DISPERSIVE ESTIMATES FOR DIRAC OPERATORS IN DIMENSION
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ABSTRACT. We investigate L' — L°° dispersive estimates for the three dimensional Dirac
equation with a potential. We also classify the structure of obstructions at the thresholds of
the essential spectrum as being composed of a two dimensional space of resonances and finitely
many eigenfunctions. We show that, as in the case of the Schrédinger evolution, the presence
of a threshold obstruction generically leads to a loss of the natural t=3 decay rate. In this case
we show that the solution operator is composed of a finite rank operator that decays at the rate

{2 plus a term that decays at the rate t 3.

1. INTRODUCTION

We consider the linear Dirac equations in three spatial dimensions with potential,

(1) 0 (x,t) = (D + V(2))¢p(2, 1), (x,0) = o(x).

Here x € R? and #(z,t) € C*. The n-dimensional free Dirac operator D,, is defined by

(2) Dm:—ia-V—i—mB:—z’Zakak—i—mﬁ,
k=1

where m > 0 is a constant, and(with N = |2 ], the N x N Hermitian matrices o; satisfy

ajag + ago = 265k Lon  jik € {1,2,...,n}
(3) ;B + Baj = Opon

3% = Non
Physically, m represents the mass of the quantum particle. If m = 0 the particle is massless and
if m > 0 the particle is massive. We note that dimensions n = 2,3 are of particular physical

importance. In dimension three we use
1 0 0 oy
=" ;g = 7,
0 —I((:2 o; 0
0 —i 0 1 1 0
o1 = , O3 = y 03 = .
i 0 10 0 -1
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The Dirac equations (1) were derived by Dirac as an attempt to tie together the theories of
relativity and quantum mechanics to describe quantum particles moving at relativistic speeds.
The relativistic notion of energy, E = \/W , depends on the particle’s mass, momentum
and the speed of light. By combining this with the quantum mechanical notions of energy and

momentum E = ihd;, p = —ihV one arrives at a non-local equation

(4) il (2, t) = V= c2R2A + m2ch(x, t).

We note that this is formally the square root of a Klein-Gordon equation. Dirac’s insight was to
linearize this equation into a system of four first order equations. This linearization leads to the
free Dirac equation, (1) with V' = 0, which describes the evolution of a system of spin up and
spin down free electrons and positrons at relativistic speeds. This systemization allows for the
study of a first-order evolution equation, in agreement with a quantum mechanical viewpoint.
In addition, the linearization allows for the incorporation of external electric or magnetic fields
in a relativistically invariant manner, which (4) or a Klein-Gordon equation cannot. Another
benefit of this system is to account for the spin of the quantum particles. This interpretation
is not without its drawbacks, we refer the reader to the excellent text [39] for a more detailed
introduction.

The linearization, (1), retains an important property of (4) in that the free Dirac operator
squared generates a diagonal system of Klein-Gordon equations. This motivates the following

relationship, which follows from the relationships in (3),
(5) (D =N (D + ) = (—ia -V +mB — M) (—ia- V+mB+ X)) = —A+m? — \2.

Here the last line is to be interpreted as a diagonal 4 x 4 matrix operator. This allows us
to formally define the free Dirac resolvent operator Ro(\) = (D, — A)~! in terms of the free
resolvent Ry(\) = (—A — A\)~! of the Schrédinger operator. That is,

(6) Ro(\) = (D + A\ Ro(A? — m?).

Throughout the paper, we use the notation X to describe a Banach space X and the Banach
spaces of C* valued functions with components in X. Let H'(R3) be the first order Sobolev

space of the C*-valued functions, f(x) = (fi(x)){_,, of the spatial variable z = (1, x2,z3). Then,

i=11

the free Dirac operator is essentially self-adjoint on H'(R?), its spectrum is purely absolutely
continuous and equal to 0ess(Dp) = 0gc(Dp) = (—o0, —m] U [m, 00), [39, Theorem 1.1]. Under
mild assumptions on V, H := D,, + V is self-adjoint, and os5(H) = (—o0, —m] U [m, 00), [39,
Theorem 4.7].

In this paper we aim to study the dispersive bounds by considering the formal solution oper-
H a5 an element of the functional calculus via the Stone’s formula:

1

(7) e Poo(H) () = 5 /(_ o O IRE =R )

ator e~
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where the perturbed resolvents are defined by Ri5(\) = lim_,q+ (D, + V — (A £ i€)) ™. These
resolvent operators are well defined as operators between weighted L?(R3) spaces, [2, 3]. In
particular, in [3, Remark 1.1 and Theorem 3.9], it was shown that this limit is well-defined as an
operator from H%*(R3) to H»~*(R3) for any A € (—oo,—m) U (m,o0) \ 0,(H) and s > § for a
class of potentials including those which we consider in Theorems 1.1 and 1.2. Furthermore, for
the class of potentials we consider, there are no embedded eigenvalues in the essential spectrum,
except possibly at the thresholds A = +m, [40]. See also [36, 7, 41, 25, 9].

It is known that the Dirac operators can have infinitely many eigenvalues in the spectral gap,
see for example [39]. However, the work of Cojuhari [14, Theorem 2.1] guarantees only finitely
many eigenvalues in the spectral gap for the class of potentials we consider; also see Kurbenin
[32]. In fact, this result may be obtained as a corollary of our resolvent expansions as in [21,
Remark 4.7].

To discuss our main results, we briefly discuss the notion of threshold resonances and eigen-

values. We characterize both in terms of distributional solutions to the equation

Hip = map.

If v € L?(R3), we say that there is a threshold eigenvalue at A\ = m. If ¢ ¢ L?(R3), but
<x>7%*€¢ € L%(R3) for all € > 0, we say that there is a threshold resonance at A = m. An
analagous characterization holds at the threshold A = —m. We provide a detailed characteriza-
tion of the threshold in Section 4. If there is neither a threshold resonance or eigenvalue, we say
that the threshold is regular.

We take x € C°(R) to be a smooth, even cut-off function of a small neighborhood of the
threshold. That is, x(A) = 1 if |\ —m| < A for a sufficiently small constant Ao > 0, and
x(A) = 1if [A —m]| > 2)\g. For the duration of the paper, we employ the following notation.
We write |V ()| < (z)7? to indicate that each component of the matrix V satisfies the bound

|Vij(x)| < (x)7P. Our main results are the following low-energy dispersive bounds.

Theorem 1.1. Assume that V is a Hermitian matriz for which |V (z)| < (x)™7 for some B > 7.
Further, assume that there is a threshold resonance but not an eigenvalue. Then, there is a time
dependent operator K, with rank at most two and satisfying sup, | K¢|| 1 e <1, such that

< ()72

Lispee ™

| PactEnx () = ()7 )

In fact, the operator K; in the statement can be written as K; = e "™ P, + INQ where P, is
a map onto the threshold resonance space (see Proposition 3.5 below) and I?t is a finite rank
operator satisfying the family of weighted bounds ||(z) ™7 Ky(a, y)(y) |11 e < (8)77 for any
0<j<L
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Theorem 1.2. Assume that V is a Hermitian matriz for which |V (z)| < (x) 7P for some g > 11.
Further, assume that there is a threshold eigenvalue, then, there is a time dependent, finite rank

operator Ky satisfying sup, || K¢l 10 S 1, such that

| Puctry() — (072 k6|

This theorem is valid regardless of the existence or non-existence of threshold resonances.
The dynamical, time-decay estimates that we prove provide a valuable contrast to the L?-based
conservation laws. Using these estimates in concert, one can arrive at many other bounds such
as Strichartz estimates for the evolution. Such estimates are often of use when linearizations
about special solutions have threshold phenomena for other dispersive equations.

