
DISPERSIVE ESTIMATES FOR THE SCHRÖDINGER EQUATION FOR
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Abstract. We investigate L1 → L∞ dispersive estimates for the Schrödinger equation
iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates
under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions
five and seven. We also describe a method to extend this result to arbitrary odd dimensions.

1. Introduction

The free Schrödinger evolution

e−it∆f(x) = Cn
1

tn/2

∫
Rn

e−i|x−y|2/4tf(y)dy

satisfies the L1 → L∞ dispersive estimates

‖e−it∆f‖∞ . |t|−n/2‖f‖1.

Consider the perturbed Schrödinger operator H = −∆ + V, where V is a real-valued poten-
tial. In general the evolution eitH cannot satisfy the dispersive estimates above due to the
possibility of bound states. In recent years there has been interest in the following.
Question: Under what conditions on V , does eitHPac satisfy the L1 → L∞ dispersive
estimates,

‖eitHPacf‖∞ . |t|−n/2‖f‖1, f ∈ S(Rn),(1)

where Pac is the projection onto the absolutely continuous spectrum of H?

The first authors to consider (1) were Journé, Soffer, and Sogge. In [10], they proved
(1) in dimensions n ≥ 3 under the assumption that |V (x)| . 〈x〉−(n+4)−, V̂ ∈ L1 and a
small amount of additional regularity on V . In addition they assumed that zero is neither
an eigenvalue nor a resonance of H. They also conjectured that 〈x〉−2− decay rate for V
and the regularity of the zero energy should be sufficient for (1). Since than (1) has been
considered by many authors. The best results in dimensions 1, 2 and 3 are in [7], [15] and
[6]. In particular, in [6], Goldberg proved the conjecture in three dimensions. For a thorough
discussion of the progress in dispersive estimates for the Schrödinger operators, see the survey
article [14]. For some applications to nonlinear PDE’s see [16].

In dimensions n > 3 it was shown in [8] that there exist compactly supported potentials
V ∈ C

n−3
2
−(Rn) for which (1) fails. In the positive direction, for dimensions n > 3, (1) was

established in [17] and [5] under an Lp condition on the weighted Fourier transform of the
potential, which corresponds to more than n−3

2 + n−3
n−2 derivatives in L2. Work on dimensions
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four and five using techniques of semi-classical analysis has been done in [3]. It was shown
that n−3

2 + ε continuous derivatives and some decay assumptions on V implies (1). It was
also conjectured in [3] that V ∈ C

n−3
2

+(Rn) and |DkV | . 〈x〉−2−k− for 0 ≤ k ≤ (n − 3)/2
should imply (1).

In this paper we prove (1) under the optimal smoothness requirement in dimensions five and
seven. We also describe a method to extend this result to higher odd dimensions. Although
the five dimensional case is somehow straight-forward, the problem gets very complicated in
dimensions seven and higher. The difficulty is similar to the diffucilty in the case of magnetic
Schrödinger operators; the high energy behavior of the operator is hard to control due to the
singularities of the resolvent. There are still no known L1 → L∞ dispersive estimates for
the magnetic Schrödinger operators, and we hope that our method sheds some light on this
problem as well. For Strichartz and Kato smoothing estimates for the magnetic Schrödinger
operators, see [4] and [11].

Theorem 1.1. Assume that zero is not an eigenvalue1 of H = −∆ + V , V ∈ C(n−3)/2(Rn)2

for n = 5, 7 with |V (x)| . 〈x〉−β for some β > 3n+5
2 and for 1 ≤ j ≤ n−3

2 , |∇jV (x)| . 〈x〉−α

for some α > 3 for n = 5 and α > 8 for n = 7. Then

‖eitHPac‖1→∞ . |t|−
n
2 .

As in [13, 7, 6], the starting point of our proof is the spectral representation (with f, g ∈
S(Rn))

〈eitHPacf, g〉 =
∫ ∞

0
eitλ〈E′

ac(λ)f, g〉 dλ =
1

2πi

∫ ∞

0
eitλ〈[R+

V (λ)−R−V (λ)]f, g〉 dλ,

where E′
ac(λ) is the density of the absolutely continuous part of the spectral measure as-

sociated to H, and R±V (λ) = (H − λ ± i0)−1 is the resolvent of the perturbed Schrödinger
equation.

In light of these formulae, and a change of variable, (1) follows from

sup
L≥1

∣∣∣∣∫ ∞

0
eitλ2

λχL(λ)〈[R+
V (λ2)−R−V (λ2)]f, g〉 dλ

∣∣∣∣ . |t|−
n
2 ‖f‖1‖g‖1,(2)

where χ ∈ C∞
0 (R) with χ = 1 for |λ| ≤ 1 and χ = 0 for |λ| > 2, and χL(λ) = χ( λ

L). As is well
known, RV (z) can be expressed in terms of the free resolvent R0(z) via the resolvent identity

RV (z) = R0(z)−R0(z)V RV (z).

Upon iterating this identity 2m + 1 times for some positive integer m and using R0V RV =
RV V R0, as in [7] for example, one obtains the symmetric finite Born series expansion

RV (z) =
2m+1∑
κ=0

(−1)κR0(z)[V R0(z)]κ + [R0(z)V ]m+1RV (z)[V R0(z)]m+1.(3)

In [8] (Theorem 4.1), Goldberg and Visan proved that under the assumptions of our The-
orem 1.1 (in fact only the decay assumption for V and regularity of zero are needed), if m

1There cannot be a resonance at zero energy since (−∆)−1〈x〉−2− is bounded in L2(Rn) for n ≥ 5.
2In fact, we don’t need continuity of ∇

n−3
2 V . It is easy to check from the proof that V ∈ C

n−5
2 and the

decay assumptions on |∇jV (x)| for 0 ≤ j ≤ n−3
2

are sufficient for the result.
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is sufficiently large, then (2) is satisfied for the contribution of the remainder term in (3).
Therefore, Theorem 1.1 follows from the following

Theorem 1.2. If V ∈ C(n−3)/2(Rn) for n = 5, 7 with |∇jV (x)| . 〈z〉−β, for some β > 3
when n = 5 and β > 8 when n = 7, 0 ≤ j ≤ n−3

2 then for each κ ∈ N, (2) is satisfied for the
contribution of the κth term of the Born series in (3).

Although we didn’t try to obtain sharp decay conditions on the potential and its derivatives
to keep the paper shorter, it should be possible to obtain Theorem 1.2 under the condition
|DkV | . 〈x〉−2−k− for 0 ≤ k ≤ (n− 3)/2 by improving our integral estimates. However, this
would add many more subcases to the proof.

2. Contribution of the κth term of the Born Series

In this section we describe the basic idea behind the proof of Theorem 1.2. Most of the
details are in the later sections. We start with the properties of the free resolvent. Recall
that in odd dimensions n ≥ 3, R0(z) is an integral operator with kernel

R0(z)(x, y) =
i

4

(
z

1
2

2π|x− y|

)n−2
2

H
(1)
n−2

2

(z
1
2 |x− y|).(4)

Here H
(1)
ν (·) is a Hankel function of the first kind of order ν. We use the following explicit

representation for the kernel of the limiting resolvent operator R±0 (λ2) (see, e.g., [9])

R±0 (λ2)(x, y) = Gn(±λ, |x− y|),
where

Gn(λ, r) = Cn
eiλr

rn−2

n−3
2∑

`=0

(n− 3− `)!
`!(n−3

2 − `)!
(−2irλ)`.(5)

We also define

G1(λ, r) = C1
eiλr

λ
.

Lemma 2.1. For n ≥ 3 and odd, the following recurrence relation holds.(
1
λ

d

dλ

)
Gn(λ, r) =

1
2π
Gn−2(λ, r).

Proof. The proof follows from the recurrence relations of the Hankel functions, found in [1]
and the representation of the kernel given in (4). One can also prove this (with a fixed
constant instead of 2π) directly using (5). �

Since (with a slight abuse of notation) R−0 (λ2) = R+
0 ((−λ)2), the contribution of the κth

term of the Born series, given as a summand in (3), to the integral given in (2) can be written
as ∫ ∞

−∞
eitλ2

λχL(λ)〈R+
0 (λ2)[V R+

0 (λ2)]κf, g〉dλ

=
∫

Rn(κ+2)+1

eitλ2
λχL(λ)

κ∏
j=0

Gn(λ, rj)
κ∏

l=1

V (zl) f(z0)g(zκ+1) dz0 d~z dzκ+1 dλ,
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where rj = |zj − zj+1|, and d~z = dz1 . . . dzκ. Thus, we need to prove that

sup
L,z0,zκ+1

∣∣∣ ∫
Rnκ+1

eitλ2
λχL(λ)

κ∏
j=0

Gn(λ, rj)
κ∏

l=1

V (zl) d~z dλ
∣∣∣ . |t|−n/2.(6)

Note that by n−1
2 successive integration by parts in λ, one obtains∫

R
eitλ2

λf(λ)dλ =
( 1

2it

)n−1
2

∫
R

eitλ2
λ
[ 1
λ

d

dλ

]n−1
2

f(λ) dλ.(7)

In our case, f(λ) = χL(λ)
∏κ

j=0 Gn(λ, rj). By Leibnitz’s rule, and Lemma 2.1, we can write

λ
[

1
λ

d
dλ

]n−1
2 f(λ) as a linear combination of the terms of the form:

λ
[( 1

λ

d

dλ

)α−1

χL(λ)
] κ∏

j=0

Gn−2αj (λ, rj),(8)

where α−1, α0, ..., ακ ∈ N0 satisfy
∑κ

j=−1 αj = n−1
2 .

