−1−4b
4

+ ‖F‖Xs,−b , 3
2
≤ s ≤ 5

2
.

Proof. For the first part see [18]. The second part follows from the first for s ≥ 1 since ∂x

commutes with WR. For 1
2
≤ s < 1, the proof is based on an argument from [12], also see

[18].

It suffices to prove the bound above for ηD0

( ∫ t
0
WR(t − t′)∂xFdt

′) since Xs,b norm is

independent of space translation. The continuity in x follows from this by the dominated

convergence theorem as in the proof of Lemma 3.1. Note that

D0

(∫ t

0

WR(t− t′)∂xFdt′
)

= i

∫
R

∫ t

0

e−i(t−t
′)ξ2ξF (ξ̂, t′)dt′dξ.

Using

F (ξ̂, t′) =

∫
R
eit
′λF̂ (ξ, λ)dλ and

∫ t

0

eit
′(ξ2+λ)dt′ =

eit(ξ
2+λ) − 1

i(λ+ ξ2)

we obtain

D0

(∫ t

0

WR(t− t′)∂xFdt′
)

= i

∫
R2

eitλ − e−itξ2

i(λ+ ξ2)
ξF̂ (ξ, λ)dξdλ.

Let ψ be a smooth cutoff for [−1, 1], and let ψc = 1− ψ. We write

η(t)D0

(∫ t

0

WR(t− t′)∂xFdt′
)

= η(t)

∫
R2

eitλ − e−itξ2

i(λ+ ξ2)
ψ(λ+ ξ2)ξF̂ (ξ, λ)dξdλ

+ η(t)

∫
R2

eitλ

i(λ+ ξ2)
ψc(λ+ ξ2)ξF̂ (ξ, λ)dξdλ− η(t)

∫
R2

e−itξ
2

i(λ+ ξ2)
ψc(λ+ ξ2)ξF̂ (ξ, λ)dξdλ

=: I + II + III.

By Taylor expansion, we write

eitλ − e−itξ2

i(λ+ ξ2)
= ieitλ

∞∑
k=1

(−it)k

k!
(λ+ ξ2)k−1,

which leads to

‖I‖
H

2s−1
4 (R)

.
∞∑
k=1

‖η(t)tk‖H1

k!

∥∥∥∫
R2

eitλ(λ+ ξ2)k−1ψ(λ+ ξ2)ξF̂ (ξ, λ)dξdλ
∥∥∥
H

2s−1
4

t (R)
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.
∞∑
k=1

1

(k − 1)!

∥∥∥〈λ〉 2s−1
4

∫
R
(λ+ ξ2)k−1ψ(λ+ ξ2)ξF̂ (ξ, λ)dξ

∥∥∥
L2
λ

.
∥∥∥〈λ〉 2s−1

4

∫
R
ψ(λ+ ξ2)|ξ||F̂ (ξ, λ)|dξ

∥∥∥
L2
λ

.

By the Cauchy-Schwarz inequality in ξ we estimate this by

[ ∫
R
〈λ〉

2s−1
2

(∫
|λ+ξ2|<1

〈ξ〉2−2sdξ
)(∫

|λ+ξ2|<1

〈ξ〉2s|F̂ (ξ, λ)|2dξ
)
dλ
]1/2

. ‖F‖Xs,−b sup
λ

(
〈λ〉

2s−1
2

∫
|λ+ξ2|<1

〈ξ〉2−2sdξ
)1/2

. ‖F‖Xs,−b .

The last inequality follows by a calculation substituting ρ = ξ2.

For the second term we have

‖II‖
H

2s−1
4 (R)

. ‖η‖H1

∥∥∥〈λ〉 2s−1
4

∫
R

1

λ+ ξ2
ψc(λ+ ξ2)ξF̂ (ξ, λ)dξ

∥∥∥
L2
λ

.
∥∥∥〈λ〉 2s−1

4

∫
R

1

〈λ+ ξ2〉
|ξF̂ (ξ, λ)|dξ

∥∥∥
L2
λ

.

By the Cauchy-Schwarz inequality in ξ we estimate this by

[ ∫
R
〈λ〉

2s−1
2

(∫ 〈ξ〉2−2s

〈λ+ ξ2〉2−2b
dξ
)(∫ 〈ξ〉2s

〈λ+ ξ2〉2b
|F̂ (ξ, λ)|2dξ

)
dλ
]1/2

. ‖F‖Xs,−b sup
λ

(
〈λ〉

2s−1
2

∫
〈ξ〉2−2s

〈λ+ ξ2〉2−2b
dξ
)1/2

. ‖F‖Xs,−b .

To obtain the last inequality recall that 1
2
≤ s ≤ 1 and b < 1

2
, and consider the cases |ξ| < 1

and |ξ| ≥ 1 separately. In the former case use 〈λ + ξ2〉 ≈ 〈λ〉 and in the latter case use

Lemma 7.1 after the change of variable ρ = ξ2.

To estimate ‖III‖
H

2s−1
4 (R)

we break the ξ integral into two pieces |ξ| ≥ 1 and |ξ| < 1.

We estimate the contribution of the former piece as above (after the change of variable

ρ = ξ2):∥∥∥〈ρ〉 2s−1
4

∫
R

1

λ+ ρ
ψc(λ+ ρ)F̂ (

√
ρ, λ)dλ

∥∥∥
L2
|ρ|≥1

.
∥∥∥〈ρ〉 2s−1

4

∫
R

1

〈λ+ ρ〉
|F̂ (
√
ρ, λ)| dλ

∥∥∥
L2
|ρ|≥1

.

By the Cauchy-Schwarz inequality in λ integral noting that b < 1
2

we bound this by

[ ∫
|ρ|>1

∫
R

〈ρ〉 2s−1
2

〈λ+ ρ〉2b
|F̂ (
√
ρ, λ)|2dλdρ

]1/2

. ‖F‖Xs,−b .
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We estimate the contribution of the latter term by∫
R2

‖η(t)e−itξ
2‖
H

2s−1
4
χ[−1,1](ξ)

|λ+ ξ2|
ψc(λ+ ξ2)|ξF̂ (ξ, λ)|dξdλ .

∫
R2

χ[−1,1](ξ)

〈λ+ ξ2〉
|F̂ (ξ, λ)|dξdλ.

For b < 1
2

this is bounded by ‖F‖X0,−b by the Cauchy-Schwarz inequality in ξ and λ

integrals. �

3.2. Estimates for the nonlinear terms. In this section we establish estimates for

the nonlinear term in (14) in order to close the fixed point argument and to obtain the

smoothing theorem.

We start by recording a priori estimates that follow from (19) and well known dispersive

estimates for the linear Schrödinger evolution, for details see e.g. [30, 43, 44]:

(20)
∥∥∥(〈ξ〉 12f(ξ, τ)

〈τ + ξ2〉 12+

)∨∥∥∥
L∞x L

2
t

. ‖f‖L2
ξ,τ

(Kato smoothing inequality),

(21)
∥∥∥( f(ξ, τ)

〈ξ〉 14 〈τ + ξ2〉 12+

)∨∥∥∥
L4
xL
∞
t

. ‖f‖L2
ξ,τ

(Maximal function inequality).

Interpolating both (20) and (21) with Plancherel identity we obtain

(22)
∥∥∥(〈ξ〉 12−f(ξ, τ)

〈τ + ξ2〉 12−
)∨∥∥∥

L∞−x L2
t

. ‖f‖L2
ξ,τ
,

(23)
∥∥∥( f(ξ, τ)

〈ξ〉 14−〈τ + ξ2〉 12−
)∨∥∥∥

L4−
x L∞−t

. ‖f‖L2
ξ,τ
.

Sobolev embedding implies that

(24)
∥∥∥( f(ξ, τ)

〈ξ〉
1
2
− 1
p

+〈τ + ξ2〉
1
2
− 1
p

+

)∨∥∥∥
LpxL

p
t

. ‖f‖L2
ξ,τ
, 2 ≤ p <∞.

We also have the Strichartz estimate

(25)
∥∥∥( f(ξ, τ)

〈τ + ξ2〉 12+

)∨∥∥∥
L6
xL

6
t

. ‖f‖L2
ξ,τ
.

Interpolating (25) with Plancherel identity, we have

(26)
∥∥∥( f(ξ, τ)

〈τ + ξ2〉
3
4
− 3

2p
+

)∨∥∥∥
LpxL

p
t

. ‖f‖L2
ξ,τ
, 2 < p < 6.