The mathematical analysis of Dirac operators is considerably smaller than the analysis of
related equations such as the wave equation, Klein-Gordon or Schrédinger equation. All of the
results on three-dimensional Dirac equations in the literature assume that the threshold ener-
gies are regular. The first paper that analyzed the time-decay for a perturbed (massless) Dirac
equation was [16]. In this paper D’Ancona and Fanelli proved a time-decay rate of t~! for large
t for the Dirac equation and related magnetic wave equations provided the potential satisfies
a certain smallness condition. Escobedo and Vega, [24] provided dispersive and Strichartz es-
timates for a free Dirac equation in service of analyzing a semi-linear Dirac equation. In [§],
Boussaid proved a variety of dispersive estimates for three dimensional Dirac equations. These
estimates were in both the weighted L? setting and in the sense of Besov spaces. In this paper it
was shown that one can obtain faster decay for large ¢t and smaller singularity as ¢ — 0 provided
the initial data is smoother in the Besov sense. We rely on the high-energy estimates in [8] to
contain our analysis to only a small neighborhood of the threshold. The high-energy portion of
the evolution requires smoothness on the initial data and potential, which we do not need for

our results. To be precise, by taking p = 1 from Boussaid’s general Besov space result, we see

Theorem 1.3 ([8], Theorem 1.2). Assume that V is a self-adjoint, C*° function that satisfies
|0V (x)| < (x)PT for some p > 5. Then, for any q € [1,00], 6 € [0,1] with s — s’ > 2+ 6, we
have

=+ o<t <1
6

—itH
He " P(H)(1 —X(H))HBf’qug;,q S { it~z |t >1

If we take ¢ = 1, and s’ = 0, this gives us a t=3 decay of the L norm of the solution,
provided the initial data has two derivatives in L! in the Besov sense.

Our approach relies on a detailed analysis of the Dirac resolvent operators. We follow the
strategy employed by the first two authors in [21] analyzing the two-dimensional Dirac equation
with potential, which has roots in the analysis of the two-dimensional Schrédinger equation by
Schlag [37] and the authors [19, 20]. In the same manner we build off the work of the first



DISPERSIVE ESTIMATES FOR DIRAC OPERATORS 5

author and Schlag, [22, 23], in which dispersive estimates for the three-dimensional Schrédinger
operators were studied with threshold resonances and/or eigenvalue. These results have been
sharpened, in terms of assumed decay on the potential, by Beceanu [4]. We note that extending
these results on the Schrédinger evolution is non-trivial even for the wave equation, see [31].

In addition to proving time decay estimates for the Dirac evolution, we provide a full classifi-
cation of the obstructions that can occur at the threshold of the essential spectrum at A = +m.
For the Schrédinger equation in three dimensions, there can be a one dimensional space of res-
onances and/or finitely many eigenfunctions at the threshold. This classification is inspired by
the previous work on Schrodinger operators [29, 22, 19], though the rich structure of the Dirac
operators provides additional technical challenges.

Further study of the Dirac operator in the sense of smoothing and Strichartz estimates has
been performed by a variety of authors, see for example [10, 12, 13]. In the two-dimensional case,
the evolution on weighted L? spaces was studied in [30], which had roots in the work of Murata,
[34]. Frequency-localized endpoint Strichartz estimates for the free Dirac equation are obtained
in two and three spatial dimensions in [5, 6], which are used to study the cubic non-linear
Dirac equation. Dispersive estimates for a one-dimensional Dirac equation were considered in
[15]. During the review period for this article, the first two authors and Goldberg established
Strichartz estimates and a limiting absorption principle for Dirac operators in dimension n > 2,
[17].

In the paper we use the following notations. The weighted L? space L*?(R3) = {f : () f(-) €
L?(R3)}. We also write a— := a—e¢ for an arbitarily small, but fixed € > 0. Similarly, a+ := a+e.

The paper is organized as follows. We begin in Section 2 by developing expansions for the
Dirac resolvent operators. In Section 3 we prove the dispersive bounds in all cases by reducing
the bounds to oscillatory integral estimates. Finally in Section 4 we provide a characterization

of the threshold resonances and eigenfunctions.

2. RESOLVENT EXPANSIONS AROUND THRESHOLD

In this section we obtain expansions for the resolvent operators Rﬁ()\) in a neighborhood of
the threshold energies +m. It is well-known (see e.g. [26]) that the resolvent, RE(22), of the

free Schrodinger operator is an integral operator with kernel

etizlz—yl o

+0.2y _ — e
(8) Ry (2%) ppp— jZ::O(izz) Gj, where
1 '_1 .
(9) Gj(xvy) = . x_yP J :051727"'5'

47y!
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Here we review some estimates (see e.g. [26, 22]) for Roi(zQ) needed to study the Dirac evolution.

To best utilize these expansions, we employ the notation

to denote , ,
a’ d’ )
@f_o(@g)7 J _07152535'"

The notation refers to derivatives with respect to the spectral variable z, or |z — y| in the
expansions for the integral kernel of the free resolvent operator, which depends on the variable
p = z|lz —y|. If the derivative bounds hold only for the first k derivatives we write f = Op(g).
In addition, if we write f = 6k(1), we mean that differentiation up to order k is comparable to
division by z and/or |z — y| as appropriate. This notation applies to operators as well as scalar
functions; the meaning should be clear from the context.

In the following analysis we will obtain the expansion on the positive portion [m,c0) of the
spectrum of H. A similar analysis with minor changes can be performed to obtain an expansion
for the negative portion (—oo, —m], see Remark 2.9.

Writing A = v/m?2 + 22 for 0 < z < 1, and using (6), we have

(10) RF(\) = [—ia-V+mB+ Vm?+ 22I| Ry (2%) =

2
[—ia-V+m@B+I)+ ;—mI +O(HIRE(R?).

For convenience we define M,,. and M. to be 4 x 4 matrix-valued operators with kernels

I 0 0 0
Muc = 2 ’ Mlc = .
0 0 0 Ioxo

We also have the following projections I, = 5(8 + I) and I;. = (I — ), by

a a a 0

b b b 0
Iuc = 9 IlC =

c 0 c c

d 0 d d

In our expansions we will consider only the ‘+’ case due to the simple relationship between the
resolvents RE(\).

Lemma 2.1. Letr:= |z —y|, A\=+v22+m?2, 0 < z < 1. We have the following expansions for

the free resolvent

(11) RE(A) =Go+O(2(1+7r71),

(12) = Go +i2G1 + Oz (2%r + 2%r71),

(13) = Go +i2G1 — 2%Go + Oa (%1% + 2577 1),
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J
(14) = (i2)G; + Oa (27T H 4 2771y T > 3,
7=0

for any 0 < £ <1, where

o - Iuc
(15) Gole,) = (D + mI)Ci(o,) = i+ + 2Ll Gale) = ‘gt t) T
m
(16> gl(x7y) = %Muc(xﬁl/),

(17)  Ga(z,y) = [—ia -V + 2ml,]Ga(z,y) — %Go(x, Y),
Gi(z,y) = Oz —y)’™ "), j=3.