We first consider the case when no derivatives act on the cutoff function χL, i.e. α−1 = 0.
Using (8), the contribution of this case to the integral in (6) can be written as a sum of terms
of the form

t(1−n)/2

∫
Rnκ+1

eitλ2
λχL(λ)

κ∏
j=0

Gn−2αj (λ, rj)
κ∏

k=1

V (zk) d~z dλ.(9)

Note that by (5),

λ

κ∏
j=0

Gn−2αj (λ, rj) = eiλϕκPn,κ(λ, r0, . . . , rκ),(10)

where ϕκ =
∑κ

j=0 rj and Pn,κ is a polynomial in λ of degree κn−3
2 with coefficients depending

on rj ’s. For the λN term in Pn,κ, we apply N successive integration by parts in the variables
z1, . . . , zκ (i.e., up to n−3

2 integration by parts in each of the variables z1, . . . , zκ). This
requires that V ∈ C

n−3
2 ). To apply integration by parts, we use the identity

eiλϕκ =
(
∇zje

iλϕκ

)
·

i∇zjϕκ

λ|∇zjϕκ|2
.(11)

For notational convience we denote Ej := ∇zjϕκ = zj−1−zj

|zj−1−zj | −
zj−zj+1

|zj−zj+1| . Since we gain a
negative power of λ from each application, we can rewrite

(9) = t(1−n)/2

∫
Rnκ+1

eitλ2
χL(λ)eiλϕκZn,κ(z0, ~z, zκ+1)d~z dλ,(12)

with Zn,κ independent of λ. Next, we use Parseval’s formula, together with the identity

êitλ2(ξ) = Ct−
1
2 eiξ2/4t

to obtain

sup
L,z0,zκ+1

|(9)| . |t|−
n
2 sup

L
‖χ̂L‖1 sup

z0,zκ+1

‖Zn,κ(z0, · · · , zκ+1)‖1

. |t|−
n
2 sup

z0,zκ+1

‖Zn,κ(z0, · · · , zκ+1)‖1.
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Where the L1 norm is taken in each of the variables z1, . . . , zκ. This yields the statement of
Theorem 1.2 (for the contribution of the terms with α−1 = 0) if we can prove that

sup
z0,zκ+1

‖Zn,κ(z0, · · · , zκ+1)‖1 < ∞.(13)

Unfortunately, (13) holds only for n = 5 or κ = 1 (if V and ∇V decay sufficiently rapidly at
infinity). For the higher values of n and κ one needs to setup the integration by parts more
carefully. For this reason we first discuss the five dimensional case using a slight variation of
the method above which is more suitable for generalization to higher dimensions.

3. Five Dimensional Case

We first present the proof for α−1 = 0 and for the contribution of the leading, λκ, term of
P5,κ in (10). Let I = {i1, . . . iJ} ⊂ {1, 2, 3, . . . , κ} be an index set. We define the correspond-
ing combined variable as AI = (zi1 , zi2 , . . . , ziJ ) ∈ RnJ with zi ∈ Rn. For f : Rnκ → R and
F = (F1, F2, . . . , FJ) : Rnκ → RnJ , we define

∇AI
f := (∇i1f,∇i2f, . . . ,∇iJ f), ∇AI

· F :=
J∑

j=1

∇ij · Fj ,

where ∇i = ∇zi . We perform integration by parts3 in the variable AI by using the identity,

eiλϕκ =
(
∇AI

eiλϕκ

)
· iFI

λ|FI |2
,

where FI = (Ei1 , . . . , EiJ ), and Ei = zi−1−zi

|zi−1−zi| −
zi−zi+1

|zi−zi+1| , as follows∫
Rnκ

eiλϕκf(z1, z2, . . . , zκ)d~z = − i

λ

∫
Rnκ

eiλϕκ∇AI
·
(

f(~z)
FI

|FI |2

)
d~z

= − i

λ

J∑
j=1

∫
Rnκ

eiλϕκ∇ij ·
(

f(~z)
Eij

|FI |2

)
d~z

= − i

λ

J∑
j=1

∫
Rnκ

eiλϕκΦI,ijf(~z) d~z.(14)

Here, for any index set I and i ∈ I,

ΦI,if := ∇i ·
(

f
Ei

|FI |2

)
.

First we apply this with the index set I = {1, 2, . . . , κ}. Then, for each summand j in
(14), we apply the same operation with the index set I\{ij}. We continue in this manner
by removing the used index from the index set in each step. After κ steps, we obtain a tree
of height κ, and we write

∫
Rnκ eiλϕκf(z1, z2, . . . , zκ)d~z as a finite sum (with each summand

corresponding to a length κ branch in the tree) of integrals of the form(
− i

λ

)κ
∫

Rnκ

eiλϕκΦIκ,iκ . . .ΦI1,i1f(~z)d~z,

3We ignore the boundary terms in the integration by parts coming from the singularities. One can use
smooth cut-off functions as explained in Section 3.3.
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where I1 = {1, ..., κ}, ij ∈ Ij for each j, and Ij\ij = Ij+1 for each j = 1, 2, ..., κ − 1. Using
this with

f = λκ
κ∏

j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk),

the leading term of (10) multiplied by the potentials (for n = 5), we see that the contribution
of this term to Z5,κ in (12) is

ΦIκ,iκ . . .ΦI1,i1

( κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk)
)
.

Therefore, in light of the discussion following (12), the proof (for α−1 = 0 and for the leading
term in P5,κ) follows from the following

Proposition 3.1. Under the hypothesis of Theorem 1.2 in dimension five, for each κ ∈ N,
for each α0, . . . ακ ∈ N0,

∑
j αj = 2, and for each sequence {Ij , ij} as defined above, we have

sup
z0,zκ+1

∥∥∥ΦIκ,iκ . . .ΦI1,i1

( κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk)
)∥∥∥

L1(~z)
< ∞.

The only difference in higher dimensions is that one should be more careful about the
choice of the variables in AI . Instead of working with z1, z2, . . . zκ, we will apply integration
by parts in more suitable variables.

The first step in the proof of Proposition 3.1 is the following

Lemma 3.2. For any sequence {Ij , ij} as defined above, we have∣∣∣ΦIκ,iκ . . .ΦI1,i1

( κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk)
)∣∣∣(15)

.
κ∏

l=1

[ |∇V (zl)|
|El|

+
|V (zl)|
|El|2

( 1
|zl−1 − zl|

+
1

|zl − zl+1|
)] κ∏

j=0

1
|zj − zj+1|2−αj

.
κ∏

l=1

〈zl〉−3−

|El|2

(
1 +

1
|zl−1 − zl|

+
1

|zl − zl+1|

) κ∏
j=0

1
|zj − zj+1|2

κ∑
i=0

|zi − zi+1|2(16)

Proof. The first inequality follows from the following simple observations. We leave the proof
to the reader.

|∇j · Ei| .
( 1
|zj−1 − zj |

+
1

|zj − zj+1|

)
, for i = j − 1, j, j + 1

|∇j |FI |−1| . |FI |−2
( 1
|zj−1 − zj |

+
1

|zj − zj+1|

)
|∇j |FI |−1| = 0, if I does not contain j − 1, j, j + 1.

Moreover, these inequalities remain valid if one applies the same ΦI,i operator to both sides
of the inequality. When we apply ΦI,j in (15), depending on where ∇zj acts, one gets an

additional contribution of either |∇V (zj)|
|FI | (since |Ej | ≤ |FI |), or for some J ⊇ I,

|V (zj)|
|FI ||FJ |

( 1
|zj−1 − zj |

+
1

|zj − zj+1|

)
≤ |V (zj)|

|FI |2
( 1
|zj−1 − zj |

+
1

|zj − zj+1|

)
,(17)
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The derivatives may also act on |zj − zj+1| terms whose effect can also be bounded by the
R.H.S of (17). This proves (15) with El on the R.H.S replaced with FI for some I containing l.
The second inequality follows immediately by the decay assumptions on V and the inequalities
|FI | ≥ |El|, |El| ≤ 2, and

κ∏
j=0

|zj − zj+1|αj ≤
κ∑

i=0

|zi − zi+1|2.