Interpolating (25) with (24), we have

(27)
∥∥∥( f(ξ, τ)

〈ξ〉
p−6
2p

+〈τ + ξ2〉 12−

)∨∥∥∥
LpxL

p
t

. ‖f‖L2
ξ,τ
, 6 < p <∞.
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Using (26), (27), and Hölder’s inequality, we have

(28)
∥∥∥( f(ξ, τ)

〈τ + ξ2〉c+
)∨[( f(ξ, τ)

〈ξ〉 12−c+〈τ + ξ2〉 12−
)∨]2∥∥∥

L2+
x,t

. ‖f‖3
L2
ξ,τ
, 0 ≤ c ≤ 1

2
.

Similarly, using (22) and (23), and Hölder’s inequality, we have

(29)
∥∥∥(〈ξ〉 12−f(ξ, τ)

〈τ + ξ2〉 12−
)∨[( f(ξ, τ)

〈ξ〉 14−〈τ + ξ2〉 12−
)∨]2∥∥∥

L2−
x,t

. ‖f‖3
L2
ξ,τ
.

We start with smoothing estimates for the quintic term in (14):

Proposition 3.5. For fixed s > 0 and a < min(4s, 1
2
), there exists ε > 0 such that for

1
2
− ε < b < 1

2
, we have ∥∥|u|4u∥∥

Xs+a,−b . ‖u‖5
Xs,b .

Proof. By writing the Fourier transform of |u|4u = uūuūu as a convolution, we obtain

|̂u|4u(ξ0, τ0) =

∫
ξ0−ξ1+ξ2−ξ3+ξ4−ξ5=0
τ0−τ1+τ2−τ3+τ4−τ5=0

û(ξ1, τ1)û(ξ2, τ2)û(ξ3, τ3)û(ξ4, τ4)û(ξ5, τ5).

We define

f(ξ, τ) = |û(ξ, τ)|〈ξ〉s〈τ + ξ2〉b.

By duality, it suffices to prove

I :=

∫
ξ0−ξ1+ξ2−ξ3+ξ4−ξ5=0
τ0−τ1+τ2−τ3+τ4−τ5=0

〈ξ0〉s+ag(ξ0, τ0)
∏5

j=1 f(ξj, τj)∏5
j=1〈ξj〉s

∏5
j=0〈τj + ξ2

j 〉b
. ‖f‖5

L2
ξ,τ
‖g‖L2

ξ,τ
.

By symmetry, we can restrict ourselves to the case |ξ1| ≥ |ξ2| ≥ |ξ3| ≥ |ξ4| ≥ |ξ5|, which

implies |ξ1| & |ξ0|. We write

I . sup
〈ξ2〉0+〈ξ3〉0+〈ξ4〉

1
4
−〈ξ5〉

1
4
−

〈ξ1〉
1
2
−

〈ξ0〉s+a∏5
j=1〈ξj〉s

×
∫

ξ0−ξ1+ξ2−ξ3+ξ4−ξ5=0
τ0−τ1+τ2−τ3+τ4−τ5=0

(
g(ξ0, τ0)f(ξ2, τ2)f(ξ3, τ3)

〈ξ2〉0+〈ξ3〉0+〈τ0 + ξ2
0〉b〈τ2 + ξ2

2〉b〈τ3 + ξ2
3〉b

× 〈ξ1〉
1
2
−f(ξ1, τ1)f(ξ4, τ4)f(ξ5, τ5)

〈ξ4〉
1
4
−〈ξ5〉

1
4
−〈τ1 + ξ2

1〉b〈τ4 + ξ2
4〉b〈τ5 + ξ2

5〉b

)
.

Note that for s > 0, the supremum is finite provided that a < min(1/2, 4s). Therefore,

using (28) with c = 1
2
− and (29), as well as the Plancherel identity and the convolution

structure, we get I . ‖f‖5
L2
ξ,τ
‖g‖L2

ξ,τ
. �
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We also need the following smoothing bound for the terms arising in Proposition 3.4:

Proposition 3.6. For fixed 0 < s < 5
2
, and 1

2
− s < a < min(4s, 1

2
, 5

2
− s), there exists

ε > 0 such that for 1
2
− ε < b < 1

2
, we have∥∥|u|4u∥∥

X
1
2 ,

2s+2a−1−4b
4

. ‖u‖5
Xs,b .

Proof. As in Proposition 3.5, by duality it suffices to prove that

I :=

∫
ξ0−ξ1+ξ2−ξ3+ξ4−ξ5=0
τ0−τ1+τ2−τ3+τ4−τ5=0

〈ξ0〉
1
2 〈τ0 + ξ2

0〉
2s+2a−1−4b

4 g(ξ0, τ0)
∏5

j=1 f(ξj, τj)∏5
j=1〈ξj〉s〈τj + ξ2

j 〉b
. ‖f‖5

L2
ξ,τ
‖g‖L2

ξ,τ
.

We proceed by considering three cases.

Case 1. 3
2
≤ s+ a < 5

2
. Since a < 1

2
, we have s > 1. Note that

〈τ0 + ξ2
0〉 . 〈ξmax〉2 max

j=1,..,5
〈τj + ξ2

j 〉.

Without loss of generality, let maxj=1,..,5〈τj + ξ2
j 〉 = 〈τ5 + ξ2

5〉. We have

〈τ0 + ξ2
0〉

2s+2a−1−4b
4∏5

j=1〈τj + ξ2
j 〉b

.
〈ξmax〉s+a−

1
2
−2b∏4

j=1〈τj + ξ2
j 〉

1
2

+
.

Using this, the Cauchy-Schwarz inequality, and integrating in the τ variables, we bound I

by the square root of

‖f‖10
L2
ξ,τ
‖g‖2

L2
ξ,τ

sup
ξ0

∫
ξ0−ξ1+ξ2−ξ3+ξ4−ξ5=0

〈ξ0〉〈ξmax〉2s+2a−1−4b∏5
j=1〈ξj〉2s

.

The supremum above is bounded by sup〈ξ0〉〈ξmax〉2a−1−4b, which is finite provided that

a ≤ 2b. This completes Case 1.

We now consider the remaining case 1
2
< s + a < 3

2
. By symmetry, we can restrict

ourselves to the case |ξ1| ≥ |ξ2| ≥ |ξ3| ≥ |ξ4| ≥ |ξ5|, which implies |ξ1| & |ξ0|. We will

consider the cases s + a < 1 and s + a ≥ 1 separately. In both cases we use the simple

observation that a1 ≥ a2 ≥ · · · ≥ an ≥ 1 and b1 ≥ b2 ≥ · · · ≥ bn imply
∏n

j=1 a
−bj
j ≤ 1,

provided that
∑n

j=1 bj ≥ 0.

Case 2. 1
2
< s+ a < 1. Using (29) for f(ξ1, τ1), f(ξ4, τ4), and f(ξ5, τ5), and using (28) with

c := 3−2s−2a
4
− ∈ (1

4
, 1

2
) for g(ξ0, τ0), f(ξ2, τ2), and f(ξ3, τ3) as in the proof of Proposition 3.5,

it suffices to observe that

sup
〈ξ2〉

1
2
−c+〈ξ3〉

1
2
−c+〈ξ4〉

1
4
−〈ξ5〉

1
4
−

〈ξ1〉
1
2
−

〈ξ0〉
1
2∏5

j=1〈ξj〉s
<∞,
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which holds true for a < min(4s, 1
2
).

Case 3. 1 ≤ s+ a < 3
2
. Using (29) for f(ξ1, τ1), f(ξ2, τ2), and f(ξ3, τ3), and using (28) with

c := 3−2s−2a
4
− ∈ (0, 1

4
) for g(ξ0, τ0), f(ξ4, τ4), and f(ξ5, τ5), we have

sup
〈ξ2〉

1
4
−〈ξ3〉

1
4
−〈ξ4〉

1
2
−c+〈ξ5〉

1
2
−c+

〈ξ1〉
1
2
−

〈ξ0〉
1
2∏5

j=1〈ξj〉s
<∞,

since a < min(4s, 1
2
). �

We finish this section with analogous smoothing estimates for the derivative nonlinearity

in (14). The following proposition is a variant of an estimate from [43]:

Proposition 3.7. For fixed s > 1
2

and a < min(2s− 1, 1
4
), there exists ε > 0 such that for

1
2
− ε < b < 1

2
, we have ∥∥u2ux

∥∥
Xs+a,−b . ‖u‖3

Xs,b .