Proof. We will only prove (11) and (14) when J = 3. The proof of the other expansions and the
case J > 3 are similar. First using (8) we have

etizlz—yl

0.2y _ _
Ry (2%) = ppp— Go + O(z), and

VR (2*) = VGo + O(zr™1).
The expansion (11) follows immediately.

To obtain (14) when J = 3, again using (8) we have

etizlz—yl -
=Gy +i2G) — 22Gy —iz3G3 + Ox (T2, 0< 1 <1,

+(,2) _
B (&)= ey
VR} (%) = VG — 22V Gy — i2°VGs + Oa (23T +), 0 < < 1.

Using this in (10), we have
RE(\) = —ia- [VGo — 22V Gy — i2°VGs] + 2mI,.(Go +i2G1 — 22°Gy — iz°G3)

2 ~
+ gfm(Go +1i2G1) + O (z3+£r1+£ 4 32+t 4 2.

Note that (for 0 <z < 1land 0 </¢<1)
0, (z3+€1"1+£ + 32t 247‘_1) =0y (z3+€7°2+Z + z3+gr_1).
Collecting the terms with same z power, and noting that
VG| + |Gs| +[Gi| S (& —y)?
yields the claim. d

To obtain expansions for RiF(A) = (Dy, +V — (A £i0)) ! where A = v/22 + m? we utilize the

symmetric resolvent identity. First note that, since V : R3 — C**4 is self-adjoint, we can write
V = B*AB = B*|A|2U[A|2B =: v*Uv, where

A= diag()\l, A2, A3, )\4), with )\j € R,
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1 1 1 1
A2 = diag(M2, [A]2, [As]2, [ A4]2).
U = diag(sign(A1), sign(A2), sign(Az), sign(Aa)).
Defining A*(2) = U + vRE (V22 + m2)v*, as in [21], the symmetric resolvent identity yields
(18) Ry (A) = Ry () = Ry (Mo* (A7) 7 (2)oRg (A).

Note that the statements of Theorems 1.1 and 1.2 control operators L' (R?) to L>°(R?), while in
our analysis we invert A¥(z) in the L?(R?) setting. Since the leading term of the integral kernel
of RF(A) has size |z —y|~2, see (15), it does not map L'(R3) to L? (R?). However, Remark 2.4
below shows us the iterated resolvents provide a bounded map between these spaces. Therefore
to use the symmetric resolvent identity, we need two resolvents on both sides of (A%)7!(z).

Accordingly we have
Ry (A) =Ry (V) = Rg(MVRF(A) + Ry WVRE(DVRF(A).

Combining this with (18), we have the identity

(19) RF(N) =Rg(N) = RFAVRG(A) + Ry (MVRG (AMVRG (A)
+ Ry (VVRF (A" (AF) " (2)oRg (AWVRG ().

Lemma 2.2. Let |V (z)| < (x) ™% where 8> 2, let 1 <1,k <3, withl+k <5 and o > 3. Then
we have
<1

2,—0c NV
Y

sup
z€R3

1 1
V()| ——d ‘
/|xx1|z’ (951)|’y7x1‘k ),

The conclusion remains valid in the case | or k is zero, provided l +k < 3, 8 > 3 and o > %
For the proof of Lemma 2.2, we use the following lemma from [18].

Lemma 2.3. Fizxuj, us ER" andlet 0 < k,l<n ,B>0,k+1l+8>n,k+1#n. We have

/ ()=~ v < { (\uliuﬂ)max(o’kﬂfn) lup —ug| <1,
R

" ‘JJ _ ul\k|x _ u2|l ~ (m)min(k,l,k—kl-‘rﬂ—n) ’U1 _ u2| > 1.

Proof of Lemma 2.2. Using 2.3 we can obtain the following bound when I,k > 1 and [ + k < %.

-8 1 1
/ <xli ldl‘l 5 + 3
rs |2 — 21|F|z1 — Y o=yl o —y|3-

provided 8 > 2. Note that when k£ + [ = 3 we can apply the lemma after using the inequality

1 1 1
— < ——— for any a,b > 0.
ab? ™~ ab*~ + ab?*+ Y
This yields the first part of the lemma since for ¢ > % we have
— -0
sup LS , sup ) <1
TER3 |‘T - y|§_ L2(R3) z€R3 |.’E o y| LZ(RS)
Y
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If at least one of [, k = 0 then we pick 5 > 3 so that

—B- _3_
sup / <l‘1l>€ jdry S1e Lz’ 27 (R3).
veR3 Jre [T — 21|F|21 — Y

Remark 2.4. Using Lemma 2.2 one can conclude that for any |V (z)| < (z)72~ and 0 > 3,

sup [|Ry (MVRG (Ml 2+ S (2)%.
zeR3 Y

Indeed, using (10), we have

1 (z)
Ro(N)| <
| 0( )|/\J ‘.’L'—.’I,'l‘2+’.%'—$1’

and accordingly,

[Ro(A) (@, 21)V (z1)Ro(N) (21, 9)| S ()7 D |
l,ke{1,2}

(1)~

x =z |fly — 2|V

This gives the claim by Lemma 2.2.

Definition 2.5. We say that an operator T(z) with kernel T(x,y) is absolutely bounded if
|T(x,y)| gives rise to a bounded operator from L*(R3) to L?(R3). We use the representation
T(z) = 5j(zp) if T(2) satisfies the bounds |||0FT(2)||| 22 < 2P7F for k=1,2,3,...,5.

Definition 2.6. An operator T is Hilbert-Schmidt if its kernel T (x,y) satisfies
1Tl5s = [ [ 17G9)Pdady < o,
Rn JR®

Hilbert-Schmidt operators and finite rank operators are absolutely bounded.

We have developed expansions for R (\) using the Schrédinger resolvent Ry (22). We develop
expansions for A(z) := AT(z) when z > 0 and A(z) := A~ (—z) when z < 0. It follows from
from (8) that A~ (z) = AT(—2).

Lemma 2.7. Let |V (2)| < (x)™7 for some B > 0, and define Ay := U + vGov*. Then we have
the following expansions for A(z) when |z| < 1.
A(z) = Ag + i20G10* — 220Gov* — i230G3v* + My(2),
= Ay + i20G10* — 220Gav* — i22vG3v* + 2uGav* + i2%vGsv* + Mi(z), where

Mo(z) = O2(2*%) if B> 7 and Mi(2) = O2(z°T) if B> 11.

Proof. By the Definition 2.5 it is enough to show that [0%My(2)(x,y)|lxrs < 2B¥* and
105 M (2) (2, y)|| s < 2O~F)F for the given value(s) of 3. Using the expansion (14) with J = 3
and J = b respectively, and ¢ = 0+ we have

o) )] 20 (ML oo — 2410 )
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it ()] 200 (ML oo — 110 )

for k=0,1,2. % is Hilbert-Schmidt provided |v(z)| < (x)~1~, and for p > 0, |v(z)||z —
y[P|v*(y)| is Hilbert-Schmidt provided |v(x)| < <x>_p_%_. O

Lemma 2.7 together with Lemma 2.11 shows that the invertibility of A(z) as an operator on

L? for small z depends upon the invertibility of the operator Ay on L?. Before we discuss the

invertibility of A(z) we give the following definitions for resonances at the threshold A = m.