�

Note that the R.H.S of (16) has two types of singularities: point singularities 1
|zj−zj+1| and

line singularities 1
|Ej | (recall that Ej = zj−1−zj

|zj−1−zj | −
zj−zj+1

|zj−zj+1| , which vanishes if zj is on the
line segment zj−1zj+1). Below, we state bounds for integrals containing such singularities in
arbitrary dimensions.

First we introduce some notation. For x, z, w, y ∈ Rn, x 6= z, w 6= y, let Exzwy denote the
line singularity x−z

|x−z| −
w−y
|w−y| . With this notation, we have Ej = Ezj−1zjzjzj+1 . Note that

(18) |Exzwy| ≈ ∠( ~xz, ~wy), |Exzzw| ≈ max(∠( ~xz, ~xw),∠( ~zw, ~xw)).

In five dimensions we need estimates of the following kind. Fix three distinct points x,w, y ∈
Rn. Assume that w is not on the line segment connecting x to y, or equivalently, Exwwy 6= 0.
Consider the integrals of the form∫

Rn

〈z〉−3−dz

|x− z|k|z − w|`|Exzzw|n−3|Ezwwy|n−3
,(19)

with 0 ≤ k, ` ≤ n − 1 and n − 3 ≤ k + `. For the first term in the Born series, only the
first line singularity occurs. Note that this integral has two point singularities and two line
singularities. The assumption Exwwy 6= 0 implies that the line singularities are separated
from each other by some angle. It also implies that the point singularity at x is away from
the line singularity Ezwwy. Accordingly, our estimates depend on the angle |Exwwy|, and also
on the length |x− w|.

The proof of the following theorems are technical and are given in Section 6. The following
Theorem, along with its obvious generalization to the cases in which the power of the line
singularity is less than n−3, suffice for the first term of the Born series in any odd dimension.

Theorem 3.3. Fix 0 ≤ k, ` ≤ n− 1, n− 3 ≤ k + `, k + ` 6= n, and x,w ∈ Rn. Then∫
Rn

〈z〉−3−dz

|x− z|k|z − w|`|Exzzw|n−3
.

{ (
1

|x−w|
)max(0,k+`−n) |x− w| ≤ 1(

1
|x−w|

)min(k,`,k+`+3−n) |x− w| > 1
.

Remark 3.4. We note that the line singularities other than Exzzw involving z are determined
by a basepoint, either x or w, and a direction vector ~v. We define Ex,~v(z) = ∠( ~xz,~v). For
instance, |Ezwwy|−1 is singular along the line emanating from w with direction vector ~yw.
Thus

Ezwwy = Ew, ~yw(z).

Similarly, note that Exzwy = Ex, ~wy(z) and Ezwyu = Ew, ~uy(z).

The following theorem will suffice for nearly all cases that arise in this paper in dimensions
five and seven.
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Theorem 3.5. Fix 0 ≤ k, ` ≤ n− 1, n− 3 ≤ k + `, x,w ∈ Rn and a vector ~v ∈ Rn. Assume
α := ∠(~v, ~wx) > 0, then for any F,G ∈ {Exzzw, Ew,~v(z), Ex,−~v(z)}, F 6= G, we have: if
k + ` 6= n, then∫

Rn

〈z〉−3−dz

|x− z|k|z − w|`|F |n−3|G|n−3
. α−(n−3)

{ (
1

|x−w|
)max(0,k+`−n) |x− w| ≤ 1(

1
|x−w|

)min(k,`,k+`+3−n) |x− w| > 1
.

If k + ` = n, then∫
Rn

〈z〉−3−dz

|x− z|k|z − w|`|F |n−3|G|n−3
. α−(n−3)

{ (
1

|x−w|
)0+ |x− w| ≤ 1(

1
|x−w|

)min(k,`,3)− |x− w| > 1
.

Remark 3.6. Note that this theorem applies to (19) with α ≈ |Exwwy|. In fact, for every
line singularity except Ezwyu in Remark 3.4, we have α ≈ |Exwwy|. When the singularity
|Ezwyu| appears, then α ≈ |Exwyu|.

The following weaker version of this theorem will be used often:

Corollary 3.7. Under the assumptions of Theorem 3.5, we have∫
Rn

〈z〉−3−dz

|x− z|k|z − w|`|F |n−3|G|n−3
. α−(n−3)

( 1
|x− w|

)min(k,`,k+`+3−n)
.

Proof. This follows immediately from Theorem 3.5 if k+ ` 6= n since min(k, `, k+ `+3−n) ≥
max(0, k + `− n). If k + ` = n, first use the inequality

1
|x− z|k|z − w|`

.
1

|x− w|min(k,`)

[ 1
|x− z|max(k,`)

+
1

|z − w|max(k,`)

]
,

then apply the first part of Theorem 3.5 with k, ` replaced by 0,max(k, `) and vice versa. �

Now, we prove Proposition 3.1 using these estimates.

Proof of Proposition 3.1. First we consider the case κ = 1. Using (16), we need only show

sup
z0,z2

∫
R5

〈zl〉−3−

|z0 − z1|m0 |z1 − z2|m1 |E1|2
dz1 < ∞,

Where, by (16) (for each fixed value of i in the inner sum), we have the following restrictions
on m0 and m1:

m0,m1 ≥ 0, and 2 ≤ m0 + m1 ≤ 3.

This immediately follows from Theorem 3.3.
Now we consider the case κ > 1. Similarly using (16), it suffices to prove that

sup
z0,zκ+1

∫
R5κ

1
|z0 − z1|m0

κ∏
`=1

[ 〈z`〉−3−

|z` − z`+1|ml |E`|2
]
d~z < ∞.(20)

Where m0,m1, . . . ,mκ satisfy m` ≤ 4, m0,mκ ≤ 3, and mκ−1 +mκ ≤ 6. Moreover, following
Lemma 3.2 we have the following two possible cases:
i) m` ≥ 2 for each `,
ii) mj ∈ {0, 1} for some j, and m` ≥ 2 for all ` 6= j,
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Case i) By Corollary 3.7, noting that α ≈ |E0223|, we estimate the z1 integral in (20) as
follows ∫

R5

〈z1〉−3−

|z0 − z1|m0 |z1 − z2|m1 |E1|2|E2|2
dz1 . |E0223|−2

(
1

|z0 − z2|

)m′
1

,

where m′
1 = min(m0,m1,m0 + m1 − 2). Since m0 ≤ 3 and m0,m1 ≥ 2, we have 2 ≤ m′

1 ≤ 3.
By repeatedly applying Corollary 3.7 as above, we estimate the z2, ..., zκ−2 integrals by

(we use m′
j to denote the leftover power of 1/|z0 − zj+1| after we estimate the zj integral)

|E0,κ−1,κ−1,κ|−2

(
1

|z0 − zκ−1|

)m′
κ−2

where 2 ≤ m′
κ−2 ≤ 3. For zκ−1 integral we use the other bound in Theorem 3.5 to estimate

(20) by ∫
R10

〈zκ〉−3− dzκ

|z0 − zκ|m
′
κ−1 |zκ − zκ+1|mκ |E0,κ,κ,κ+1|2

,

where m′
κ−1 = max(0+,m′

κ−2 +mκ−1− 5) ∈ (0, 2]. This integral is . 1 by Theorem 3.3 since

2 ≤ m′
κ−1 + mκ ≤ m′

κ−2 + mκ−1 + mκ − 5 ≤ 3 + 6− 5 = 4.

Case ii) mj ∈ {0, 1} for some j, and m` ≥ 2 for all ` 6= j. Without loss of generality, we can
assume that j < κ (if j = κ, reverse the ordering of z1, ..., zκ). For ` < j − 1 we estimate the
z` integrals as in the first case, which gives 2 ≤ m′

j−1 ≤ 3. Since mj ∈ {0, 1}, Corollary 3.7
implies that m′

j = mj . We continue to apply Corollary 3.7 for ` = j + 1, ..., κ − 1. Noting
that m′

` = mj for ` = j, ..., κ− 1 we estimate

(20) . sup
z0,zκ+1

∫
R5

〈zκ〉−3− dzκ

|z0 − zκ|mj |zκ − zκ+1|mκ |E0,κ,κ,κ+1|2
< ∞.

The last inequality follows from Theorem 3.3 since mj ∈ {0, 1}, and 2 ≤ mκ ≤ 3.
�

3.1. Contribution of the lower order terms of P5,κ for α−1 = 0. Fix α0, ..., ακ as above.
We consider the contribution of λκ−1 term, in P5,κ, the others are similar. By (5) and the
definition of P5,κ, see (10), this term can be written as a linear combination of

(21) λκ−1 1
|z` − z`+1|

κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk), ` = 0, 1, . . . , κ.

Note that after applying the first integration by parts, see (14), to the leading term of P5,κ,
we obtain a monomial of degree κ− 1 in λ which can be written as a sum of

ΦI1,l

( κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk)
)
, l = 1, . . . , κ.