Proof. Passing to the Fourier side and by duality as in the proof of Proposition 3.5, it

suffices to prove ∫
ξ0−ξ1+ξ2−ξ3=0
τ0−τ1+τ2−τ3=0

〈ξ0〉s+a〈ξ2〉g(ξ0, τ0)
∏3

j=1 f(ξj, τj)∏3
j=1〈ξj〉s

∏3
j=0〈τj + ξ2

j 〉b
. ‖f‖3

L2
ξ,τ
‖g‖L2

ξ,τ
.

Note that
3∏
j=0

〈τj + ξ2
j 〉b & 〈(ξ0 − ξ1)(ξ0 − ξ3)〉

1
2
−

∏3
j=0〈τj + ξ2

j 〉
1
2

+

max
0≤j≤3

〈τj + ξ2
j 〉

1
2

+
.

Using (20) and (21) and observing that

min
(〈ξi〉 14 〈ξj〉 14
〈ξk〉

1
2

,
〈ξi〉

1
4 〈ξk〉

1
4

〈ξj〉
1
2

,
〈ξj〉

1
4 〈ξk〉

1
4

〈ξi〉
1
2

)
.

〈ξi〉
1
4 〈ξj〉

1
4 〈ξk〉

1
4

〈ξi〉
3
4 + 〈ξj〉

3
4 + 〈ξk〉

3
4

,

it suffices to prove that

sup
ξ0−ξ1+ξ2−ξ3=0

(〈ξ0〉s+a〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈(ξ0 − ξ1)(ξ0 − ξ3)〉 12−
max

0≤i,j,k≤3, distinct

〈ξi〉
1
4 〈ξj〉

1
4 〈ξk〉

1
4

〈ξi〉
3
4 + 〈ξj〉

3
4 + 〈ξk〉

3
4

)
. 1.

Renaming the variables ξ0, ..., ξ3 according to their size as |ξmin| ≤ |ξmid| ≤ |ξmax1| ≈ |ξmax|,
we have

max
0≤i,j,k≤3, distinct

〈ξi〉
1
4 〈ξj〉

1
4 〈ξk〉

1
4

〈ξi〉
3
4 + 〈ξj〉

3
4 + 〈ξk〉

3
4

≈ 〈ξmid〉
1
4

〈ξmax〉
1
4

.

Therefore, we need to bound

sup
ξ0−ξ1+ξ2−ξ3=0

〈ξ0〉s+a〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈(ξ0 − ξ1)(ξ0 − ξ3)〉 12−
〈ξmid〉

1
4

〈ξmax〉
1
4

.
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The case |ξ0 − ξ1| . 1 or |ξ0 − ξ3| . 1 is immediate. Thus it suffices to prove that

(30)
〈ξ0〉s+a〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈ξ0 − ξ1〉
1
2
−〈ξ0 − ξ3〉

1
2
−

〈ξmid〉
1
4

〈ξmax〉
1
4

. 1

when ξ0 − ξ1 + ξ2 − ξ3 = 0 and |ξ1| ≤ |ξ3|, by symmetry.

In the case |ξ1| ≤ |ξ3| . |ξ2| ≈ |ξ0|, we have

(30) .
〈ξ0〉

3
4

+a

〈ξ1〉s〈ξ0 − ξ1〉
1
2
−〈ξ0 − ξ3〉

1
2
−〈ξ3〉s−

1
4

.

For s ≥ 3
4
, we bound this by 〈ξ0〉a−

1
4

+ . 1 provided that a < 1
4
. For 1

2
< s < 3

4
, we have

the bound

〈ξ0〉
3
4

+a

〈ξ1〉s−
1
2 〈ξ0〉

1
2
−〈ξ0 − ξ3〉

3
4
−s−〈ξ0〉s−

1
4

.
〈ξ0〉

1
2

+a−s+

〈ξ2〉min(s− 1
2
, 3
4
−s)−

. 〈ξ0〉
1
2

+a−s−min(s− 1
2
, 3
4
−s)+ . 1

provided that a < min(1
4
, 2s− 1). In the first inequality above we used ξ0 − ξ3 = ξ1 − ξ2.

In the case |ξ1| ≤ |ξ3| ≈ |ξ0| and |ξ3| � |ξ2|, we have the bound

(30) .
〈ξ0〉a−

1
4 〈ξ1〉−s〈ξ2〉1−s(〈ξ1〉

1
4 + 〈ξ2〉

1
4 )

〈ξ0〉
1
2
−〈ξ1 − ξ2〉

1
2
−

. 〈ξ0〉a−
1
2

+〈ξ2〉
1
2
−s+ . 1

provided that a < 1
2
.

In the case |ξ1| ≤ |ξ3| ≈ |ξ2| and |ξ3| � |ξ0|, we have the bound

(30) .
〈ξ0〉s+a〈ξ3〉

1
4
−2s+(〈ξ0〉

1
4 + 〈ξ1〉

1
4 )

〈ξ1〉s〈ξ0 − ξ1〉
1
2
−

. 〈ξ0〉s+a−
1
4

+〈ξ3〉
1
4
−2s+ . 1

provided that a < s.

In the case |ξ0|, |ξ2| � |ξ1| ≈ |ξ3|, we have the bound

(30) . 〈ξ0〉s+a〈ξ2〉1−s〈ξ3〉−2s− 5
4

+(〈ξ0〉
1
4 + 〈ξ2〉

1
4 ) . 〈ξ0〉a−1〈ξ2〉1−2s+ . 1

provided that a ≤ 1. �

Proposition 3.8. For fixed 1
2
< s < 5

2
, and a < min(2s − 1, 1

4
, 5

2
− s), there exists ε > 0

such that for 1
2
− ε < b < 1

2
, we have∥∥u2ux

∥∥
X

1
2 ,

2s+2a−1−4b
4

. ‖u‖3
Xs,b .

Proof. As in Proposition 3.5, by duality and letting b = 1
2
−, it suffices to prove that∫

ξ0−ξ1+ξ2−ξ3=0
τ0−τ1+τ2−τ3=0

〈ξ0〉
1
2 〈ξ2〉g(ξ0, τ0)

∏3
j=1 f(ξj, τj)

〈τ0 + ξ2
0〉

3−2s−2a
4

−∏3
j=1〈ξj〉s〈τj + ξ2

j 〉
1
2
−
. ‖f‖3

L2
ξ,τ
‖g‖L2

ξ,τ
.
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First consider the case s+ a < 3
2
. As in the proof of Proposition 3.7, we have

〈τ0 + ξ2
0〉

3−2s−2a
4

−
3∏
j=1

〈τj + ξ2
j 〉

1
2
− & 〈(ξ0 − ξ1)(ξ0 − ξ3)〉

3−2s−2a
4

−

∏3
j=0〈τj + ξ2

j 〉
1
2

+

max
0≤j≤3

〈τj + ξ2
j 〉

1
2

+
.

Using (20), (21), and defining ξmid and ξmax as in the proof of Proposition 3.7, it suffices

to prove that

sup
ξ0−ξ1+ξ2−ξ3=0

〈ξ0〉
1
2 〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈(ξ0 − ξ1)(ξ0 − ξ3)〉 3−2s−2a
4

−

〈ξmid〉
1
4

〈ξmax〉
1
4

. 1.

The case |ξ0 − ξ1| . 1 or |ξ0 − ξ3| . 1 is immediate. Thus it suffices to prove that

(31)
〈ξ0〉

1
2 〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈ξ0 − ξ1〉
3−2s−2a

4
−〈ξ0 − ξ3〉

3−2s−2a
4

−

〈ξmid〉
1
4

〈ξmax〉
1
4

. 1

when ξ0 − ξ1 + ξ2 − ξ3 = 0 and |ξ1| ≤ |ξ3|, by symmetry.

In the case |ξ1| ≤ |ξ3| . |ξ2| ≈ |ξ0|, we have

(31) .
〈ξ0〉

5
4
−s

〈ξ0〉
3−2s−2a

4
−〈ξ0〉min(s− 1

4
, 3−2s−2a

4
)−
. 1

provided that a < min(1
4
, 2s− 1).

In the case |ξ1| ≤ |ξ3| ≈ |ξ0| and |ξ3| � |ξ2|, we have

(31) .
〈ξ0〉

1
4
−s〈ξ1〉−s〈ξ2〉1−s〈|ξ1|+ |ξ2|〉

1
4

〈ξ0〉
3−2s−2a

4
−〈ξ1 − ξ2〉

3−2s−2a
4

−

.
〈ξ0〉−

1
4
− s

2
+a

2
+〈ξ2〉1−s

〈ξ1〉s〈ξ1 − ξ2〉
3−2s−2a

4
−
. 〈ξ0〉−

1
4
− s

2
+a

2
+〈ξ2〉

1
4
− s

2
+a

2 ,

which is bounded for a < s.