Definition 2.8. (1) We say that A\ = m is a regular point of the spectrum of H = Dy, +V

provided Ag = U + vGov* is invertible on L%(R3).

(2) Assume that A = m is not a regular point of the spectrum. Then we define S1 as the

Riesz projection onto the kernel of Ay as an operator on L*(R3). In this case Ag+ Sy is
invertible. Accordingly we define Do := (Ag + S1)~'. We say that there is a resonance
of the first kind at the threshold (A = m) if SivG1v* Sy is invertible in S1L?, in this case
we define Dy := (S1vG1v*S1) L.

(8) Assume S1vG1v*Sy is not invertible. Let Sy be the Riesz projection onto the kernel of

S1vG1v* Sy as an operator on S1L?*(R3). Then S1vG1v* Sy + Sy is invertible on Sy L?(R3)
and we denote Dy := (S1vG1v*S) + Sg)*l. We say there is a resonance of the second
kind at threshold if So = S1 # 0. If So # 0 and Sy # S1, we say there is a resonance of
the third kind.

Remark 2.9. (i) We provide a full characterization of the threshold obstructions and relate

(i)

(iii)

them to various spectral subspaces of H = D, +V in Section 4. In particular S1 # 0,
S1 # Sy corresponds to the existence of a resonance and Sy # 0 corresponds to the existence
of an eigenvalue at the threshold. A resonance of the first kind indicates that there is a
threshold resonance but not an eitgenvalue.

Note that vGov™* is compact and self-adjoint. Hence, Ag is a compact perturbation of U and
it is self-adjoint. Also, the spectrum of U is in {—1,1}. Hence, zero is the isolated point
of the spectrum of Ao and dim(Kera,) is finite. Since Sy < S1, Sa is also a finite rank
projection. In addition, if there is resonance of the first kind then the range of Sy is at
most two dimensional, see Corollary 4.4. Heuristically, the rank of S1 being at most two
corresponds to the possibility of having a ‘spin up’ and a ‘spin down’ resonance function at
the threshold energy.

We do our analysis in the positive portion of the spectrum [m,o0) and develop expansions
of Ry around the threshold A = m. One can do the same analysis for the negative portion
of the spectrum taking A = —v/22 +m?2. In this case the perturbed equation has a threshold

resonance or eigenvalue at A = —m is related to distributional solutions of (H+mlI)g = 0.
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(iv) We have
DyS1 = 51D = 51,

and similarly for So and Dyo. We prove below that Dq is absolutely bounded. The absolute

boundedness of D1, Ds is clear since they are finite rank operators.
Lemma 2.10. The operator Dy is absolutely bounded in L*(R3).
Proof. Recall that Dy = (U + vGov* + S1)~!. Using the resolvent identity twice we obtain
(20) Dy =U — U(vGov* + S1)U 4+ Do(vGov™ + S1)U (vGov™ + S1)U.

Note that U is absolutely bounded. Also note that since .S; is finite rank, any summand con-

taining S is finite rank, and hence absolutely bounded. Using (15), we have

|go($,y)‘ < Cl]l(l‘ay) + CQIQ(IL‘ay)v

where I; and I are the fractional integral operators. One can see that these two operators
are compact operators on L>? — L[?>77 for ¢ > 1, see Lemma 2.3 in [27]. Therefore vGyv* is
absolutely bounded.

It remains to prove that
(21) Dovgov*U’UgoU*U = Dovgovgov*U

is absolutely bounded. Recalling the definition of Gy given with (15) one can see that the
operator vGyV Gov*U is Hilbert-Schmidt by Lemma 2.2 for any |v(z)| < (x)~2~. Finally, being
the composition of a bounded operator, Dy, and a Hilbert-Schmidt operator, vGyV Gov*U, (21)
is Hilbert-Schmidt and hence absolutely bounded. O

We use the following lemma from [29] to invert the operator A(z) = U + vRo(V 22 + m?)v*

around z = 0, (A =m).

Lemma 2.11. Let F C C\ {0} have zero as an accumulation point. Let A(z), z € F, be a family
of bounded operators of the form

A(z) = Ag + zA1(2)
with A1(z) uniformly bounded as z — 0. Suppose that z = 0 is an isolated point of the spectrum
of Aoy, and let S be the corresponding Riesz projection. Assume that rank(S) < oco. Then for
sufficiently small z € F the operators

1
(22) B(2) = ~(S = S(A(2) + S)~18)
are well-defined and bounded on H. Moreover, if Ay = Af, then they are uniformly bounded as
z = 0. The operator A(z) has bounded inverse in H if and only if B(z) has a bounded inverse
i SH, and in this case

(23) A71(2) = (AG) +8) + L(A() + 8) 7 SB)S(A() +9)



12 ERDOGAN, GREEN, TOPRAK

Lemma 2.12. Suppose that A\ = m is not a reqular point of the spectrum of H = D,, + V', with
[V (z)| < (x)~P for some B > 0, and let Sy be the Riesz projection from Definition 2.8. Then
for sufficiently small zo > 0 , the operator A(z) + Sy is invertible for all 0 < |z| < z0 < 1 as a
bounded operator on L?(R3) — L%(R3). Further, one has

(A(Z) + Sl)_l =Dy — iZ[Dovglv*Do] + ZQ[D()UgQ’U*DO — ngglv*Dovglv*DO]

+ 23T + 63(z3+) for B >17,
(25) (A(Z) + Sl)il =Dy — iZ[Dovglv*Do] + ZZ[D()'UQQU*DO — ngglv*Dovglv*Do]
+ 2°Tg + 2T + 2°Ty + O5(2°1) for B> 11.

Here Ty, I'1 and I'y are z independent absolutely bounded operators.

Proof. We use Neumann series expansion using Lemma 2.7. The operators 'y, I'1 and I'y are
absolutely bounded since they are composition of Hilbert Schmidt operators with absolutely

bounded operators. O

The following lemma gives an expansion for A~!(z) for 0 < |z| < 29 when there is a resonance
of the first kind at threshold energy.

Lemma 2.13. Let |V (z)| < (x)~7~. If there is a resonance of the first kind at the threshold
A =m, then .
A7 (z) = —éslpls1 + E(2)

where E(z) is an absolutely bounded operator satisfying

sup |0 E(2)]|

|z|<z0

for k=0,1, and ||02E(2)||| 2512 S 27

S1
L2112

Proof. Recall that using Lemma 2.11 in order to invert A(z) first we need to check the invert-
ibility of
B(z) = (51 - Si(A(z) +51)7'81)
on S1L2. Noting that S; Dy = S; and using (24), we have
(26)  B(z) = iS10G10* S| — 2[S10Gov* Sy — S10G1v* DovGiv* S1] + 228100 St + Oa(22).

Recall by Definition 2.8, if there is a resonance of the first kind then SyvGiv*S7 is invertible.

Hence, B(z) is invertible and for sufficiently small z, we have
(27) B7Y(2) = —iDy + 23 4 2°T4 + Oy(2*1).

Note that I';’s in here are composition of z independent, absolutely bounded operators. The

absolute boundedness follows since S7 is finite rank.
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Using this expression together with (24) in (23), we have
A7) = (AG) + 807+ (AG) + $1) IS ESI(AG) + )
= _gslplsl + 215 4+ Oy(2'1) = —gslplsl + E(2).
The bounds on the operator E(z) follow from (24) and (27). O

The following lemma gives the expansion for A=!(z) in the cases when there is a resonance
of the second or third kind at the threshold, that is when there is a threshold eigenvalue.

