DISPERSIVE ESTIMATES FOR FOUR DIMENSIONAL SCHRODINGER
AND WAVE EQUATIONS WITH OBSTRUCTIONS AT ZERO ENERGY
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ABSTRACT. We investigate L' (R*) — L (R*) dispersive estimates for the Schrédinger operator
H = —A + V when there are obstructions, a resonance or an eigenvalue, at zero energy. In
particular, we show that if there is a resonance or an eigenvalue at zero energy then there is a
time dependent, finite rank operator F} satisfying || Fi||z1 1~ < 1/logt for ¢ > 2 such that

e Poe — Fillp1ypo0 St fort > 2.

We also show that the operator F; = 0 if there is an eigenvalue but no resonance at zero energy.
We then develop analogous dispersive estimates for the solution operator to the four dimensional

wave equation with potential.

1. INTRODUCTION

The free Schrédinger evolution on R”™,

1

—itA _
e le) = (4rit)

/ e/t () dy

maps L'(R") to L>°(R™) with norm bounded by C,|t|~"/2. This dispersive estimate for the
Schrodinger equation, and the time-decay of solutions it implies provides a valuable counterpart
to the conservation law in L?(R™).

There is a substantial body of work concerning the validity of dispersive estimates for a
Schrodinger operator of the form H = —A + V, where V is a real-valued potential on R"
decaying at spatial infinity with the assumption that zero is a regular point of the spectrum of
H, see for example [31, 40, 37, 22, 39, 20, 19, 9, 14, 24]. Local dispersive estimates, studying the
evolution on weighted L?(R™) spaces were studied first, see [35, 28, 26, 34, 27]. Where possible,

the estimate is presented in the form
it H —n/2
<1> 68 PacCED) gy e S 117772

The first author was partially supported by NSF grant DMS-1201872. The second author was partially sup-
ported by NSF grant DMS-1002515. The third author acknowledges the support of an AMS Simons Travel

grant.



2 ERDOGAN, GOLDBERG, GREEN

Projection onto the continuous spectrum is needed as the perturbed Schrodinger operator H
may possesses pure point spectrum. If the potential satisfies a pointwise bound |V (x)| < (z)~?
for some 5 > 1, then the spectrum of H is purely absolutely continuous on (0, 00), see [36,
Theorem XIII.58]. This leaves two principal areas of concern: a high-energy region when the
spectral parameter A satisfies A > A1 > 0 and a low-energy region 0 < A < A;.

It was observed by the second author and Visan [23] in dimensions n > 4, that it is possible
for the dispersive estimate to fail as t — 0 even for a bounded compactly supported potential.
The failure of the dispersive estimate is a high energy phenomenon. Positive results have been
obtained in dimensions n = 4,5 by Cardoso, Cuevas, and Vodev [9] using semi-classical tech-

niques assuming that V' has ”Tf?’ + € derivatives, and by the first and third authors in dimensions

n = 5,7, [14] under the assumption that V is differentiable up to order "T_?’ The much earlier
result of Journé, Soffer, Sogge [31] requires that Ve L'(R™) in lieu of a specific number of
derivatives.

Our main focus in this paper is the study of the evolution in four spatial dimensions when
there are obstructions at zero energy. There are two types of obstructions at zero energy, both
of which can be characterized by non-trivial distributional solutions of Hy = 0. If ¢ ¢ L?(R*)
but (-)°~¢ € L?(R*) we say there is a resonance at zero energy and if ¢ € L?(R*) we say there
is an eigenvalue at zero energy, see Section 7 for a more detailed characterization. Resonances

and eigenvalues occur at zero precisely when the resolvents

RE(N?) = lim(—A +V — (A2 £ie)) 7,

N
considered as maps from (x)~!L? to (x)L?, are unbounded in norm as A — 0. It is known that
in general obstructions at zero lead to a loss of time decay in the dispersive estimate. Jensen
and Kato [28] showed that in three dimensions, if there is a resonance at zero energy then
the propagator ¢! P,.(H) (as an operator between polynomially weighted L?(R?) spaces) has

|=1/2 instead of |t|=3/2. In general the same effect occurs if zero is an

leading order decay of |t
eigenvalue, even though P,.(H) explicitly projects away from the associated eigenfunction.
Define a smooth cut-off function x(\) with xy(A) = 1if A < A\1/2 and x(\) =0 if A > Ay, for

a sufficiently small 0 < A\; < 1. We prove the following low energy bounds.