In the case |ξ1| ≤ |ξ3| ≈ |ξ2| and |ξ3| � |ξ0|, we have

(31) .
〈ξ0〉

1
2 〈ξ1〉−s〈ξ2〉−

3s
2

+a
2

+〈|ξ1|+ |ξ0|〉
1
4

〈ξ0 − ξ1〉
3−2s−2a

4
−

. 〈ξ0〉−
1
4

+ s+a
2

+〈ξ2〉−
3s
2

+a
2

+ 1
4

+ . 1

provided that a < s.

In the case |ξ0|, |ξ2| � |ξ1| ≈ |ξ3|, we have

(31) . 〈ξ0〉
1
2 〈ξ2〉1−s〈ξ3〉a−s−

7
4

+〈|ξ0|+ |ξ2|〉
1
4 . 1

provided that a < s.

When 3
2
≤ s+ a < 5

2
, we always have s > 1. Renaming the variables ξ1, ξ2, ξ3 according

to their size as |ξmin| ≤ |ξmid| ≤ |ξmax|, we have

〈τ0 + ξ2
0〉 . max(〈ξmax〉2, 〈τ1 + ξ2

1〉, 〈τ2 + ξ2
2〉, 〈τ3 + ξ2

3〉).
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When the maximum is one of the 〈τj + ξ2
j 〉, say 〈τ3 + ξ2

3〉, we have

〈τ0 + ξ2
0〉

3−2s−2a
4

−
3∏
j=1

〈τj + ξ2
j 〉

1
2
− & 〈τ1 + ξ2

1〉
1
2
−〈τ2 + ξ2

2〉
1
2
−〈τ3 + ξ2

3〉
1
2

+ 3−2s−2a
4

−

& 〈τ1 + ξ2
1〉

1
2

+〈τ2 + ξ2
2〉

1
2

+〈ξmax〉
5
2
−s−a−.

Therefore, by the Cauchy-Schwarz inequality (as in the proof of Proposition 3.6), it suffices

to prove that

sup
ξ0

∫
ξ0−ξ1+ξ2−ξ3=0

〈ξ0〉〈ξ2〉2

〈ξmax〉5−2s−2a−
∏3

j=1〈ξj〉2s
. 1.

Using Lemma 7.1 and |ξmax| & |ξ0|, we bound the integral by∫
〈ξ0〉2s+2a−4+dξ1dξ3

〈ξ1〉2s〈ξ0 − ξ1 − ξ3〉2s−2〈ξ3〉2s
. 〈ξ0〉2s+2a−4+〈ξ0〉2−2s = 〈ξ0〉2a−2+ . 1

provided that a < 1.

When the maximum is 〈ξmax〉2, we have

〈τ0 + ξ2
0〉

3−2s−2a
4

−
3∏
j=1

〈τj + ξ2
j 〉

1
2
− & 〈ξmax〉

3−2s−2a
2

−
3∏
j=1

〈τj + ξ2
j 〉

1
2

+.

Therefore, using (20) and (21) as in the proof of Proposition 3.7, it suffices to prove that

〈ξ0〉
1
2 〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s〈ξmax〉s+a−

3
2

+ 〈ξmid〉
1
4

〈ξmax〉
1
4

. 1.

We bound the multiplier by

〈ξmax〉s+a−
1
4

+〈ξmid〉
1
4

〈ξ1〉s〈ξ2〉s〈ξ3〉s
.
〈ξmax〉s+a−

1
4

+〈ξmid〉
1
4

〈ξmax〉s〈ξmid〉s
. 1

provided that a < 1
4
. �

4. Local theory: The proof of Theorem 1.2 and Theorem 1.3

We start with the proof of Theorem 1.2 for α = −1, see (4). Recalling (14), we first

prove that

(32) Γu(t) := η(t)W t
0

(
g, h
)

+ iη(t)

∫ t

0

WR(t− t′)F (u) dt′ − η(t)W t
0

(
0, q
)
,

has a fixed point in Xs,b. Here s ∈ (1
2
, 5

2
), s 6= 3

2
, b < 1

2
is sufficiently close to 1

2
, and

F (u) = η(t/T )
(
iu2ux +

1

2
|u|4u

)
and q(t) = η(t)D0

(∫ t

0

WR(t− t′)F (u) dt′
)
,
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and

W t
0

(
g, h
)

= WR(t)ge +W t
0

(
0, h− p

)
, p(t) = η(t)D0

(
WR(t)ge

)
.

By (16), we have

‖ηWR(t)ge‖Xs,b . ‖ge‖Hs . ‖g‖Hs(R+).

Combining (17), (18), Proposition 3.5, and Proposition 3.7, we obtain

(33)
∥∥η(t)

∫ t

0

WR(t− t′)F (u) dt′
∥∥
Xs+a, 12+ . ‖F (u)‖

Xs+a,− 1
2+

. T
1
2
−b−(‖u2ux‖Xs+a,−b + ‖|u|4u‖Xs+a,−b) . T

1
2
−b−(‖u‖3

Xs,b + ‖u‖5
Xs,b).

Using Proposition 3.3, Lemma 2.1 and noting that the compatibility condition holds we

arrive at

‖η(t)W t
0

(
0, h− p

)
(t)‖Xs,b . ‖(h− p)χ(0,∞)‖

H
2s+1

4
t (R)

. ‖h− p‖
H

2s+1
4

t (R+)
. ‖h‖

H
2s+1

4
t (R+)

+ ‖p‖
H

2s+1
4

t (R)
. ‖h‖

H
2s+1

4
t (R+)

+ ‖g‖Hs(R+).

In the last inequality, we used Lemma 3.1. Finally,

‖η(t)W t
0

(
0, q
)
(t)‖Xs+a,b . ‖qχ(0,∞)‖

H
2(s+a)+1

4
t (R)

. ‖q‖
H

2(s+a)+1
4

t (R)
.

By Proposition 3.4, (18), and Propositions 3.5, 3.6, 3.7, 3.8, we have

(34) ‖q‖
H

2(s+a)+1
4

t (R)
. ‖F‖

X
1
2 ,

2(s+a)−3+
4

+ ‖F‖
Xs+a,− 1

2+ . T
1
2
−b−(‖u‖3

Xs,b + ‖u‖5
Xs,b

)
.

Combining these estimates, we obtain

‖Γu‖Xs,b . ‖g‖Hs(R+) + ‖h‖
H

2s+1
4

t (R+)
+ T

1
2
−b−(‖u‖3

Xs,b + ‖u‖5
Xs,b

)
.

This yields the existence of a fixed point u of Γ in Xs,b. Now we prove that u ∈
C0
tH

s
x([0, T )× R). Note that the first term in the definition (32) of Γ is continuous in Hs.

The continuity of the third term follows from Lemma 3.2 and (34). For the second term it

follows from the embedding Xs, 1
2

+ ⊂ C0
tH

s
x and (17) together with Proposition 3.5. The

fact that u ∈ C0
xH

2s+1
4

t (R× [0, T ]) follows similarly from Lemma 3.1, Proposition 3.4, and

Lemma 3.2.

The continuous dependence on the initial and boundary data follows from the fixed

point argument and the a priori estimates as in the previous paragraph. In order to do this

observe that by Lemma 4.1 below, given gn → g in Hs(R+) and an Hs extension ge of g,

there are extensions gn,e of the gn so that gn,e → ge in Hs(R).
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It remains to prove the uniqueness part of the theorem. Before that, we prove Theo-

rem 1.3. Recall that

u−W t
0(g, h) = −η(t)W t

0

(
0, q
)
(t) + iη(t)

∫ t

0

WR(t− t′)F (u)dt′.

By (33) and the embedding Xs+a, 1
2

+ ⊂ C0
tH

s+a
x , the second summand is in C0

tH
s+a
x . The

first summand also belongs to C0
tH

s+a
x by Lemma 3.2 and (34).

4.1. Uniqueness of solutions. We now discuss the uniqueness of solutions of (4). The

solution we constructed above is the unique fixed point of (32). However, it is not a priori

clear if there are no other distributional solutions, or if different extensions of the initial

data produce the same solution on R+. We resolve this issue for s ≥ 2 first. Take two Hs

local solutions u1, u2. We have

(35)

{
i(u1 − u2)t + (u1 − u2)xx + iu2

1u1x + 1
2
|u1|4u1 − iu2

2u2x − 1
2
|u2|4u2 = 0,

(u1 − u2)(x, 0) = 0, (u1 − u2)(0, t) = 0, x ∈ R+, t ∈ R+.