The singularities of this term for l = ` or l = ` + 1 are worse then the singularities of (21)
since |Ei| . 1, see (16). Therefore, the rest of the procedure described before Proposition 3.1
finishes the proof for this term.
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Similarly, the proof for the contribution of λκ−K term is done by comparing the coefficient
with

ΦIK ,iK . . .ΦI1,i1

( κ∏
j=0

1
|zj − zj+1|2−αj

κ∏
k=1

V (zk)
)
, l = 1, . . . , κ.

for a suitable sequence ({I1, i1}, {I2, i2}, . . . , {IK , iK}).

3.2. The case α−1 ∈ {1, 2}. This will also follow from our previous discussion. First note
that for any α−1 ≥ 1( 1

λ

d

dλ

)α−1

χL(λ) =
1

λ2α−1

α−1∑
j=1

Cα−1,j

(λ

L

)j
χ(j)(λ/L) =:

1
λ2α−1

χ̃L(λ).

Since, for j ≥ 1, χ(j) is a Schwarz function supported in the set |λ| ≈ 1, and L > 1, λ−N χ̃L(λ)
has L1 Fourier transform for any N ∈ N0.

We present the case α−1 = 2, the case α−1 = 1 is essentially the same. In this case, the
integral in (9) takes the form, with rj = |zj − zj+1|,∫

Rnκ+1

eitλ2
χ̃L(λ)

1
λ3

κ∏
j=0

Gn(λ, rj)
κ∏

k=1

V (zk) d~z dλ.(22)

Thus, (10) is replaced with

λ−3
κ∏

j=0

G5(λ, rj) = eiλϕκP̃5,κ(λ, r0, . . . , rκ).(23)

The main difference from the case α−1 = 0 is that P̃5,κ(λ, r0, . . . , rκ) has degree κ − 2, and
it is not a polynomial since it contains terms with the factors λ−1 and λ−2. However, these
terms do not create additional problems since λ−N χ̃L(λ) has L1 Fourier transform.

The leading term of P̃5,κ(λ, r0, . . . , rκ) is given by

λκ−2
κ∏

j=0

1
r2
j

.

We perform κ − 2 integration by parts as described before Proposition 3.1. The resulting ~z
integrals can be estimated in exactly the same way as in the case i) of the proof of Proposi-
tion 3.1. The proof for the lower order terms are done as in the previous section.

3.3. Justification of integration by parts with smooth cut-offs. In integration by
parts, we use smooth cut-off functions around the singularities to eliminate the boundary
terms. Let ρ(x) be a smooth cut-off around zero, ρ(x) = 1 when |x| > 2 and ρ(x) = 0 when
|x| < 1. Note that, supε | d

dxρ(x/ε)| . 1
|x| . Therefore, for a line singularity F ,

sup
ε
|∇zρ(|F |2/ε)| . 1

|F |
|∇z|F ||.

Which has the same size as if the derivative had acted on the line singularity 1
|F | itself. Higher

order derivatives behave similarly. We also use the cut-off ρ(| ·−z|2/ε) for point singularities.
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4. Seven Dimensional Case

As in the five dimensional case, we set up an integration by parts scheme. We ignore the
issues of smooth cut-offs, derivatives acting on χL and lower order λ terms, they are handled
as in the five dimensional case. Consider the leading, λ2κ, term in the polynomial P7,κ of (10).
Here we must perform 2κ integration by parts, the assumption V ∈ C2 necessitates that we
perform two integration by parts in each zj variable. This introduces a new difficulty since
differentiating |zj − zj+1|−3 twice in both zj and zj+1 leads to a non-integrable singularity.

To overcome this difficulty, we integrate by parts with respect to the new variable bj =
zj + zj+1 as needed by using the formula

eiλϕκ =
2
iλ

(
∇bj

eiλϕκ

)
·
(

Ej−1,j,j+1,j+2

|Ej−1,j,j+1,j+2|2

)
,(24)

where Eijkl = zi−zj

|zi−zj | −
zk−zl
|zk−zl| and ϕκ =

∑κ
j=0 |zj−zj+1|. We can now perform integration by

parts in the bj variable without affecting the singularity involving |zj−zj+1| as∇bj
|zj−zj+1| =

0. Integration by parts in this variable will allow us to avoid non-integrable point singularities.

4.1. Higher Born series terms. We first discuss how to handle the terms of the Born series
with κ > 2. The highest λ power term has power 2κ and we wish to perform 2κ integration
by parts twice in each of the z1, z2, . . . , zκ variables.

As in the five dimensional case, when we integrate by parts in the combined variables we
obtain a sum of terms, in this case we get a tree of height 2κ. We start by integrating by
parts in the combined variable (z1, z2, . . . , zκ) on the function

f(~z) = λ2κ
κ∏

j=0

1
|zj − zj+1|3−αj

κ∏
`=1

V (z`).

We note that the combined variables results in a sum of terms for the combined variable
A = (a1, a2, . . . , aI) with associated combined line singularity F = (F1, F2, . . . , FI),∫

R7κ

eiλϕκf(~z) d~z = − i

λ

∫
R7κ

eiλϕκ∇A ·
(
f(~z)

F

|F |2
)
d~z

= − i

λ

I∑
j=1

∫
R7κ

eiλϕκ∇aj ·
(
f(~z)

Fj

|F |2
)
d~z.

We must keep track of the different summands that arise in each ∇jf(~z) term, as each
derivative can act by increasing the power one of two point singularities or act on a potential.
That is,

∇aj ·
(

f(~z)
Fj

|F |2

)
= faj ,1 + faj ,2 + faj ,3.(25)

Where in faj ,1 the derivative increased the power on a point singularity, in faj ,2 the derivative
increased the power on a different point singularity and in faj ,3 the derivative acted on a
potential function. In dimension five, the derivative used determined a branch in the tree,
but in dimension seven our scheme depends on the derivative used and the summand in (25).

We discuss our scheme for following a branch of the resulting tree, i.e. we select a summand
in (25) after each integration by parts. We integrate by parts in a combined variable, starting
with (z1, z2, . . . , zκ) first, until one of the following occurs,



12 M. BURAK ERDOĞAN AND WILLIAM R. GREEN

i. For some j, we integrate by parts in zj twice.
ii. We reach |zj − zj+1|−6 for some j and we have integrated by parts in zj or zj+1 only

once.

Note that these two criteria can occur simultaneously. If i. occurs and ii. does not, we simply
remove zj from the combined variable. From here we restart the process with the resulting
combined variable until we reach the above criteria again.

If ii. occurs and i. does not, we note that we must have that we are working with a summand
in which, up to switching the roles of zj and zj+1, the zj derivative has just acted on the
point singularity and two zj+1 derivatives acted on the same point singularity and hence zj+1

was removed from the combined variable by i. Here we remove zj from the combined variable
and replace it with bj .

If both i. and ii. occur simultaneously, we note that, again up to switching the roles of zj

and zj+1, a zj derivative has just acted on the point singularity for the second time and one
zj+1 derivative previously acted on the same point singularity. Here we remove both zj and
zj+1 from the combined variable and replace them with one bj . Derivatives in bj can act on
both V (zj) and V (zj+1), however this requires no more differentiability on V as neither of
these potentials have been differentiated at this point

In each of these cases, we restart the process with the resulting modified combined
variable. At this point we have added the bj variables to the process, adding another
condition for which the combined variable changes.

iii. We integrate by parts in bj once.

In the third case we simply remove bj from the combined variable and restart the process.
These three rules completely characterize the choice of combined variables in each branch.

We note that for the use of bj variables to occur, three derivatives must have acted on a
single point singularity, in particular, we will never use both bj and bj+1. To use a bj , three of
the four available zj and zj+1 derivatives have been used on |zj−zj+1| with a fourth derivative
to be used as bj . In particular one zj+1 derivative could not have acted on |zj+1−zj+2|. Thus
if we use both bj and b`, it must be true that |j − `| ≥ 2.

For ` ∈ {1, 2, 3}, we define ΨF,a,` so that

ΨF,a,1(f) + ΨF,a,2(f) + ΨF,a,3(f) = ∇a ·
(

f
F

|F |2

)
,

where the ` selects the summand, as in (25), of the above operator on which we continue.
Then, there is a sequence of combined line singularities J1, J2, . . . , J2κ determined by the
choice of variables a1, a2, . . . , a2κ and a sequence in {`i}i ∈ {1, 2, 3}2κ so that

ΨJ2κ,a2κ,`2κ · · ·ΨJ1,a1,`1

 κ∏
j=0

1
|zj − zj+1|3−αj

κ∏
i=1

V (zi)

(26)

corresponds to a branch of the tree. Every branch can be represented as such.
A similar argument as in Lemma 3.2 along with |Ej |−2|Ej−1,j,j+1,j+2|−2 ≤ |Ej |−4 +

|Ej−1,j,j+1,j+2|−4 implies that we can bound the contribution to the ~z integral of the highest
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λ power of P7,κ by a sum of integrals of the form∫
R7κ

1
|z0 − z1|m0

κ∏
j=1

〈zj〉−8−

|zj − zj+1|mj |Ej |4
d~z.(27)

Here Ej ∈ {Ej , Ej−2,j−1,j,j+1, Ej−1,j,j+1,j+2} as the zj can be replaced by bj−1 or bj in this
scheme. We also have the restriction on Ej that E1 6= E−1012 nor Eκ 6= Eκ−1,κ,κ+1,κ+2,
as we do not use b0 or bκ. We also have the restriction that arises from the bj separation
condition described above, namely that any sequence of line singularities cannot contain both
Ej−1,j,j+1,j+2 and Ej,j+1,j+2,j+3 for any j ≥ 1.