Lemma 2.14. Let |V (z)| < (x) =1, If there is a resonance of the second or third kind at the

threshold A = m, then we have
1 1
Ail(z) = ——252D35’2 + -0+ E(z)
z z
where SoD3Ss and ) are finite rank operators. Furthermore,

| sup [OXE(2)|| 22 S 1 for k=0,1, and [|02E(2)|| 122 S 271
|z|<z0

Proof. Recall that in this case the operator SivGv*S1 is not invertible and we defined Ss to be
the projection on the kernel of S1vGiv*S1. In the following proof we use Lemma 2.11 twice; to
first invert B(z) and then to invert A(z).

Noting the leading term of (26), in order to use the invertibility of So + S1vG1v*S] we invert
—iB(2) + S2 on S L?, and use Lemma 2.11 to invert —iB(z), hence B(z). Using the expansion
(25) in (22) we have

—iB(2) 4 Sa =[S2 + S1vG1v*S1] + i2[S1vG2v* Sy — S1vG1v* DyvGiv*Sy] + 2°Tg
+ 23F7 + Z4F8 + 52(z4+).
with I'; absolutely bounded operators independent of z.

We denote Dy = (S1vG1v*S1 + S2)~!. By Neumann series expansion for small |z| we have

(28) (—lB(Z) + SQ)_I == D2 — iZDQ[SvaQU*Sl — Slvgl’U*D(ﬂ)gl’U*SﬂDg

+ 2209 + 2°Tyg + 24711 + Oa(2*1),
where the I';’s are absolutely bounded operators independent of z. Then, noting that 515 =
S951 = 82, S2Dg = D3S3 = 5o,

Sy — Se(—iB(z) + So) 1S,
- z
= 15vG90* Sy + ngglv*Dovglv*Sz + 255I'9 Sy + 22S2P1052 + 2352F1152 + 02(23+)

= 150G S5 + 2551795 + ZQSzrl()SQ + 235’2F1152 + 52(2’3+).

B1 (Z) :
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For the third equality we used that Giv*Sy = 0, (see Corollary 4.3). By Lemma 4.5, the operator
SovGav* Sy is invertible on SyL?. Letting D3 := (S2vGov*S2)~! we have

(29) Bi(2)7! = —iD3 + 2T19 + 2°Ty3 + 2°T14 + Oa(231).

Here I';’s are finite rank operators since S is finite rank. Further, they are independent of z.
Using this expression in (23) for (—iB(z))~! =iB~!(z), we have

BY(2) = —i(—iB(z) + S2) " — 2 (<iB(2) + 82) ' $2(B1(2)) ' Sa(—iB(2) + 82) 7.

Plugging this in (23) we have,

(30) A7(2) = (A=) +5) 7 = L[(A(2) +81) 81 (iB(2) + 52)7 S1(A) + 51) 7]

— % (A(z) + S1) 71 S1(—iB(2) + S2) 1S By 1 (2)Sa(—iB(2) + S2) ' S1(A(2) + 51)*1],

Inserting the expansions (25), (28), and (29) in this equality we obtain
1 1 ~ 1 1
A(Z)fl = —?SQDSSQ + ;Q + Q() -+ ZQl + 02(21+) = —?SQD?,SQ + ;Q + E(Z)

Here 2;’s are absolutely bounded operators independent of z. Also, 2 is a finite rank operator.
Note that by (30), Q is the sum of a composition of z independent operators, at least one of

which is S or S3. The fact that S and S5 are finite rank operators establishes the claim. [

3. DISPERSIVE ESTIMATES

In this section we prove Theorems 1.1 and 1.2 through a careful analysis of the oscillatory
integrals that naturally arise in the Stone’s formula (7). We divide this into three subsections.
First, in Subsection 3.1, we consider the Born series terms and show that they satisfy the bound
<t>_g as an operator from L'(R3) — L*(R3). In Subsections 3.2 and 3.3, we show that the
singular terms that arise in the expansion of the spectral measure when there are threshold
resonances or eigenvalues yield a slower time decay rate, but are finite rank operators.

Recall the expansion (19) for the perturbed resolvent. To emphasize the change of variables
and dependence now on the spectral parameter z, we write the resolvents as Ro(z) rather than
Ro()). Under this identification, we have Ry (2) = R (—2). Without loss of generality, we take
t > 0, the proof for ¢t < 0 requires only minor adjustments. We consider integrals of the form

below for the contribution of the finite terms of the Born series (19) to the Stone’s formula (7).
< k _ Wk
|t [RE@VRE ()" - Ry (VR ()]

Recall that A = v/22 + m?, we can re-write this as

(31) /0 h e"W”mQ\/;Xiiz)mQ R (VRE ()" = R () (VR (2))"] d=.
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We utilize from the following consequence of the classical Van der Corput lemma, [38].

Lemma 3.1. If ¢ : [a,b] — R obeys the bound |¢"(z)] > t > 0 for all z € [a,b], and if
Y : [a,b] = C such that o' € L'([a,b]), then
1
m{w o1+ [ 1t rdz}

3.1. The Born Series. We have the following lemma for the finite terms of Born series.

b
/ @y (2) dz

Proposition 3.2. Let |V (z)| < (x)73~. Then for any k € NU {0}, the following bound holds

@) s | [T 2 [rp (R - Ry (vR;) ] ()] < (07

We use the algebraic identity
- k—¢
(33) Ry (VR =Ry (VRy) =3 (R ~RoJ(VR7)
(=0

Lemma 3.3. We have the following bounds on the first derivative of the difference of free

resolvents.
Ry = Ry1(2)(z,y) = O1(2).

Furthermore,

(34) O.[RE — Ry 1) — ) = o (W) sin(zlz — y])

2w r—y

z sin(z|z — yl) cos(z|lx — yl)
+ + (mB+ V22 +m2l)———==.
2nv22+m2 |z —y| (m5 ) o2m

Proof. Note that

girli—yl _ g—izli—y|
(35) [RE - R3)(2)(,y) = ]

1—[m V+mﬂ+v%?+ﬁ[ m—m
L SB[ =]

[z =yl [z =yl
Using this representation, we express the difference of free resolvents with two pieces. We ignore

the constant factors. We first consider A(z,|z —y|) = « - V[W], which satisfies the

bound O1(22). By direct computation, we have

Xx—W]FM—yN%@M—yD—ﬂM4w—mq‘

|z — 1y |z —y|?

Azl =) = [a



16 ERDOGAN, GREEN, TOPRAK

First if z|z — y| > 1, using |2 — y|~! < 2 establishes the desired bound. To see the inequality
for z|z —y| < 1 note that by Taylor series expansion one has s cos(s) — sin(s) = Oy (s?). Taking
derivative of A(z,|x — y|) we have
a-(z=-y)\ .
0 A(z, |z —y|) = ()zsm(z\:c —yl).
’ |z — ]
The desired bound easily follows from this explicit representation.

We move to the second part of (35) let B(z, |z —y|) :== (mB+V22 + m?I) Smfjmy‘yl A direct

computation shows

z sin(zlx —y
0.B(z,|lx —y|) = N ‘(QJ_ J D + (mB + V22 + m?I) cos(z|x — yl).