Multiplying the equation by u1 − u2 and integrating, we obtain (in the local existence

interval)

∂t‖u1 − u2‖2
2 . ‖u1 − u2‖2

2

(
1 + ‖u1‖3

H2 + ‖u2‖3
H2

)
. ‖u1 − u2‖2

2.

This implies uniqueness for s ≥ 2.

Implementing the smoothing bound in Theorem 1.3 we now prove the uniqueness for
7
4
< s < 2; the argument can be iterated to obtain uniqueness for all s ∈ (1

2
, 2), s 6= 3

2
. Let

u, v be two Hs(R+) solutions as in Definition 1.1 starting from data g, h. Take sequences

{gn} ⊂ H2(R+) converging to g in Hs(R+), and {hn} ⊂ H
5
4 (R+) converging to h in

H
2s+1

4 (R+). Let un be the unique H2(R+) solution on [0, Tn]. By continuous dependence

this implies that u = v = limun provided that the existence times, Tn, do not shrink to

zero. To see that Tn = Tn(‖g‖Hs , ‖h‖
H

2s+1
4

), we use the smoothing estimates noting that

un agrees with the solution we obtained. Write

‖Γ(un)‖X2,b . ‖fn‖H2 + ‖hn‖H 5
4

+ T 0+
n (‖un‖5

Xs,b + 1)

. ‖fn‖H2 + ‖hn‖H 5
4

+ T 0+
n (‖fn‖Hs + ‖hn‖

H
2s+1

4
+ 1)5

. ‖fn‖H2 + ‖hn‖H 5
4

+ T 0+
n (‖g‖Hs + ‖h‖

H
2s+1

4
+ 1)5.

Since ‖fn‖H2 ≥ ‖fn‖Hs & ‖g‖Hs , and similarly for hn, we can pick Tn depending only on

‖g‖Hs and ‖h‖
H

2s+1
4

.

We finish this section with a lemma that was used above which also implies that the

solutions we constructed are limits of H
5
2
− solutions.
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Lemma 4.1. Fix s ≥ 0 and k ≥ s. Let g ∈ Hs(R+), f ∈ Hk(R+), and let ge be an Hs

extension of g to R. Then there is an Hk extension fe of f to R so that

‖ge − fe‖Hs(R) . ‖g − f‖Hs(R+).

Proof. Fix ψ ∈ Hs(R) supported in (−∞, 0]. We claim that for any ε > 0, there is a

function φ ∈ Hk(R) supported in (−∞, 0) such that ‖φ − ψ‖Hs(R) < ε. Indeed, observing

that τ−δψ(·) = ψ(· + δ) → ψ(·) in Hs(R) as δ → 0+, the claim follows by taking a

smooth approximate identity kn supported in (− δ
2
, δ

2
) for sufficiently small δ, and letting

φ = (τ−δψ) ∗ kn for sufficiently large n.

To obtain the lemma from this claim, let f̃ be an Hk extension of f to R and h an Hs

extension of g− f to R with ‖h‖Hs(R) . ‖g− f‖Hs(R+). Apply the claim to ψ = ge− f̃ − h
with ε = ‖g − f‖Hs(R+). Letting fe = f̃ + φ yields the claim. �

4.2. The proof of Theorem 1.2 for general α ∈ R. In this section we obtain the local

wellposedness of derivative NLS on R+:

(36)

{
iqt + qxx − i(|q|2q)x = 0, x ∈ R+, t ∈ R+,

q(x, 0) = G(x), q(0, t) = H(t).

The same argument applies to any other gauge Gα.

Let

u(x, t) = ei
∫∞
x |q(y,t)|

2dyq(x, t) = ei
∫∞
x |u(y,t)|2dyq(x, t), t, x ∈ R+.

We note that if u solves (4) with g(x) = ei
∫∞
x |G(y)|2dyG(x), and h(t) = ei

∫∞
0 |u(y,t)|2dyH(t),

then q solves (36). Note that this constitutes a different boundary value problem than

(4), since the boundary value depends on the value of the function in the interior of the

domain. Hence, the essential part of this process is finding h of the form eiγ(t)H(t), so that

the solution u of (4), with data g, h, satisfies∫ ∞
0

|u(y, t)|2dy = γ(t), t ∈ [0, T ].

The following lemmas establish this and allow us to obtain the local wellposedness of (36).

Lemma 4.2. Given G ∈ Hs(R+) and H ∈ H 2s+1
4 (R+), there is a unique real valued func-

tion γ ∈ H 2s+1
4 ([0, T ]) such that the solution u of (4) with data g(x) = ei

∫∞
x |G(y)|2dyG(x),

and h(t) = eiγ(t)H(t), satisfies

γ(t) =

∫ ∞
0

|u(y, t)|2dy, t ∈ [0, T ].
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Here T = T (‖G‖Hs , ‖H‖
H

2s+1
4

). Moreover, γ depends on G and H continuously. Further-

more, γ ∈ H1([0, T ]) for s ∈ (1
2
, 3

2
) and γ ∈ H 3

2 ([0, T ]) for s ∈ (3
2
, 5

2
).

Proof. Fix G and H as in the statement. Given a real valued function γ ∈ H 2s+1
4 ([0, T ]),

denote the solution u by uγ. We will prove the theorem by applying a fixed point argument

to the map

f(γ) = ‖uγ‖2
L2(R+)

for sufficiently small T . Let

Kr,T = {φ ∈ Hr([0, T ]) : ‖φ‖Hr([0,T ]) ≤ 1, φ(0) = ‖g‖2
L2(R+)}.

The following claim finishes the proof:

Claim. For s ∈ (1
2
, 3

2
), there exists T > 0 as in the statement of the theorem so that f

maps K 2s+1
4

,T to K1,T , and it is a contraction on K1,T . Similarly, for s ∈ (3
2
, 5

2
), f maps

K 2s+1
4

,T to K 3
2
,T , and it is a contraction on K 3

2
,T .

Proof of the Claim. Fix s ∈ (1
2
, 3

2
). By the local theory,

‖f(γ)‖L2([0,T ]) . T
1
2C‖G‖Hs ,‖H‖

H
2s+1

4
,‖γ‖

H
2s+1

4

.

Therefore it suffices to consider ‖∂tf(γ)‖L2([0,T ]). We calculate

(37) ∂tf(γ) = 2=
(
h(t)uγx(0, t)

)
− 1

2
|h(t)|4.

Recall that uγ solves the equation

uγ(t) = W t
0(g, h) + η(t)

∫ t

0

WR(t− t′)η(t′/T )N(uγ) dt′ − η(t)W t
0(0, qγ),

where

qγ(t) = η(t)D0

(∫ t

0

WR(t− t′)η(t′/T )N(uγ) dt′
)
.

Therefore

uγx(0, t) = D0∂x

(
W t

0(g, h) + η(t)

∫ t

0

WR(t− t′)η(t′/T )N(uγ) dt′ − η(t)W t
0(0, qγ)

)
.

We bound the Hε norm (for 0 < ε < 2s−1
4

) as follows

‖uγx(0, t)‖Hε . ‖g‖
H

1
2+2ε + ‖h‖

H
1
2+ε + ‖η(t/T )N(uγ)‖

X
1
2+2ε,− 1

2+ + ‖qγ‖
H

1
2+ε

. ‖g‖Hs + ‖h‖
H

2s+1
4

+ ‖η(t/T )N(uγ)‖
Xs,− 1

2+ . C‖g‖Hs ,‖h‖
H

2s+1
4

.

In the first inequality we used Lemma 3.1, Lemma 3.2, and Proposition 3.4. The last

inequality follows from the local theory.
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Using this bound in (37), we obtain

‖∂tf(γ)‖L2([0,T ]) . ‖h‖L∞−([0,T ])‖uγx(0, t)‖L2+ + ‖h4‖L2([0,T ])

. T 0+‖H‖L∞‖uγx(0, t)‖Hε + T
1
2‖H‖4

L∞ . T 0+C‖G‖Hs ,‖H‖
H

2s+1
4

,‖γ‖
H

2s+1
4

.

In the last step we used

‖g‖Hs . ‖G‖Hs , and

‖h‖
H

2s+1
4 ([0,T ])

. ‖eiγ‖
H

2s+1
4 ([0,T ])

‖H‖
H

2s+1
4 ([0,T ])

. exp
(
‖γ‖

H
2s+1

4 ([0,T ])

)
‖H‖

H
2s+1

4 ([0,T ])
.

This and similar bounds for the differences complete the proof for s ∈ (1
2
, 3

2
) by choosing

T small.