For instance, for κ = 5 we have a branch with the sequence of line singularities
(E1, E2, E3, E4, E5) = (E1, E0123, E2345, E4, E5) where in addition to using z1, z2, . . . , z5 we use
b1 once in place of z2 and b3 once in place of z3.

Moreover, we have 3 ≤ mj ≤ 6 for all j except possibly one 0 ≤ mj0 ≤ 4, and the
constrictions that for ` ≥ 1,

3` ≤ mj + mj+1 + · · ·+ mj+` ≤ 5` + 7,(28)

for any j + ` ≤ κ, with the upper bound being 5` + 5 if j = 0 with ` < κ and the upper
bound is 5κ if we sum over all the mj ’s.

We have two types of line singularities, z type, which arise from integration by parts in a
zj and b type, which arise from integration by parts in a bj . We will call a line singularity b+

type if bj acts in place of zj and b− type if bj−1 acts in place of zj .
We can view the line singularities as a sequence. For the κth term of the Born series, we

have a sequence in {z, b−, b+}κ. We note that the restriction on the use of the bj variables
yields that the first entry in the sequence cannot be b− and the last entry cannot be b+.
They also imply that two b+’s or two b−’s must have at least one z between them, a b+ must
have two z’s after it before a b− can occur. Integration takes a sequence of length κ to a
sequence of length κ−1. In this notation, denoting integration in z1 by 7→, Theorem 3.5 (see
the remark following the theorem) can be phrased as

(z, z, Z)k, (b+, z, Z)k, (z, b−, Z)k 7→ (z, Z)k−1,(29)

(z, b+, Z)k 7→ (b+, Z)k−1.(30)

Where Z is a sequence, the subscript is a placekeeper for the length of the sequence, and in
(z, z, Z)k the first entry of Z is not b−. In a slight abuse of notation, if we use 7→ to denote
integration in z1 followed by integration in z2, we can rephrase Theorem 4.2, which is stated
below to estimate integrals with three line singularities involving z1, as

(z, z, b−, Z)k 7→ (z, Z)k−2.(31)

We note that if we approach integration from zκ first instead of z1, the sequence reverses
order with b− and b+ switching places.

Lemma 4.1. For any integer κ > 2 and any sequence in {z, b−, b+}κ that arises in the
integration by parts scheme for dimension seven, there exists a sequence of integrations such
that the sequence can be reduced to (z, z).

Proof. We establish this inductively. We take base cases κ = 3 and κ = 4. For κ = 3, by
reversing the sequences, we need only consider the cases (z, z, z), (z, b−, z), and (b+, z, z).
They are all handled by integrating first in z1, the resulting sequence is (z, z).
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For κ = 4, we have the cases (z, z, z, z), (z, b−, z, z), (z, b+, z, z), (b+, z, z, z), (z, b−, z, b−),
(z, b−, b+, z), and (b+, z, z, b−). The first four sequences are handled by successive integrations
in z1 and z2, the last three are handled by integrations in z1 and z4.

Now, we assume that every sequence of length k ≤ K0 can be reduced to (z, z), we call
such a sequence admissible. Now we take an arbitrary sequence that arises in the integration
by parts scheme of length K0 + 1. Call this sequence (a,X) where X ∈ {z, b−, b+}K0 . We
note that (29), (30) and (31) all map a sequence to a shorter sequence that is better, in the
sense that b type singularities are converted to z type, or stay the same. Further, the new
sequence follows the rules on the separation of b type singularities. If a = b+ then the first
term in X must be z and we integrate in z1 to obtain an admissible sequence of length K0.
If a = z, we can apply (29), (30) to obtain admissible sequences of length K0 or apply (31)
to obtain an admissible sequence of length K0 − 1.

�

Recall that Theorem 3.5 and Corollary 3.7 contain estimates for integrals involving the line
singularities that bj variables produce. We also need the following estimate, which handles
the case when have three fourth power line singularities containing zj .

Theorem 4.2. Fix 0 ≤ k, `, m ≤ n − 1 satisfying k + m ≥ n − 3, ` + p ≥ n − 3 where
p = max(0, k + m − n) or p = min(k, m, k + m + 3 − n). Fix x, y, u ∈ Rn. Assume that
α := |Exyyu| > 0, then if k + m 6= n and ` + p 6= n,∫

Rn

∫
Rn

〈z〉−3−〈w〉−3−dz dw

|x− z|k|z − w|`|w − y|m|Exzzw|n−3|Ezwwy|n−3|Ezwyu|n−3

. α−(n−3)

{ (
1

|x−y|
)max(0,`+p−n) |x− y| ≤ 1(

1
|x−y|

)min(`,p,`+p+3−n) |x− y| > 1
.

If k + m = n or ` + p = n,∫
Rn

∫
Rn

〈z〉−3−〈w〉−3−dz dw

|x− z|k|z − w|`|w − y|m|Exzzw|n−3|Ezwwy|n−3|Ezwyu|n−3

. α−(n−3)

{ (
1

|x−y|
)max(0,`+p−n)+ |x− y| ≤ 1(

1
|x−y|

)min(`,p,`+p+3−n)− |x− y| > 1
.

The end estimate here is of the same form we would expect for estimating the z integral
and then then w integral if each had two line singularities. With the two choices for p, we
can bound the point singularity with order min(k, `, m, k + m− n, k + ` + 3− n, k + m + 3−
n, k + ` + m + 6− 2n) or max(0, k + ` + m− 2n) as needed.

To finish the proof in dimension seven, we divide into cases to show that for any sequence
{`i} ∈ {1, 2, 3}κ, with κ > 2, and any sequence of variables ai chosen by the integration by
parts scheme,

sup
z0,zκ+1

|(27)| < ∞.

Case i: First we consider the case when m0 + mκ ≥ 4. We note that

〈x〉−1〈w〉−1 . 〈x− w〉−1 . |x− w|−1,(32)
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which allows us to create point singularity decay. We divide into cases based on the size of
m0 + mκ. If m0 + mκ ≤ 6, we use (32) so that with the constraints on the mj ’s in (28), we
have the following bound.

|(27)| .
∫

R7κ

1
|z0 − z1|m0

κ−1∏
j=1

〈zj〉−3−

|zj − zj+1|m̃j |Ej |4
〈zκ〉−3−

|zκ − zκ+1|mκ |Eκ|4
d~z,(33)

where m̃j = max(mj , 4). Now, min(m0, m̃j ,m0 + m̃j − 4) = m0 for all 1 ≤ j ≤ κ − 1. We
can estimate the z1 integral by (

1
|z0 − z2|

)m0

|Ẽ2|−4.

With Ẽ2 = E0223 or E0234 using Corollary 3.7. If necessary, we use Theorem 4.2 to estimate
the z1 and z2 integrals by (

1
|z0 − z3|

)m0

|E0334|−4.

Similar calculations apply if we integrate in zκ and zκ−1. Repeatedly applying Corollary 3.7
and Theorem 4.2, for some j, the final integral is bounded by∫

R7

〈zj〉−3−

|z0 − zj |m0 |zj − zκ+1|mκ |E0,j,j,κ+1|4
dzj .

This integral is . 1 by Theorem 3.3 since 4 ≤ m0 + mκ ≤ 6.
When m0 + mκ ≥ 7, we must be more careful, in the approach above the final integral

estimate would be unbounded as |z0 − zκ+1| → 0. In dimension five, we had to take care in
the final integral using Theorem 3.5 directly instead of Corollary 3.7 in the second to last
integral. In dimension seven, we need to take care with at most two integrations.

As m0,mκ ≤ 5, we need to consider when 7 ≤ m0 + mκ ≤ 10. By symmetry (by using
|ab|−1 ≤ |a|−2 + |b|−2 if necessary), we can assume that m0 = 5, 2 ≤ mκ ≤ 5. Using the
constraints in (28) we deduce that either there exists 1 ≤ j1 < j2 ≤ κ−1 with 0 ≤ mj1 ,mj2 ≤
4 or there exists 1 ≤ j0 ≤ κ − 1 with 0 ≤ mj0 ≤ 5 − mκ. Symmetrizing as above, we can
assume in both cases that there is a j0 with mj0 ≤ 3. Then using (32), we can guarantee all
m` ≥ 4 for ` 6∈ {0, j0, κ} and mj0 = 3.