As before, considering the cases of z|x — y| 2 1 and z|z — y| < 1 separately suffices. O

Proof of Proposition 3.2. Using the identity (33), we fix £ and consider the contribution of

(36) | /0 N e”w"’*m"’\/;xiiz)nﬂ [(RGV)'IRE = RG1(VRE)" ] () (w0, w)dz|.

For notational convenience let J = {0,1,2,...,k} \ {¢}, J- = {0,1,...,£ — 1} and JT =
{+1,0+2,...,k}. Note that one of J~ or J* may be empty. We first establish that integral
is bounded. Using the expansion (10), we have (when 0 < z < 1)

eiiz|a:7y\
. _ 1 +izlz—y|
(37) = K‘M) [iiz + ] + (mB +V/22 m2I>] S
[z =yl |z =y dmlz —y|
. 1 1
_ el k <
€ 1 zaxay)v sSup |8 H1(z,3:,y)| ~ + ’
zl<z0 lz—yl |z —yl?
for each k£ =0,1,2,.... Furthermore,
iz|lz—y|
38) 9.RE(2)(x, [ ( j:zm +iv 22+ m?l + : ]e
:eiizlx_y‘HQ(zaxvy)a Sup |05H2(vaay)| 51—1_ k:07172
|z|<z0 ’ - y’

From this we see, for 0 < z < 1,

. 1 1 ,
39 OgRiz x,y S( + > x—yl, j=0,1,2.
Using this bound and (36), the z integral is clearly bounded due to the cut-off to 0 < z < 1,

/000 e—ith2+m2L(Z) [(’REV)Z[RS' - Ry] (VT\’,S')kiq (xo, xk)dZ’

sup
z0,r;ER3 V22 +m?
1
< sup H |V (zp ]H 5 | dridzs ... dog.
z0,2,ER3 JR3k =1 |$] - $]+1’ ’ Lj— xj-i-l’

jeJ
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This is seen to be bounded uniformly in zg, z;, using Lemma 2.3 to iterate the bound

1 1
sup / (%‘>2< + 2) dj <1,
2;41€R3 JRS zj — zjpa| |z — @i

first integrating in x.

To establish the time decay, we integrate by parts once then use Lemma 3.1. Integrating by

parts once leaves us to bound
1 [ _
: / TIVEEE, (M@ (RgV)'IRE ~ Re1(VRE) ) (2) d=.

0

Note that there is no boundary term since [R4 — R, ] = O1(z) by Lemma 3.3 and by Lemma 2.1
the free resolvents are bounded with respect to z, and the support of x. We consider two cases,
if the derivative acts on the difference of resolvents or on a resolvent. If the derivative acts on
the cut-off function, we can easily integrate by parts again with the existing bounds. We first
consider when the derivative acts on difference of resolvents. From the representation in (34),

we can write

O.IRE — Ry (=) s men) = €041 A (2, [ — )
+ e*iz‘”*”“lAg(z, |xe — psq]|) + 51(2),

with
0] A1(z, [we — wepa )], 102 Aa(z, o — o) S 1, 5 =0,1.

The error term comes because we have | \/zﬁw Singf”] = O1(z). With a slight abuse of notation,
we denote both the operators A; and Ay by a(z). Combining this with (37), we need to bound

terms of the form

0

t
—iz|rj—x; 1z|Tp—
H el 7+1|H1(z,1:j,xj+1) H e#le p+1‘H1(Z,l‘p,l‘p+1)dZ.
jeEJ~ peJt

We apply Lemma 3.1 with

P(z) = —t 2’2+m2—2’< > lws =zl vl — x| = ‘xp_xp+1‘>a

jeJ— peJt
where v € {—1,0,1}, and
¥(2) = a(z) + 01 (2)] [ [ Hu(z, 2, 2541).
JjeJ

We may again bound the contribution of the spatial integrals by Lemma 2.3.

1 1
V(xp) + >d:v1da:g...d:ck§.
/Rsk 1;[ vl (% —zjr1] vy — wj4]? t3

jeJ
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On the other hand, if the derivative hits one of the iterated resolvents, we have to bound

% / T VI (R (RE — Re10. (VRE) T (2) d.
0

Using Lemma 3.3, we have [Ry — Ry 1(2) (e, 2et1) = O1(z). Then, using (37), we have
(RJV)Zaz (VRar)k_e(z) — (st lp—Tpt1|= e - \xj—a;jm)b(z)’

where

1 k
b(=)1, 10:b(= \<Z!1‘e—1‘e+1!H< P Z)va).

Pt iy ;= xjpa| oy — @i =1
Combining these bounds we have to bound

1/0O e~V AmAtiz( e st lep—ap| =20 e - |Ij*xj+1|)¢(z) dz
t Jo ’

where 1(z),v’(z) are supported on a small neighborhood of z = 0 and satisfy

1 k
), 1000 S S e — 2ot [ (m L _%2) v,
r=1

Led+t jeJ

Thus, we apply Lemma 3.1 to bound the spatial integral

k
1 4
sup /RSk Z |T¢ — o4 H < + z; —xj+1]2> ,,1;‘[1<$T> dzidzsy . .. dxy.

20,25 ER3 t3 gt |25 — @4

Using Lemma 2.3, first in 2, we show that the spatial integrals are bounded uniformly in xg, Tx+1

by iterating the bound

1 1
sup / ()73 <1 + + 2) dzj S 1.
zj41€R3 JR3 25 — @jpa| |z — 2

O

We finish this subsection with the following general lemma which will be useful in the following

subsections.

Lemma 3.4. Assume that the operator E(z) with kernel E(z)(x,y) satisfies (for 0 < |z] < zp)
NOZEG) (@ 922 S 1, k=0,1, and [[|02E(2) (2, )l respe S 27
Also assume that the operators E1(z) and Ea(z) satisfy (for some o > 0)
‘8]“ 2)(x, y)’§(|$—y|72+\x—y]a), j=0,1, k=0,1, and
132 ()| Sz (Jlo—yl P+ e —yl*), §=0,1.

Let |V (z)| < (x)# for some B > 2a+ 3. Then,

sup < (t)e.

3 / eV _XC) Ry it BBV Ro ) () (o )z
z,y€RS 0

vVm? + 22
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Proof. We start with bound for small ¢. Using the bounds in the hypothesis for £ = 0 and using
|Ro(2)(x,y)] <1+ |z —y|~2 from (37), we estimate the z integral by

/OO x(2)¥(z)dz, where

—0o0

dxldxgdyldyg.

(14772 +719) (ra24+r9) (1 +17,2)
v = [ L2 78) | B2 (g, ) L2 F T T
Rtz (21)P(22)> (y2) = (y1)P
Here r1 := |z — x1|, 7 := |21 — 22,73 := |y2 — y1|, 74 := |y1 — y|. We can bound ¢ by

14+ =2 (r32 4 rg 2 L4 (rg? + 18 2
H/RS( 1)y 2)d1:‘ /3( 1) (r3 3)dy‘

H|E(z)|HL2—>L2

8 B

(1) (22) L, &) (1) (o) I3, )
Note that using Lemma 2.3
1 —2 —2 o 1

/ A7) ;r2)d$1§/ 5 dm1+/ rf2r52<x2>_§dx1

3 B b 3 B—a s« 3
R (1)P(z2)2 R? (21)P~%(22) 2 R

_8 _ _B
Sao) 2t |z — x| Hao) 2 € L§2,

uniformly in = provided that 8 > 2ar+3. This finishes the proof since H |E(2)] HLQHLQ is bounded
on the support of x.
Now we consider the claim for large ¢t. After an integration by parts we have to bound
1

Z / eit\/maz (X(Z) [ROVElv*E’UE2VRO] (:Ea y)) dZ.
—0o0

Now using Lemma 3.1 with the phase ¢ = tv/22 + m? + 2r1 + 2r4 we estimate the integral above

by
] /OO
‘1‘2 —00

Note that using (37) and (38) we have

o, [e—i2<’"l+"4>az (X(z) [RoV Evv* EvEsVRo](z, y))} ‘dz.