For s ∈ (3
2
, 5

2
), it suffices to consider ‖∂tf(γ)‖

H
1
2 ([0,T ])

. Interpolating with the L2 bound

above, it suffices to prove that

‖∂tf(γ)‖
H

1
2+ε([0,T ])

≤ C‖G‖Hs ,‖H‖
H

2s+1
4

,‖γ‖
H

2s+1
4

,

which follows from similar arguments using Lemma 3.1, Lemma 3.2, Proposition 3.4, and

the local theory. �

Remark 4.3. Note that for s ∈ (1
2
, 3

2
), a slight variation of the proof above utilizing the

fractional Leibniz rule and Sobolev embedding theorem yields that γ ∈ H1+ε for some ε =

ε(s) > 0.

Lemma 4.4. Fix s ∈ (1
2
, 5

2
), s 6= 3

2
. Let u be an Hs solution of (4). Then for any α ∈ R

eiα
∫∞
x |u(y,t)|2dyu(x, t) ∈ C0

tH
s
x([0, T ]× R) ∩ C0

xH
2s+1

4
t (R× [0, T ]).

Proof. Since u ∈ C0
tH

s
x([0, T ] × R) ∩ C0

xH
2s+1

4
t (R × [0, T ]), the first inclusion follows from

the Lipschitz continuity of the gauge transformation, see Lemma 7.2 in the Appendix, also

see [10]. For the second inclusion first note that∫ ∞
x

|u(y, t)|2dy ∈ H
2s+1

4
t

for x = 0 by Lemma 4.2; the proof is identical for fixed x 6= 0. By Taylor expansion and

the algebra property of Sobolev spaces, this implies that

eiα
∫∞
x |u(y,t)|2dyu(x, t) ∈ H

2s+1
4

t

for all x. For the continuity in x we consider the differences. By the algebra property of

Sobolev spaces and considering the Taylor expansion of exponentials, it suffices to note

that
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x

|u(y, t)|2dy −
∫ ∞
x′
|u(y, t)|2dy

∥∥∥
H

2s+1
4

t

.
∫ x′

x

∥∥|u(y, t)|2
∥∥
H

2s+1
4

t

dy

.
∫ x′

x

∥∥u(y, t)
∥∥2

H
2s+1

4
t

dy → 0,

as x′ → x. �

It is easy to see that using Lemma 4.2 and Lemma 4.4 one can construct solutions of

(36) in C0
tH

s
x([0, T ] × R) ∩ C0

xH
2s+1

4
t (R × [0, T ]) which depend continuously on the data.

Note that the local existence time depends on T in Lemma 4.2, which depends only on

‖G‖Hs , ‖H‖
H

2s+1
4

.

It remains to establish the uniqueness of the solutions, which follows from the previous

argument for s ≥ 2; see the discussions around equation (35) in Section 4.1. For s < 2, the

smooth approximation argument in Section 4.1 requires that for smooth Gn, Hn converging

to G, H in Hs, H
2s+1

4 respectively, we find γn as in Lemma 4.2 on an interval [0, Tn], with

Tn = Tn(‖G‖Hs , ‖H‖
H

2s+1
4

). This follows from Lemma 4.2 and the remark following its

proof, since for s ∈ (3
2
, 5

2
), say, we can construct γn ∈ H

3
2 on [0, Tn], with Tn depending

only on ‖Gn‖Hs , ‖Hn‖
H

2s+1
4
.

5. Global wellposedness in the energy space

In this section we prove Theorem 1.5. We first consider the global wellposedness of (3)

for α = −1
2
:

(38)

{
iut + uxx − i|u|2ux = 0, x ∈ R+, t ∈ R+,

u(x, 0) = g(x), u(0, t) = h(t).

Noting the identity

(39) 4=(|u|2uxut) = ∂t=(uux|u|2)− ∂x=(uut|u|2),

one can easily prove that the following energy functional is conserved for the problem on

R:

E− 1
2
(u) = ‖ux‖2

L2(R) +
1

2
=
∫
R
uux|u|2.

Substituting u = G− 1
2
q, we see that the energy for derivative NLS on R is

E(q) = ‖qx‖2
L2(R) +

3

2
=
∫
R
qqx|q|2 +

1

2
‖q‖6

L6(R).

In what follows, with a slight abuse of notation, we use E− 1
2

and E also to denote the

functionals where R is replaced by R+.
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To prove the global wellposedness of (38) in the energy space we need to find an a priori

bound for the H1 norm of the solution. To this end we use the following identities which

can be obtained using (39) and justified by approximation by H2 solutions of (38):

∂t|u|2 = −2=(uxu)x +
1

2
(|u|4)x,(40)

∂t
(
|ux|2 +

1

2
=(uxu|u|2)

)
= 2<(uxut)x −

1

2
=(uut|u|2)x,(41)

∂x(|ux|2) = −i
[
(uux)t − (uut)x

]
.(42)

Similar identities were used in [5, 18] for the NLS equation on the half line. Integrating

these identities on [0, t]× [0,∞), we obtain

‖u(t)‖2
2 − ‖g‖2

2 = 2=
∫ t

0

ux(0, s)h(s)ds− 1

2

∫ t

0

|h(s)|4ds,

E− 1
2
(u(t))− E− 1

2
(g) = −2<

∫ t

0

ux(0, s)h′(s)ds+
1

2
=
∫ t

0

h(s)h′(s)|h(s)|2ds,

It :=

∫ t

0

|ux(0, s)|2ds = i

∫ ∞
0

uuxdx− i
∫ ∞

0

gg′dx+ i

∫ t

0

h(s)h′(s)ds.

Also note that by the Gagliardo-Nirenberg inequality one can obtain

E− 1
2
(u) ≥ ‖ux‖2

L2(1− C‖u‖2
L2),

for some absolute constant C. Therefore, in the case ‖u‖2
L2 ≤ 1

2C
, we have

‖u‖2
L2 ≤ c(1 +

√
It),

‖ux‖2
L2 ≤ c(1 +

√
It).

It ≤ ‖u‖L2‖ux‖L2 + c,

where c = c(C) ≤ 1 depends on ‖g‖H1 + ‖h‖H1 . Combining these inequalities, we obtain

It ≤ 2c+ c
√
It.

We conclude that It ≤ 4c, and hence ‖u‖2
2 ≤ 2c, ‖ux‖2

2 ≤ 2c. This implies that there exists

an absolute constant c > 0 so that (38) is globally wellposed in H1(R+) provided that

‖g‖H1(R+) + ‖h‖H1(R+) ≤ c. This yields Theorem 1.5 for α = −1
2
.

To obtain the global wellposedness of derivative NLS3, plug u = G− 1
2
q in the identities

(40)–(42), and integrate on [0, t]× [0,∞) to obtain

‖q(t)‖2
2 − ‖G‖2

2 = 2=
∫ t

0

(G− 1
2
q)x(0, s)(G− 1

2
q)(0, s)ds− 1

2

∫ t

0

|H(s)|4ds,

3For other values of α the proof is similar.
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E(q(t))− E(G) = −2<
∫ t

0

(G− 1
2
q)x(0, s)(G− 1

2
q)s(0, s)ds

+
1

2
=
∫ t

0

(G− 1
2
q)(0, s)(G− 1

2
q)s(0, s)|H(s)|2ds,

It :=

∫ t

0

|(G− 1
2
q)x(0, s)|2ds = i

∫ ∞
0

(G− 1
2
q)(G− 1

2
q)
x
dx

− i
∫ ∞

0

G− 1
2
G(G− 1

2
G)′dx+ i

∫ t

0

(G− 1
2
q)(0, s)(G− 1

2
q)s(0, s)ds.

In addition, the definition of the gauge transformation and the x-integral of (40) give

|(G− 1
2
q)s(0, s)| . |H ′(s)|+ |H(s)|5 + |H(s)|2|(G− 1

2
q)x(0, s)|.

Furthermore, by the boundedness of the gauge transformation in H1 and in L2, and the

Gagliardo-Nirenberg inequality we have the lower bound for the energy as above. We thus

obtain for small data

‖q‖2
L2 ≤ c(1 +

√
It),

‖qx‖2
L2 ≤ c(1 +

√
It + It),

It . c(1 +
√
It + I

3
4
t ).

This concludes the proof of Theorem 1.5 for α = 0.