Now, we use Corollary 3.7 and Theorem 4.2, until we reach the zj0−1 integral from the
left or the zj0+1 integral from the right. Note that if we approach from the left m′

j0−1 ∈
{4, 5}, and if we approach from the right, m′

j0+1 ∈ {2, 3, 4, 5}. In each of these cases, we
do not need to pass forward the point decay to the final integral, we instead wish to control
the size of the singularity. As such, we modify the estimates of Theorems 3.5, and 4.2
to bound by α−4|x − w|−max(0+,k+`−7) since min(k, `, k + ` − 4) ≥ max(0, k + ` − 7) (“+”
sign for the case k + ` = 7). Assuming that we approached from left (the other case is
similar), we use m′

j0
= max(0+,m′

j0−1 + mj0 − 7) ∈ (0, 1] if mκ ∈ {4, 5} and we use m′
j0

=
min(m′

j0−1,mj0 ,m
′
j0−1 + mj0 − 4) = 3 if mκ ∈ {2, 3}. In both cases, 4 ≤ m′

j0
+ mκ ≤ 6.

Continuing as in the previous case, the final integral is bounded by∫
R7

〈zj〉−3−

|z0 − zj |m
′
j−1 |zj − zκ+1|m

′
j |E0,j,j,κ+1|4

dzj . 1,

by Theorem 3.3 since 4 ≤ m′
j−1 + m′

j ≤ 6.
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Case ii: For the case when m0 + mκ = 3, by symmetry we can assume m0 = 3, mκ = 0. We
are also guaranteed that m` ≥ 3 for all 1 ≤ ` ≤ κ − 1. Lemma 4.1 tells us that there is a
1 ≤ j ≤ κ such that we can iterate Corollary 3.7 and Theorem 4.2, to bound (27) by (to do
this we use (32) for ` 6= j to ensure m̃` ≥ 4)∫

R7

∫
R7

〈zj〉−7−〈zj+1〉−7− dzj dzj+1

|z0 − zj |3|zj − zj+1|mj |E0,j,j,j+1|4|Ej,j+1,j+1,κ+1|4
.

Since the zj potential is only used at most once in (32) and the zj+1 potential is likewise only
used once. The following establishes boundedness.

Proposition 4.3. Fix 3 ≤ ` ≤ 6. Then∫
R7

∫
R7

〈z〉−7−〈w〉−7− dz dw

|x− z|3|z − w|`|Exzzw|4|Ezwwy|4
< ∞.

4.2. The second term of the Born series. The second term of the Born series expansion,
(3), can be handled in exactly the same manner as for κ > 2 provided m0 + m2 ≥ 4. The
only difference is that the last two singularities are not necessarily z type.

When m0 + m2 = 3 (W.L.O.G. m0 = 3, m2 = 0), if both line singularities are of z type,
that is if b1 was not used, we can apply Proposition 4.3.

When we use b1, since m0 = 3 and m2 = 0, b1 derivative must have acted on a potential.
Therefore the line singularity from b1 has only power one. We also have m1 = 6, since b1 is
used. The combined variables used are now either
i. (z1, z2) three times followed by b1 once, or
ii. (z1, z2) two times followed by z1 once and b1 once, or
iii. the same as ii. with z2 instead of z1.
The line singularities possible for case ii. are of the form

1
(|E1|2 + |E2|2)2|E1|2|E0123|

,
1

(|E1|2 + |E2|2)5/2|E1||E0123|
.

1
|E1|3|E2|3|E0123|

.

Case iii. is identical with E1 and E2 switching places. Case i. has (|E1|2 + |E2|2)3|E0123| and
is bounded in the same way. We need the following

Proposition 4.4. Fix x,w, y ∈ R7. Assume α := |Exwwy| > 0, then∫
R7

〈z〉−4− dz

|x− z|3|z − w|6|Exzzw|3|Ezwwy|3|Exzwy|
. α−3|x− w|−3.

Now there is enough point-wise decay in the resulting z2 integral to apply Theorem 3.3
with obvious modifications, to ensure boundedness in z0 and z3.

This yields Theorem 1.2 for n = 7.

5. Higher Odd Dimensions

The integration by parts scheme we develop for dimensions five and seven in Sections 3 and
4 can be generalized to higher odd dimensions. There will, of course, be more complications
which we will not tackle in this paper.

We note that in dimension three, see [7], one need not perform integration by parts in the
zj variables at all. In dimension five, one must integrate by parts once in each variable zj .
In dimension seven, one must integrate by parts in variables zj and bj = zj + zj+1, twice for
each j ∈ {1, . . . , κ}. To avoid non-integrable singularities, in higher odd dimension n, one
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must employ n−3
2 variables of the form zj + zj+1 + · · ·+ zj+` with 0 ≤ ` ≤ n−5

2 . Use of such
variables will complicate the scheme needed to integrate by parts and produce a larger class
of line singularities.

The necessary integration by parts scheme mirrors that of seven dimensions. Denoting
|zj − zj+1|−1 by rj , we use the variable bk

j := zj + zj+1 + · · ·+ zj+k of length k +1 when there
are k consecutive point singularities, rj , rj+1, . . . , rj+k−1, all have power n− 1 but rj−1 and
rj+k have smaller powers. Note that ∇bk

j
leaves rj , rj+1, . . . , rj+k−1 alone and acts on the

neighboring rj−1 and rj+k. Since the total number of point singularities is at most κn−1
2 and

we perform κn−3
2 integration by parts, the total number of point singularities at the end is

at most κ(n− 2), which can be safely distributed over κ + 1 different rj ’s using this scheme.
It is, of course, necessary to use estimates for integrals which involves many different line

singularities, which differs from our estimates presented previously.

6. Proofs of Estimates

In this section, we present proofs of theorems on the estimates for integrals involving point
and line singularities. We start with estimates on the size of line singularities. For 0 < α < 1,
define Tα(x,w) to be the intersection of solid cones of opening angle α from x towards w
and from w towards x. Define Eα(w,~v) to be the solid cone of opening angle α from w in
direction ~v. It is easy to see that outside T1(x,w), |Exzzw| & 1. Similarly, outside E1(w,~v),
|Ew,~v(z)| & 1. The following lemmas are immediate from the definition of line singularities

Lemma 6.1. Fix x,w ∈ Rn. Let r be the distance between a point z ∈ Rn and the line
segment xw.
i) For z ∈ T1(x,w), we have |Exzzw| ≈ r

min(|x−z|,|w−z|) .
ii) For 0 < α ≤ 1 and z 6∈ Tα(x,w), we have |Exzzw| & α.

Lemma 6.2. Fix w ∈ Rn. Let r be the distance between the point z and the ray {w + s~v :
s ≥ 0}.
i) For z ∈ E1(w,~v), we have |Ew,~v(z)| ≈ r

|w−z| .
ii) For 0 < α ≤ 1 and z 6∈ Eα(w,~v), we have |Ew,~v(z)| & α.

The following lemma is used repeatedly in the rest of this section.

Lemma 6.3. I) Fix u1, u2 ∈ Rn, and let 0 ≤ k, `, k + ` < n, h > 0. We have∫
B(0,h)⊂Rn

dz

|z − u1|k|z − u2|`
. hn−k−`

II) Fix u1, u2 ∈ Rn, and let 0 ≤ k, ` < n, β > 0, k + ` + β ≥ n, k + ` 6= n. We have∫
Rn

〈z〉−β−dz

|z − u1|k|z − u2|`
.

{ (
1

|u1−u2|
)max(0,k+`−n) |u1 − u2| ≤ 1(

1
|u1−u2|

)min(k,`,k+`+β−n) |u1 − u2| > 1
.

Proof. Proof of I) immediately follows from the inequality
1

|z − u1|k|z − u2|`
.

1
|z − u1|k+`

+
1

|z − u2|k+`
.

Now, we consider part II. For |u1 − u2| < 1 and k + ` < n, the inequality can be proved as
in part I. For |u1 − u2| < 1 and k + ` > n, ignore the 〈z〉−β− term. By scaling the statement
follows from the trivial case |u1 − u2| = 1.
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For |u1 − u2| > 1, let m := min(k, `, k + ` + β − n). Note that m ≥ 0, 0 ≤ k + `−m < n,
and β + k + `−m ≥ n. The statement follows from the following inequality

1
|z − u1|k|z − u2|`

.
1

|u1 − u2|m
[ 1
|z − u1|k+`−m

+
1

|z − u2|k+`−m

]
.

�

Now we are ready to prove Theorems 3.3 and 3.5.

Proof of Theorem 3.3. Outside of T1, |Exzzw| ≈ 1, and we can apply part II of Lemma 6.3
with β = 3.