[Rol, [0:Rol, [0.e~ IR |, [0, MO Ro| S 1+ | — g .

The proof now follows from the calculation above for small ¢; the only difference is, if both
derivatives hit E (or one of Ei, Es), the z integral will have a harmless 2~!* term, which is

integrable on the support of x(z). O

3.2. Dispersive estimates when there is a resonance of the first kind. In this subsection
we consider the case when there is a resonance of the first kind at threshold energy, that is when
S1 # 0 and Sy = 0, in which case Sy is rank at most two by Corollary 4.4.

In the previous section we established the contribution of the first three terms in the expansion

(19) to the Stone’s formula (7). Now we turn to the last term in (19), we need to analyze

> —itVz?+m 2,4% * —
(40) /O e—itVEF 2¢22(+7)m2[mgvno+v (AT oREVRE](2)
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- [RgVRgv*(A—)—lngVRg](z)}dz.

Recalling the discussion immediately preceeding Lemma 2.7, we identify Ry (—z) = R () =
Ro(z). Similarly, A= (—z) = AT(z) := A(z). Hence, by a change of variable we can extend the
integral (40) to the whole real line and obtain

v AX(2)
40) = / emitVEAmt_ 2T 1R VRov* AT WRoV R (2)(x, y)dz.
(w)=[ Tl I(2)(a.9)
In contrast to the analysis of the Born series in the previous subsection, we extend the integral
to the real line. This will allow us to integrate by parts without boundary terms and, after a
change of variables, use Fourier transform techniques.

Note that we have

H e / e_itmL(z)RVR VAT WROV R (2) (2, y)dz
e ey | \/m[ oV ’c0 oVRol(2)(z,y)

< S|u|p ‘[Ro(z)VRg(z)v*[zAil(z)]vRo(z)VRo(z)](a:,y)‘.
z,Y,|% <zo
By Lemma 2.13, |z| |A71(2)(z,y)|/z2.z2 < 1 on the support of x. Then, by Remark 2.4 we

have

[CRDIS sup, IR0V Rov")(, 22) 2, 1247 ()l [l 22 2 [ VRV Rol (2, ) 22, S 1,
7ye
which shows the boundedness of (41) as ¢ — 0. Hence, to establish the claim of Theorem 1.1, it

will be enough to prove the following proposition for any ¢ > 1.

Proposition 3.5. Under the assumptions of Theorem 1.1, we have

oo
—it\/z24+m?2 zx(2) % g—1 _ i —imt -3
/OO e 7\/22—1—77712[730‘/730@ AT ROV R (2)(z,y)dz =t 2 "™ Ki(x,y) + O(t™ 2),
where the error term holds uniformly in x,y; Ki(z,y) = Pr(z,y) + Ki(z, y) is a time dependent
operator of rank at most 2 satisfying sup, | K¢l < 1 and |Ki(z,y)| < (@) (y)7 &) for any
0 <5 <1. Moreover,

2 (=2 )g
= E cij(x ), where ¢; = — m and
5 2
j=1 ma2 ”Mucv¢j”c4

Yj € L2 (R} N L¥(R®), (D +V —mil)ih; =0,
(MucVthi, MucVabi) = || MucVjl|Zadij, 4,5 =1,2.

Here co = 0 iff rank(S1) =
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To establish Proposition 3.5, using the expansion in Lemma 2.13, it suffices to consider the

following integrals

[T R ) R (2)0” 1 Dy S10Ro()V Ro2)] o 90,

/oo eit\/m\/%[730(Z)VRO(z)v*E(z)URo(z)VRo(Z)](l’,y)dz.

The second integral is O((t)~3/2) using Lemma 3.4 provided that 8 > 5. Indeed, the required
bound for F is given in Lemma 2.13, and for 1 = E3 = Ry the hypothesis is satisfied with

(42)

a =1 using (39).
Now we consider the first integral in (42). Using (10) for Ro(z) and (8), and letting F'(z,y) :=

ﬁ[ia . |§E:gly|)2 + 2ml,.], we have

6iz\a¢—y| (.CU . y) 6iz|z—y\
(43) Ro(2)(x,y) = F(z,y)—— + |iza - +(V22+m2—m)[|——.

lz — 9] |z — y dr|z — y|
Hence,
(44) Ro(2)(z,21)Ro(2)(z1, 22)Ro(2)(y2, y1)Ro(2) (Y1, v)

120 )
= F(z,21)F (21, 22)F(y2, 1) F (y1,y) ———— + 2E(2)e,
172737y

where § = |z — z1| + |x1 — x2| + |y2 — v1| + |y1 — y| := 71 + 2 + r3 + r4 and E(z) satisfies the
bound

4
, 1 1
@I ST (545 ) -0
i=1 ¢ !

Therefore, for the first term in (42) is given by

(45) F($7$1)F(CL‘1,$2)F(y27y1)F(y17y)/ =itV rmE+iz0 X(2) ds

T1T2T3Ty oo V22 +m?
* avaEEmz AX(2) 20
+ emitvEREmE AT e(2)e'dy = 1+ 1.
/oo V22 +m? =)

Note that II can be estimated as follows using integration by parts followed with Lemma 3.1,

11| = ‘f /_ : itV m iz [(X(Z)S(z))/ + ex(z)g(z)} dz

' 4
S ‘té/z‘/_l (X(Z)g(z))//+9(X(Z)5(Z))’d2‘ < ]té/? (m?xri>H(122 - ).

T T
i=1 ¢

The spatial integrals can be estimated as in the proof of Lemma 3.4 with a = 0, 5 > 3, and
E = SlDlSl.
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Next we consider the first term in (45). Note that this integral can be estimated by t2 easily
using Lemma 3.1 with ¢(2) = —tv/22 + m2 + z6. In the rest of this subsection we establish the
properties of the operator which has decay rate 3.

For notational convenience, we suppress the integral kernels’ spatial variable dependence,

which should be clear from context. First we assume that at least one of the r;’s is greater than

t. In this case we have maij - < % Hence, we can exchange the largest r; with ¢ to gain extra

time decay. Using an analysis similar to that in the proof of Lemma 3.4 one can easily see that

the spatial integrals converge. Thus, we have

1 FVFv*S1D;S1vFVF :
Iygl/ U 21FAo1Y dardzadydys| <73,
t2 R12 r17r2r3Ta

Now it remains to consider the case when r; < ¢ for all j. We start with the following lemma.

Lemma 3.6. Let 0 = ijzl rj. Then,
(46) ﬁ (Tj) /OO ity T rmi4iz0 X(2) d (—2mi)z 3imt ﬁ (Tj) —im(t2—r2)3
x (= e z = x(—)e j
ot ) Vz22 + m? (mt)z ot
1 4
+O<3 Z rirj+2rj+1]>
12 " cici<a j=1

For the proof of Lemma 3.6 we need the following lemma.