Theorem 1.1. Assume that |V (z)| < (x)™P and that zero is not a regular point of the spec-
trum of H. There ezists a time dependent operator Fy of finite rank (at most two) satisfying

| Fellp1 e S 1/10gt such that, fort > 2,

< ¢ 1

HeitHX(H)PaC(H) - FtHL1—>Loo ~



DISPERSIVE ESTIMATES FOR SCHRODINGER AND WAVE EQUATIONS 3

i) If there is a resonance at zero but no eigenvalue, Fy is rank one provided 3 > 4.
ii) If there is an eigenvalue at zero but no resonance, then Fy = 0 provided 3 > 8.

ii1) If there is an eigenvalue and a resonance at zero, Fy is rank at most two provided 3 > 8.

A precise set of definitions for resonances is provided in Definition 2.5 below. The above
statements paraphrase Theorems 3.1, 4.1, and 5.1. These can be combined with a high en-

ergy estimate, see [9], to obtain estimates for He“H P,.(H) — assuming V is Holder

I tHLlﬁL‘X)’
continuous of order greater than 5 and satisfies |V (z) — V(y)|/|z — y\%+ < C(z)~* whenever
|x — y| < 1. Our results can be seen as translation-invariant versions of the local dispersive
estimates proven by Jensen in [27].

The primary global dispersive estimates when zero is not regular are due to Yajima [42]
and the first author and Schlag [17] in three dimensions, the first and third authors [15] in two
dimensions, and the second author and Schlag [22] in one dimension. Except for the last of these,
the low-energy argument builds upon the series expansion for resolvents set forth in [28, 29].
Some additional results are known if zero is an eigenvalue only, see [42, 21, 15].

In addition there has been work on the LP boundedness of the wave operators, which are

defined by strong limits on L?(R?*)

Wy =s- lim ete?,
t—=o0

The LP boundedness of the wave operators is particularly relevant to our line of inquiry because

of the so-called intertwining property
f(H)Pac = W:I:f(_A)W:T;

which is valid for Borel functions f. In particular we note the results of Jensen and Yajima in
[30], in which the case of an eigenvalue but no resonance in dimension four was considered. In
this case they showed that the wave operators are bounded on LP(R*) for % < p < 4. Roughly
speaking, this corresponds to time decay of size |t|~1* for large ¢.

As usual (cf. [37, 22, 39]), the dispersive estimates follow from treating ey (H)P,.(H) as an

element of the functional calculus of H. These operators are expressed using the Stone formula

: 1 oo
(2) () Pocl H) () = 5= [ €™ MORFOR) = Ry () f (2) dA
™ Jo
with the difference of resolvents R‘i/()\) providing the absolutely continuous spectral measure.
For A\ > 0 (and if also at A\ = 0 if zero is a regular point of the spectrum) the resolvents are well
defined on certain weighted L? spaces, see [2]. The key issue when zero energy is not regular is to

control the singularities in the spectral measure as A — 0. Accordingly, we study expansions for
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the resolvent operators R‘i/()\Q) in a neighborhood of zero. The type of terms present is heavily
influenced by whether n is even or odd. In odd dimensions the expansion is a formal Laurent
series R‘f()\Q) = AXN"24+ BA"! + O + ... with operator-valued coefficients. In even dimensions
the expansion is more complicated, involving terms of the form /\k(log )\)e, k > —2. For this
reason our analysis is most similar to the two-dimensional work in [15].