6. Derivative NLS on the real line

In this section we prove Theorem 1.6 providing an improved smoothing estimate on

the real line by applying a normal form transform to the equation (5). Following the

differentiation by parts method of [2] (also see [14] for an application on R), we obtain

Proposition 6.1. The solution u of equation (5) satisfies

(43) i∂t
(
e−it∆u− e−it∆B(u)

)
= −e−it∆

(
R(u) +

1

2
|u|4u+NR1(u) +NR2(u)

)
,

where

B̂(u)(ξ) =

∫
ξ−ξ1+ξ2−ξ3=0
|ξ−ξ1|,|ξ−ξ3|≥1

ξ2uξ1uξ2uξ3
ξ2 − ξ2

1 + ξ2
2 − ξ2

3

,

R̂(u)(ξ) =

∫
ξ−ξ1+ξ2−ξ3=0

|ξ−ξ1|<1 or |ξ−ξ3|<1

ξ2uξ1uξ2uξ3 ,
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N̂R1(u)(ξ) = 2

∫
ξ−ξ1+ξ2−ξ3=0
|ξ−ξ1|,|ξ−ξ3|≥1

ξ2uξ1uξ2wξ3
ξ2 − ξ2

1 + ξ2
2 − ξ2

3

,

N̂R2(u)(ξ) = −
∫

ξ−ξ1+ξ2−ξ3=0
|ξ−ξ1|,|ξ−ξ3|≥1

ξ2uξ1wξ2uξ3
ξ2 − ξ2

1 + ξ2
2 − ξ2

3

.

Here uξ(t) := u(ξ̂, t) and wξ(t) := w(ξ̂, t) with

w = ieit∆[∂t(e
−it∆u)] = −iu2ux −

1

2
|u|4u.

Proof. The following calculations can be justified by smooth approximation. First observe

that

i∂t(e
−it∆u) = e−it∆

(
iut + uxx

)
= −ie−it∆(u2ux)−

1

2
e−it∆(|u|4u).

On the Fourier side, we have

− iF(e−it∆(u2ux))(ξ) = −
∫

ξ−ξ1+ξ2−ξ3=0

eitξ
2

ξ2uξ1uξ2uξ3

= −eitξ2R̂(u)(ξ)−
∫

ξ−ξ1+ξ2−ξ3=0
|ξ−ξ1|,|ξ−ξ3|≥1

eitξ
2

ξ2uξ1uξ2uξ3 .

We rewrite the integral above as

− i∂t
(
eitξ

2

B̂(u)(ξ)
)

+ i

∫
ξ−ξ1+ξ2−ξ3=0
|ξ−ξ1|,|ξ−ξ3|≥1

eit(ξ
2−ξ21+ξ22−ξ23)ξ2∂t

(
eitξ

2
1uξ1e

itξ22uξ2e
itξ23uξ3

)
ξ2 − ξ2

1 + ξ2
2 − ξ2

3

= −i∂t
(
eitξ

2

B̂(u)(ξ)
)

+ eitξ
2

N̂R1(u)(ξ) + eitξ
2

N̂R2(u)(ξ).

The equality follows from the definition of w and the symmetry in ξ1, ξ3 variables. �

The following proposition estimates the terms that appear in (43).

Proposition 6.2. For fixed s > 1
2
, and a < min(2s− 1, 1

2
), we have

‖B(u)‖Hs+a . ‖u‖3
Hs ,

‖R(u)‖
Xs+a,− 1

2+ . ‖u‖3
Hs ,∥∥|u|4u∥∥

Xs+a,− 1
2+ . ‖u‖5

Xs, 12+
,∥∥NR1(u) +NR2(u)

∥∥
Xs+a,− 1

2+ . ‖u‖2

Xs, 12+
‖w‖

Xs,− 3
8
,

where w = −iu2ux − 1
2
|u|4u.
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Proof. First note that the bound for |u|4u follows from Proposition 3.5.

By writing f(ξ) = 〈ξ〉s|uξ|, the following inequality implies the bound for B:∥∥∥ ∫
ξ−ξ1+ξ2−ξ3=0

〈ξ〉s+a〈ξ2〉1−sf(ξ1)f(ξ2)f(ξ3)

〈ξ − ξ1〉〈ξ − ξ3〉〈ξ1〉s〈ξ3〉s
∥∥∥
L2
ξ

. ‖f‖3
L2 .

By the Cauchy-Schwarz inequality and symmetry, this boils down to showing

sup
ξ

∫
ξ−ξ1+ξ2−ξ3=0
|ξ3|≤|ξ1|

〈ξ〉2s+2a〈ξ2〉2−2s

〈ξ − ξ1〉2〈ξ − ξ3〉2〈ξ1〉2s〈ξ3〉2s
<∞.

This supremum is finite by considering the cases |ξ1| & |ξ2| � |ξ|, |ξ2| ≈ |ξ|, |ξ1| & |ξ| �
|ξ2|.

By duality, renaming the functions, and symmetry, the bound for R follows from∫
ξ0−ξ1+ξ2−ξ3=0,|ξ0−ξ1|<1

τ0−τ1+τ2−τ3=0

〈ξ0〉s+a〈ξ2〉1−s
∏3

j=0 f(ξj, τj)

〈ξ1〉s〈ξ3〉s〈τ0 + ξ2
0〉

1
2
−∏3

j=1〈τj + ξ2
j 〉

1
2

+
. ‖f‖4

L2
ξ,τ
.

Assume that 〈τ0 + ξ2
0〉 = max

j=0,...,3
〈τj + ξ2

j 〉, the other cases are similar. This implies that

〈τ0 + ξ2
0〉 & 〈(ξ0 − ξ1)(ξ0 − ξ3)〉 = 〈(ξ0 − ξ1)(ξ1 − ξ2)〉.

Using 〈ξ0〉 ≈ 〈ξ1〉, 〈ξ3〉 ≈ 〈ξ2〉, and letting ρ = ξ0 − ξ1 in the ξ0 integral, we bound the left

hand side by∫
|ρ|<1

〈ξ1〉a〈ξ2〉1−2sf(ρ+ ξ1, τ1 − τ2 + τ3)f(ξ1, τ1)f(ξ2, τ2)f(ρ+ ξ2, τ3)

〈ρ(ξ1 − ξ2)〉 12−〈τ1 + ξ2
1〉

1
2

+〈τ2 + ξ2
2〉

1
2

+〈τ3 + (ρ+ ξ2)2〉 12+
dρdξ1dξ2dτ1dτ2dτ3.

Noting that 〈ξ1〉
a〈ξ2〉1−2s

〈ρ(ξ1−ξ2)〉
1
2−
. ρ−

1
2

+ for a < min(2s − 1, 1
2
) and |ρ| < 1, and integrating in ρ,

we obtain the bound

sup
ρ

∫
f(ρ+ ξ1, τ1 − τ2 + τ3)f(ξ1, τ1)f(ξ2, τ2)f(ρ+ ξ2, τ3)

〈τ2 + ξ2
2〉

1
2

+〈τ3 + (ρ+ ξ2)2〉 12+
dξ1dξ2dτ1dτ2dτ3.

By the Cauchy-Schwarz inequality and Fubini’s theorem, the integral above is bounded by

the square root of∫
f 2(ρ+ ξ1, τ1 − τ2 + τ3)f 2(ξ2, τ2)

〈τ3 + (ρ+ ξ2)2〉1+
dξ1dτ1dτ3dξ2dτ2×∫
f 2(ξ1, τ1)f 2(ρ+ ξ2, τ3)

〈τ2 + ξ2
2〉1+

dξ1dτ1dτ2dξ2dτ3 . ‖f‖8
L2
ξ,τ
.
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We now consider NR1. By duality and renaming the functions, it suffices to prove that∫
ξ0−ξ1+ξ2−ξ3=0
τ0−τ1+τ2−τ3=0

〈ξ0〉s+a〈ξ2〉1−s〈τ3 + ξ2
3〉

3
8

∏3
j=0 f(ξj, τj)

〈ξ0 − ξ1〉〈ξ0 − ξ3〉〈ξ1〉s〈ξ3〉s〈τ0 + ξ2
0〉

1
2
−〈τ1 + ξ2

1〉
1
2

+〈τ2 + ξ2
2〉

1
2

+
. ‖f‖4

L2
ξ,τ
.

We will consider the following cases:

〈τ3 + ξ2
3〉 . 〈τ0 + ξ2

0〉 and max
j=0,...,3

〈τj + ξ2
j 〉 . 〈ξ0 − ξ1〉〈ξ0 − ξ3〉.