Lemma 3.7. Let f : R — R be C? with bounded derivatives. Then for any a; > 0 we have

Proof. By a simple induction argument, it suffices to prove this for n = 2. Without loss of

generality we can also assume that a2 > a;. By the mean value theorem, we have

flar +az) = f(ar) + f(a2) + [f(a1 + a2) — f(a2)] = [f(a1) = f(0)] — £(0)
flar) + f(az2) + f'(c1)ar — f'(c2)ar — f(0) for c1 € (a2,a2 +a1) , e2 € (0, 1)
= f(a1) + f(az) + ai(c1 — c2) f"(c) = £(0).

Since 0 < ag — a1 <1 — 2 < ag + as < 2a9, this yields the lemma. O

Proof of Lemma 3.6. For the sake of simplicity we prove the lemma for m = 1. Note that first,
the critical point of ¢(z) = V22 +1—z2yisw = \/1%7 Here w is defined since r; < t for all j
implies v = % < 1. We use the change of variables z — z + w to move the critical point to zero
and write
4 4 0o gy 1
(46) = [T x(F)e V1" / ;WVEI ) xerw)
—00

e (z4w)2+1



DISPERSIVE ESTIMATES FOR DIRAC OPERATORS 23

With a change of variable z = g(s) = 15 - (\ /14 % + %) this integral can be written as
-

4 00 —
=TT [ et s

J=1

where

g tw)
Y Tt vap 1

Va)
~—

Note that 1) is supported on {s : |s| < 1}. Since on this set |¢*¥)(s)| < 1 for all k£ > 0, we see

that v is a Schwartz function with derivatives bounded uniformly in v < 1. Then, we have

o V1=72  \2
e Via? N N I -
/Ooe " yh(s)ds = (—2mi)2 /OO]: 1((1—72)‘1115%)(&)1/)(6%%

<1/W@m¢

~
N9

—_

*WHLl + 3 WWHL

3

~~
w\w‘ —

I\D

Hence, this term has the contribution O(f%) to (46). For the last equality we used the fact

that ||0%¢|| ;1 < 1 uniformly in 7.
We are left with the contribution of ¢(0) to (46) which is given by

)

4 4 ( ~)
TIN5 pmitV/1-72 X(w) _ e—itf (v \/1 72
Hx(t)t ! w2+1<1_,y % 1;[ ( _ )

J=1

I\Jh—‘
,MH

where f(v) = /1 —72x(y/4) with v = % Note that f has bounded derivatives. Since f(0) =

using Lemma 3.7 we obtain (in the support of H?-:l X(TTJ))

N——

it () — =it i 1()=3) | it (S, £(F)-3 )O(ei%zlgqgw 1

4 1
) . 1
= ¥ | | e i) —I—O(E } T‘i'f'j).
Jj=1

(47)
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Further, since v < 1, we have
X(7=) 1k
44;;%_71+0()_1+0<,§:w)
(1 -k =
v 7j=1
we see the contribution of ¥(0) to (46) i
2_,2\% 1 4
D xr/y ol = Y rﬂy%—er}
12 " i<icj<a =1
]

This finishes the proof
We can now prove the main claim of this subsection
Proof of Proposition 3.5. Using Lemma 3.6 we see that the contribution of I in (45) to the first

y FVFv*S1D FVF
V Fv Sl 15121 |4 dyldygdajldxg

integral in (42) is given by
T1T273T4

1
i(—27Ti)2/ 3zmt —im( tz—r)
_ t

R12 HX T]/

FVFEFv*S|D FVF
VEVSIDISEY dyldy2d$1d$2>

(48) - \/ﬁt%
TR s

T1Tr2Tr3Ty
=t 2K, (z,y) + Ot 2)

C»D

t2 1<i<j<4

The last inequality follows from the proof of Lemma 3.4 noting that
‘ 4
<1+ 7‘;1)

=1

4
Zl<z<j<4 TiTj + Zj:l rj+1
T1r2r3ry ~

Ce‘%mtﬁtVﬁtv*SlDlSlvFVtVFt,

Note that
K
> and Fy is an integral operator with kernel
= X(|37 — y|/t) *imt[lf(\m*yl/t)Q]?go(w Y)

where C' = (— )%(277)%771_5
Xl = yl/t) e =le=u12 (g, )

ﬁt (.f, y)
|z =y
In particular, since S7 is of rank at most two, K; is of rank at most two

Note that since ‘wt;yl < 1, we have

e+ O(|z — y|?/t)
M)j 0<j<I1.

(e =yl eyl
=e " 1+ Oz —y| v

lx;y‘ < 1. Using this we write
MGy V Gov* S1D151vGoV Gol(z, y) + Ki(,y)

The last equality holds since
Kt (‘Tv y) =



DISPERSIVE ESTIMATES FOR DIRAC OPERATORS 25

Since [[|z — y[*™Go(z,y)]| < (x)?(y)I(1 + |# — y[™'), we employ a similar argument as in
Lemma 3.4 to show that |K;(z,y)| < (z)7(y)7t7, 0 < j < 1.

By Corollary 4.4, we know that the rank of S is at most two. Hence, we can write

S1 = ¢1(2)91(y) + 2()P5(y)

where we pick {¢1, @2} as the orthonormal basis of S L2. The self-adjointness of SjvG1v*S; also

allows us to pick the basis so that SjvG;v*S; is diagonal in S;L?, i.e.,
(49) (Mucv* ¢, Mucv*¢i) = | Mucv*¢jl|12adij, 1,5 =1,2.
Using this one can show that

o | 4
segrsi= gt ) )] i pimsesr =22

m | a2 0
2T

]Sh

where a = | Mycv*¢1||ct and b = || Mycv*¢2||cs. Therefore, the self-adjoint operator S1.D1S5; can

Y= o

be rewritten as

[S1D1S1](2,1) = — 01 (@0 (1) + —r30a(2)63(0).

Furthermore, Lemma 4.1 gives us that ¢; = Uvy); for ¢; = —Gov*¢; where (D, +V —mli)y; =
0. Using this (49) = (My .V, MycV);). Noting that by definition of S;, we have —5; =
S1vGov*U = UvGyv* S1, we obtain

[GoV Gov*S1D151vGoV Gol(x,y) = [Gov™ S1D151vG0](7, )
2 2
= m—;[gov*qﬁl](:r)[ggv*qﬁﬂ*(y) + mi;[gov*gbg](x)[gov*gbg]*(y)
m3

——— P (z,y).
Cotemt Y

Finally, note that if S; is one dimensional it is generated by a single ¢(x) with (¢,¢) = 1. In

2 2
= @)U (y) + (@)U (y) =

£ 3
this case we obtain P,(x,y) = 3(_2%1#(:6)1/1* (y).
m?2 ||Mucv*¢H§:4
This finishes the proof of Proposition 3.5. g

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Using the Stone’s formula, (7), and the expansion for the resolvent (19),
we reduce our analysis to oscillatory integral bounds. Proposition 3.2 suffices to bound the
3

contribution of the first three terms of (19) by (t)”2 as an operator from L' to L. The
contribution of the final term in (19) is controlled by Proposition 3.5. O
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3.3. Dispersive estimate when there is a resonance of the second or third kind at
the threshold. In this section we will investigate dispersive estimate in the case when Se # 0.

To establish the claim of Theorem 1.2, we dev