Divide T1 into T11 on which |x−z| < |w−z| and T12 on which |x−z| > |w−z|. By symmetry,
it suffices to consider the integral on T11. Let h denote the distance between x and the
orthogonal projection of z on to the line xw. We use the coordinates z = (h, z⊥) ∈ R×Rn−1,
with z⊥ the coordinate on the n − 1 dimensional plane perpendicular to xw. We note that
(h, 0) is the line xw. Note that |z − w| ≈ |x− w|, |z − x| ≈ h, and

|Exzzw| ≈
|z⊥|

min(|x− z|, |w − z|)
≈ |z⊥|

min(h, |x− w|)
≈ |z⊥|/h

We also have 〈z〉 ≈ 〈z⊥− z⊥0 〉+ 〈h− h0〉, where (h0, z
⊥
0 ) is the origin in this coordinates. We

have∫
T11

〈z〉−3− dz

|x− z|k|z − w|`|Exzzw|n−3
.
∫ |x−w|

0

∫
|z⊥|.h

hn−3−k〈z⊥ − z⊥0 〉−2−〈h− h0〉−1−

|x− w|`|z⊥|n−3
dz⊥ dh

. |x− w|−`

∫ |x−w|

0
hn−3−k min(h2, 1)〈h− h0〉−1− dh.(34)

Where the minimum term in the last inequality arises from considering the cases of |x−w| < 1
and |x− w| ≥ 1. For |x− w| < 1, this immediately implies the required bound (by ignoring
the term 〈h− h0〉−1−). For |x− w| > 1, note that

(34) . |x− w|−`
(
1 +

∫ |x−w|

1
hn−3−k〈h− h0〉−1− dh

)
. |x− w|−`(1 + |x− w|n−3−k),

which implies the required bound.
�

Proof of Theorem 3.5. For each choice of F and G the integral involves two point singularities
and two line singularities. The condition on the angle between ~v and the line xw separates
the line singularities from each other and also separates line singularities from the point
singularities. Therefore, we prove the statement only for F = Exzzw, G = Ew,~v(z). The
other two cases are similar.

Fix x,w with α > 0. Recall that |Exzzw|3−n and |Ew,~v(z)|3−n are singular along the line
between x and w and on the ray with direction ~v from w, respectively. We only consider the
case when α � 1. The case α & 1 is easier since the line singularities are separated by an
angle & 1.

Define C1 to be E1(w,~v), the cone opening opening around the line singularity G. Note
that T1/2(x,w) ⊂ C1. Therefore, outside C1, we have |Exzzw|, |Ew,~v(z)| & 1, and hence the
statement for the contribution of the integral outside C1 follows from Lemma 6.3.
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We divide C1 into several regions. Let C2 be the intersection of C1 and the cone from x
opening with angle one towards w.

Consider the first region, denoted R1, which is C2 ∩ B(w, |x−w|
2 ). The triangle inequality

implies that here |x− z| ≈ |x− w|. We define new coordinates on this region. Let h be the
coordinate along the continuation of ~v from w, 0 ≤ h ≤ 1

2 |x−w| and z⊥ the n−1 dimensional
coordinate on planes perpendicular to the line defining h. In C1, it follows that |z⊥| . h.
It follows that |z − w| ≈ h. The line wx in this coordinates can be written as (h, zh) with
|zh| ≈ αh. Note that the distance of a point z = (h, z⊥) to the line wx is ≈ |z⊥ − zh|.
Therefore for z = (h, z⊥), we have

|Exzzw| ≈
dist(z, xw)

min(|x− z|, |z − w|)
≈ |z⊥ − zh|/h,

|Ew,~v(z)| ≈ dist(z, w + ~v)
|z − w|

≈ |z⊥|/h.

Also, let (h0, z
⊥
0 ) be the coordinates of the origin. We have∫

R1

〈z〉−3−dz

|x− z|k|z − w|`|Exzzw|n−3|Ew,~v(z)|n−3
(35)

.
∫ |x−w|

0

∫
|z⊥|.h

h2n−6−`〈h− h0〉−1−〈z⊥ − z⊥0 〉−2−

|x− w|k|z⊥ − zh|n−3|z⊥|n−3
dz⊥ dh.

Using the inequality

1
|z⊥ − zh|n−3|z⊥|n−3

.
1

|zh|n−3

[ 1
|z⊥ − zh|n−3

+
1

|z⊥|n−3

]
≈ 1

αn−3hn−3

[ 1
|z⊥ − zh|n−3

+
1

|z⊥|n−3

]
,

and Lemma 6.3, we have

(35) .
∫ |x−w|

0

h2n−6−`〈h− h0〉−1−min(h2, 1)
|x− w|kαn−3hn−3

dh

. α−(n−3)

{
|x− w|n−k−` |x− w| < 1
|x− w|−k + |x− w|n−3−k−` |x− w| > 1

.

where the last inequality follows as in the proof of Theorem 3.3.
Now consider the second region, denoted R2, C2∩B(x, |x−w|

2 ). Here the triangle inequality
implies that |z−w| ≈ |x−w|. Define new coordinates on this region. Let h be the coordinate
along the line xw, 0 ≤ h ≤ |x−w|

2 and z⊥ the coordinate on planes perpendicular to xw.
Again |z⊥| . h, and here |x− z| ≈ h. The continuation of ~v from w has coordinates (h, zh)
where |zh| ≈ α|x− w|. As in the previous case, we have∫

R2

〈z〉−3−dz

|x− z|k|z − w|`|Exzzw|n−3|Ew,~v(z)|n−3
(36)

.
∫ |x−w|

0

∫
|z⊥|.h

〈z⊥ − z⊥0 〉−2−〈h− h0〉−1−dz⊥dh

hk|x− w|`(|z⊥|/h)n−3(|z⊥ − zh|/|x− w|)n−3
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= |x− w|n−3−`

∫ |x−w|

0

∫
|z⊥|.h

〈z⊥ − z⊥0 〉−2−〈h− h0〉−1−hn−3−kdz⊥dh

|z⊥|n−3|z⊥ − zh|n−3
.

As in the previous case, we have the bound

1
|z⊥ − zh|n−3|z⊥|n−3

.
1

|zh|n−3

[ 1
|z⊥ − zh|n−3

+
1

|z⊥|n−3

]
≈ 1

αn−3|x− w|n−3

[ 1
|z⊥ − zh|n−3

+
1

|z⊥|n−3

]
,

which implies

(36) . α−(n−3)|x− w|−`

∫ |x−w|

0
hn−3−k〈h− h0〉−1−min(h2, 1) dh

. α−(n−3)

{
|x− w|n−k−l |x− w| < 1
|x− w|−`(1 + |x− w|n−3−k) |x− w| > 1

.

The final region R3 = C1\C2, here |Exzzw| & 1. Notice that R3 ⊆ C1\B(w, |x−w|
2 ). We define

new coordinates on this region. Let h be the coordinate along the continuation of ~v from
w and z⊥ the coordinate on planes perpendicular to the line defining h, |x − w| . h < ∞.
Again |z⊥| . h and h ≈ |z − w|. The point x has coordinates (hx, zx) where hx ≈ |x − w|
and |zx| ≈ α|x− w|.∫

R3

〈z〉−3−dz

|x− z|k|z − w|`|Exzzw|n−3|Ew,~v(z)|n−3
(37)

.
∫

h&|x−w|

∫
|z⊥|.h

hn−3−`〈h− h0〉−1−〈z⊥ − z⊥0 〉−2−

(|h− hx|+ |z⊥ − zx|)k|z⊥|n−3
dz⊥ dh

We divide the h integral into the regions i) h � |x−w|, and ii) h ≈ |x−w|. For h � |x−w|,
we have |h− hx| & h, which implies∫

h�|x−w|

∫
|z⊥|.h

hn−3−`〈h− h0〉−1−〈z⊥ − z⊥0 〉−2−dz⊥dh

(|h− hx|+ |z⊥ − zx|)k|z⊥|n−3

.
∫

h�|x−w|
hn−3−k−`〈h− h0〉−1−min(h2, 1)dh

.

{
1 + |x− w|n−k−l |x− w| < 1
|x− w|n−3−k−` |x− w| > 1

.

For h ≈ |x− w|, we have∫
h≈|x−w|

∫
|z⊥|.h

hn−3−`〈h− h0〉−1−〈z⊥ − z⊥0 〉−2−dz⊥dh

(|h− hx|+ |z⊥ − zx|)k|z⊥|n−3

. |x− w|n−3−`

∫
|z⊥|.|x−w|

∫
h≈|x−w|

〈h− h0〉−1−〈z⊥ − z⊥0 〉−2−dh dz⊥

(|h− hx|+ |z⊥ − zx|)k|z⊥|n−3
.(38)

First assume that k < n− 1. Using

1
|z⊥ − zx|k|z⊥|n−3

.
1

|zx|min(n−3,k)

[ 1
|z⊥ − zx|max(n−3,k)

+
1

|z⊥|max(n−3,k)

]
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≈ 1
(α|x− w|)min(n−3,k)

[ 1
|z⊥ − zx|max(n−3,k)

+
1

|z⊥|max(n−3,k)

]
,

we have

(38) .
|x− w|n−3−`−min(n−3,k)

αmin(n−3,k)
min(|x− w|, 1) min(|x− w|n−1−max(n−3,k), 1)

. α−(n−3)

{
|x− w|n−k−l |x− w| < 1
|x− w|n−3−k−` + |x− w|−` |x− w| > 1

.