The remaining cases are similar. In the former case, by the Cauchy-Schwarz inequality we

bound the left hand side by the square root of

∫
ξ0−ξ1+ξ2−ξ3=0
τ0−τ1+τ2−τ3=0

M2f 2(ξ0, τ0)

〈τ1 + ξ2
1〉1+〈τ2 + ξ2

2〉1+
×

∫
ξ0−ξ1+ξ2−ξ3=0
τ0−τ1+τ2−τ3=0

3∏
j=1

f 2(ξj, τj)

. ‖f‖8
L2
ξ,τ

sup
ξ0

∫
ξ0−ξ1+ξ2−ξ3=0

M2,

where M = 〈ξ0〉s+a〈ξ2〉1−s
〈ξ0−ξ1〉〈ξ0−ξ3〉〈ξ1〉s〈ξ3〉s . The supremum is finite as it was considered for the B

term above.

In the latter case when 〈ξ0 − ξ1〉〈ξ0 − ξ3〉 & max
j=0,...,3

〈τj + ξ2
j 〉, we have

〈τ3 + ξ2
3〉

3
8

〈ξ0 − ξ1〉〈ξ0 − ξ3〉〈τ0 + ξ2
0〉

1
2
−〈τ1 + ξ2

1〉
1
2

+〈τ2 + ξ2
2〉

1
2

+

.
1

〈ξ0 − ξ1〉
5
8
−〈ξ0 − ξ3〉

5
8
−〈τ0 + ξ2

0〉
1
2

+〈τ1 + ξ2
1〉

1
2

+〈τ2 + ξ2
2〉

1
2

+
.

Using and (20), (21), and defining ξmid and ξmax as in the proof of Proposition 3.7, it

suffices to prove that

sup
ξ0−ξ1+ξ2−ξ3=0

〈ξ0〉s+a〈ξ2〉1−s

〈ξ0 − ξ1〉
5
8
−〈ξ0 − ξ3〉

5
8
−〈ξ1〉s〈ξ3〉s

〈ξmid〉
1
4

〈ξmax〉
1
4

<∞.

This bound follows from the bound for (30) above in all cases except |ξ1| ≤ |ξ3| . |ξ2| ≈ |ξ0|.
In this case, we bound the supremum by

(44) sup
ξ0−ξ1+ξ2−ξ3=0
|ξ2|≈|ξ0|

〈ξ0〉
3
4

+a

〈ξ0 − ξ1〉
5
8
−〈ξ0 − ξ3〉

5
8
−〈ξ1〉s〈ξ3〉s−

1
4

.
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For s ≥ 7
8
, we bound (44) by 〈ξ0〉a−

1
2

+, which is bounded provided that a < 1
2
. For

5
8
≤ s < 7

8
, we have the bound

(44) . sup
ξ0−ξ1+ξ2−ξ3=0
|ξ2|≈|ξ0|

〈ξ0〉
3
4

+a

〈ξ0〉
5
8
−〈ξ0〉s−

1
4 〈ξ1 − ξ2〉

7
8
−s−〈ξ1〉s−

5
8

. sup
ξ0

〈ξ0〉
3
8

+a−s−min( 7
8
−s,s− 5

8
)+,

which is finite provided that a < min(2s− 1, 1
2
). For 1

2
< s < 5

8
, we have the bound

(44) . sup
ξ0

〈ξ0〉a−2s+1+ <∞

provided that a < 2s− 1. The proof for NR2 is identical to the proof for NR1. �

The following lemma provides a bound for ‖w‖
Xs,− 3

8
that arise in the estimate for the

terms NR1(u) and NR2(u) in Proposition 6.2.

Lemma 6.3. For s > 1
2

we have

‖w‖
Xs,− 3

8
. ‖u‖3

Xs, 12+
+ ‖u‖5

Xs, 12+
.

Proof. We will only provide the bound for the cubic part since the quintic part follows

easily from Sobolev embedding. As in the proof of Proposition 3.7, it suffices to prove that

sup
ξ0−ξ1+ξ2−ξ3=0

〈ξ0〉s〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈(ξ0 − ξ1)(ξ0 − ξ3)〉 38
〈ξmid〉

1
4

〈ξmax〉
1
4

<∞.

The case |ξ0 − ξ1| . 1 or |ξ0 − ξ3| . 1 is immediate. Thus it is enough to prove that

(45)
〈ξ0〉s〈ξ1〉−s〈ξ2〉1−s〈ξ3〉−s

〈ξ0 − ξ1〉
3
8 〈ξ0 − ξ3〉

3
8

〈ξmid〉
1
4

〈ξmax〉
1
4

is bounded when ξ0 − ξ1 + ξ2 − ξ3 = 0 and |ξ1| ≤ |ξ3|, by symmetry.

In the case |ξ1| ≤ |ξ3| . |ξ2| ≈ |ξ0|, for s ≥ 5
8
, we have

(45) .
〈ξ0〉

3
4

〈ξ1〉s〈ξ0 − ξ1〉
3
8 〈ξ0 − ξ3〉

3
8 〈ξ3〉s−

1
4

. 1,

whereas, for 1
2
< s < 5

8
, we find

(45) .
〈ξ0〉

3
4

〈ξ1〉s−
3
8 〈ξ0〉

3
8 〈ξ1 − ξ2〉

5
8
−s〈ξ0〉s−

1
4

.
〈ξ0〉

5
8
−s

〈ξ2〉
5
8
−s
. 1.

In the case |ξ1| ≤ |ξ3| ≈ |ξ0| and |ξ3| � |ξ2|, we have

(45) .
〈ξ1〉−s〈ξ2〉1−s

〈ξ3〉
3
8 〈ξ1 − ξ2〉

3
8

.
〈ξ2〉1−s

〈ξ3〉
3
8 〈ξ2〉

3
8

. 1.



32 ERDOĞAN, GÜREL, TZIRAKIS

In the case |ξ1| ≤ |ξ3| ≈ |ξ2| and |ξ3| � |ξ0|, we have

(45) .
〈ξ0〉s〈ξ1〉−s〈ξ3〉

3
8
−2s(〈ξ0〉

1
4 + 〈ξ1〉

1
4 )

〈ξ0 − ξ1〉
3
8

. 〈ξ0〉s−
3
8 〈ξ3〉

3
8
−2s(〈ξ0〉

1
4 + 〈ξ1〉

1
4 ) . 1.

In the case |ξ0|, |ξ2| � |ξ1| ≈ |ξ3|, we have

(45) . 〈ξ0〉s〈ξ2〉1−s〈ξ3〉−2s−1(〈ξ0〉
1
4 + 〈ξ2〉

1
4 ) . 1.

This completes the proof of the lemma. �

Proof of Theorem 1.6. Integrating (43) on [0, t] we obtain

u(t)− eit∆g = B(u(t))− eit∆B(g) + i

∫ t

0

ei(t−s)∆
(
R(u) +

1

2
|u|4u+NR1(u) +NR2(u)

)
ds.

The claim follows from this using the bounds in Proposition 6.2, the inequality (17), and

the embedding Xs,b ⊂ C0
tH

s
x for b > 1

2
. �

7. Appendix

In this Appendix we discuss two lemmas. For a proof of the first one, see [16]. The

second one is from [10] but we provide a proof for completeness.

Lemma 7.1. If β ≥ γ ≥ 0 and β + γ > 1, then∫
1

〈x− a1〉β〈x− a2〉γ
dx . 〈a1 − a2〉−γφβ(a1 − a2),

where

φβ(a) ∼


1 β > 1

log(1 + 〈a〉) β = 1

〈a〉1−β β < 1.

Lemma 7.2. For s > 1
2
, the gauge Gαf(x) = f(x) exp

(
− iα

∫∞
x
|f(y)|2dy

)
is Lipschitz

continuous on bounded subsets of Hs.

Proof. Let ‖g‖Lip := ‖g‖L∞ + ‖g′‖L∞ . Sobolev embedding gives∥∥∥ exp
(
− iα

∫ ∞
x

|f(y)|2dy
)∥∥∥

Lip
. 1 + ‖f‖2

Hs , s >
1

2
.

In addition, by interpolation between L2 and H1, we have

‖fg‖Hs . ‖f‖Hs‖g‖Lip, s ∈ [0, 1],

which completes the proof for s ∈ (1
2
, 1].
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For s ∈ (1, 2], let g = exp
(
− iα

∫∞
x
|f(y)|2dy

)
, and note that

‖fg‖Hs . ‖fg‖L2 + ‖f ′g‖Hs−1 + ‖f 3g‖Hs−1

. ‖g‖Lip
(
‖f‖L2 + ‖f ′‖Hs−1 + ‖f 3‖Hs−1

)
. 1 + ‖f‖5

Hs .

For s > 2 the same argument works inductively. �
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[15] M. B. Erdoğan and N. Tzirakis, Global smoothing for the periodic KdV evolution, Int. Math. Res.

Not. (2013), no. 20, 4589–4614.
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