For k = n− 1, one needs to proceed slightly differently. Note that (for n− 2 ≤ k ≤ n− 1),

(38) . |x− w|n−3−`

∫
|z⊥|.|x−w|

〈z⊥ − z⊥0 〉−2−dz⊥

|z⊥ − zx|k−1|z⊥|n−3

. |x− w|n−3−` 1
|zx|n−3

min(1, |x− w|n−1−(k−1))

. α−(n−3)|x− w|−` min(1, |x− w|n−k).

For the case of k + ` = n, use that
1

|x− z|k|z − w|`
.

1
|x− z|k+|z − w|`

+
1

|x− z|k−|z − w|`
,

and bound with the dominant terms.
�

Proof of Theorem 4.2. Let us define a = 1
2(z + w) and b = 1

2(z − w). We note the Jacobian
of the change of variables (z, w) 7→ (a, b) is constant. Further define c = x− b and d = b + y,
then

Exzzw =
x− z

|x− z|
− z − w

|z − w|
=

(x− b)− a

|(x− b)− a|
− b− 0
|b− 0|

= Ecab0 = E
c,−~b

(a).

The other line singularities are expressed in similar fashion as below.∫
Rn

∫
Rn

〈z〉−3−〈w〉−3−dz dw

|x− z|k|z − w|`|w − y|`|Exzzw|n−3|Ezwwy|n−3|Ezwyu|n−3

.
∫

Rn

∫
Rn

〈a + b〉−3−〈a− b〉−3−da db

|c− a|k|b|`|a− d|m|Ecab0|n−3|Eadb0|n−3|Eb0yu|n−3
.(39)

We now consider two regions, first when 〈a+b〉−3−〈a−b〉−3− . 〈b〉−3−〈a−b〉−3− and secondly
when 〈a + b〉−3−〈a − b〉−3− . 〈b〉−3−〈a + b〉−3−. In either case, we obtain a decay for the b
integral. If we consider only the a integral in (39), we have∫

Rn

〈a± b〉−3−da

|c− a|k|a− d|m|E
c,−~b

(a)|n−3|E
d,~b

(a)|n−3
.(40)

We can now apply Theorem 3.5. Viewing the 〈a ± b〉−3− term as a shift of the origin, by
Theorem 3.5 we have

(40) . γ−(n−3)

{ (
1

|c−d|
)max(0,k+m−n) |c− d| ≤ 1(

1
|c−d|

)min{k,m,k+m+3−n} |c− d| > 1
,
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with γ = |Ecdb0|. We now can evaluate the b integral, as it now has only two line singularities.

(39) .
∫

Rn

〈b〉−3−db

|c− d|p|b|`|Ecdb0|n−3|Eb0yu|n−3
,

where p can be max(0, k + m− n) or min(k, m, k + m + 3− n). As both c and d depend on
b, we define e = 1

2(y − x) and f = 1
2(u− y). Then we have

(39) .
∫

Rn

〈b〉−3−db

|b− e|p|b|`|Eebb0|n−3|E
0,−~f

(b)|n−3
.

The result now follows from Theorem 3.5, and we have

(39) . α−(n−3)

{ (
1
|e|
)max(0,`+p−n) |e| ≤ 1(

1
|e|
)min(p,`,p+`+3−n) |e| > 1

,

. |Exyyu|−(n−3)

{ (
1

|x−y|
)max(0,`+p−n) |x− y| ≤ 1(

1
|x−y|

)min(`,p,`+p+3−n) |x− y| > 1
.

Where we used the definitions of e and f in the last step.
�

Proof of Proposition 4.3. We use coordinates z = (z1, z̃) with z1 ∈ R the projection of z onto
the line xy and z̃ ∈ R6 the coordinate on planes perpendicular to xy. Similarly w = (w1, w̃),
and x = (x1, 0), y = (y1, 0)

We can further assume that |Exzzw|, |Ezwwy| � 1, as we know how to handle the other
cases using Theorem 3.3 and Lemma 6.3. Note that in this case we have x1 < z1 < w1 < y1

or x1 > z1 > w1 > y1.
Define ã by the six dimensional coordinate so that (z1, ã) is on the line xw. Similarly for

(z1, b̃) and the continuation of yw. A similar triangles argument shows that

ã = w̃
|x1 − z1|
|x1 − w1|

, b̃ = w̃
|y1 − z1|
|y1 − w1|

.

Therefore,

|ã− b̃| = |w̃|
∣∣∣∣ |y1 − z1|
|y1 − w1|

− |x1 − z1|
|x1 − w1|

∣∣∣∣ = |w̃|
∣∣∣∣ |w1 − z1|
|y1 − w1|

+
|w1 − z1|
|x1 − w1|

∣∣∣∣
≈ |w̃| |w1 − z1|

min(|y1 − w1|, |x1 − w1|)
.

We also have the following estimates for the singularities in these coordinates.

|Exzzw| ≈
|z̃ − ã|

min(|x1 − z1|, |z1 − w1|)
, |Ezwwy| &

|z̃ − b̃|
|z1 − w1|

,

|x− z| ≈ |x1 − z1|, |z − w| & |z1 − w1|.

The integral is now bounded by∫
R14

〈z1〉−7−〈w〉−7−|z1 − w1|4 min(|z1 − w1|, |x− z1|)4

|x1 − z1|3|z1 − w1|`|z̃ − ã|4|z̃ − b̃|4
dz̃ dz1 dw̃ dw1.(41)
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We apply Lemma 6.3 part II to the z̃ integral, along with the estimate on |ã− b̃|, to obtain

(41) .
∫

R2

〈z1〉−7−〈w〉−7−min(|z1 − w1|, |x1 − z1|)4 min(|y1 − w1|, |x1 − w1|)2

|x1 − z1|3|z1 − w1|`−2|w̃|2
dz1 dw1 dw̃.

Using 〈w〉−7− . 〈w1〉−3−〈w̃〉−4−, and bounding the w̃ integral by Lemma 6.3 part II, we have

(41) .
∫

R2

〈z1〉−7−〈w1〉−3−min(|z1 − w1|, |x1 − z1|)4 min(|y1 − w1|, |x1 − w1|)2

|x1 − z1|3|z1 − w1|`−2|w̃|2
dz1 dw1.

We note the following

min(|z1 − w1|, |x1 − z1|)4 min(|y1 − w1|, |x1 − w1|)2 ≤ min(|z1 − w1|, |x1 − z1|)4|x1 − w1|2

. min(|z1 − w1|, |x1 − z1|)4 max(|x1 − z1|, |z1 − w1|)2 . |x1 − z1|3−|z1 − w1|3+.

Therefore,

(41) .
∫

R2

〈z1〉−7−〈w1〉−3−

|x1 − z1|0+|z1 − w1|`−5− dz1 dw1.

To see that this integral is bounded in x1 we use (32) if 3 ≤ ` ≤ 5. The bound is immediate
if ` = 6.

�

Proof of Proposition 4.4. We note that outside of T1(x,w), we can bound the integral by∫
R7

〈z〉−4−

|x− z|3|z − w|6|Ezwwy|3|Exzwy|3
dz.

This is bounded by Corollary 3.7 with obvious modifications to get α−3|x− w|−3.
Inside T1, we break into the regions T11, on which |x − z| < |z − w| and T12 on which

|z − w| < |x − z|. We only consider T11 as, by symmetry, the calculations on T12 will be
identical in form. We define variables (h, z⊥) where h is distance along the line xw and z⊥ is
the six dimensional variable on planes perpendicular to h. Here 0 ≤ h ≤ 1

2 |x− w|, |z⊥| . h
and |x− z| ≈ h.

The singular lines for Ezwwy and Exzwy have coordinates (h, zh) and (h, z̃) with |zh| ≈
α|x− w| and |z̃| ≈ αh respectively. We have

|Ezwwy| & |z⊥ − zh|/|x− w|, |Exzwy| & |z⊥ − z̃|/h.

The integral is now bounded by

|x− w|−3

∫ |x−w|

0

∫
|z⊥|.h

〈h− h0〉−4−h

|z⊥|3|z⊥ − zh|3|z⊥ − z̃|
dz⊥ dh

. |x− w|−3

∫ |x−w|

0

∫
R6

〈h− h0〉−4−h

|z⊥|3

(
1

|z⊥ − zh|4
+

1
|z⊥ − z̃|4

)
dz⊥ dh.

We can now apply Lemma 6.3 part II to the integral in R6. The size estimates on zh and z̃
bound the integral by

α−1|x− w|−3

∫ |x−w|

0
〈h− h0〉−4− dh . α−1|x− w|−3.

�
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