In addition to our analysis of the Schrédinger evolution, e® P,.(H), our techniques also allow
us to study the low energy evolution of solutions to the four-dimensional wave equation with

potential.
(3) ug + (A +V)u=0, u(z,0) = f(z), w(z,0)=g(x).

We can formally write the solution to (3) as
(4) u(x,t) = cos(tVH) f(x) + ———2

This representation makes sense if, for example, (f, g) € L? x H~'. In the free case, when V = 0,
the solution operators are known to satisfy a dispersive bound which decays like |t|_% for large
t if f, g possess a sufficient degree of regularity.

The spectral issues for H are the same as in the case of the Schrédinger evolution, in particular

we have the representation

T

(5) cos(tVH) Py f () = i /OOO cos(ENA[RF(A?) — Ry (\D)] f (x) d,

(6) Sm(%ﬁ) Pacg(z) = % /0 it [RY(02) — Ry (0)]g(x) dA

The key observation here is that the spectral measure is the same, but instead of the functional
calculus yielding multiplication by "™\ we have multiplication by cos(tA)A and sin(t)\).
Dispersive estimates for the wave equation, with a loss of derivatives, are not as well studied
as (1). The bulk of the results are in three dimensions, we note for example [4, 3, 11, 18, 12, 6].
Some advances have been made in other dimensions, [32] in dimension two in the weighted L2
sense, and [10] for dimensions 4 < n < 7. These results all require the assumption that zero is
regular. Less is known if zero energy is not a regular point of the spectrum, we note [33, 25, 13] in
dimensions three, two and one respectively. Here we establish a low energy L' — L dispersive
bound for solutions to the wave equation with potential in four spatial dimensions. We note
that the loss of derivatives on the initial data in the dispersive estimate for the wave equation

is a high energy phenomenon.
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Theorem 1.2. Suppose |V ()| < (x)™. Then there exist finite rank operators Fy and Gy with
the norm bounds || Fy||r1 0 < 1/1ogt, and ||Gel|pipe S t/logt so that

| cos(tVH)X(H)Pao(H) — Fy|| g0 SE74, £ 2.

|0 ) i) -

< ¢t t>2,

~ )

Ll Lo
Where:
i) if there is a resonance at zero but no eigenvalue, then F; and Gy are rank one operators
provided 3 > 4.
it) if there is an eigenvalue at zero but no resonance, then Fy = Gy = 0, provided > 8.
iit) if there is an eigenvalue and a resonance at zero, then Fy and Gy are of rank at most two

provided 3 > 8.

The difference in the time behavior of F} and G; is because of the fact that
sin(t\)
A

for small A\. Our analysis follows the analysis done in [25] in two dimensions when zero is not

~t whereas cos(tA) ~ 1

regular, which was inspired by observations in [32] and [34], which studied the evolution in the
setting of weighted L? spaces. This result, along with a high energy bound in [10] can be used
to develop an estimate without the cut-off x(H).

The contents of the paper are organized as follows. In Section 2 we develop expansions for
the free resolvent and related operators needed to understand the behavior of R{%(V) for small
M. We then consider the effect of the various spectral conditions at zero on the evolution of
the Schrodinger operator, (2), in Sections 3, 4 and 5. In Section 6 we show how the analysis of
the previous sections can be used to understand the evolution of the wave equation. Finally in
Section 7 we characterize the spectral subspaces of L?(R%) related to the various obstructions

at zero energy.

2. RESOLVENT EXPANSIONS AROUND ZERO

We use the notation

to denote , ,
@’ @’
Vil O(d)\]g), j=0,1,2,3,

Unless otherwise specified, the notation refers only to derivatives with respect to the spectral

variable A. If the derivative bounds hold only for the first k derivatives we write f = Ok (9). In



6 ERDOGAN, GOLDBERG, GREEN

this paper we use that notation for operators as well as scalar functions; the meaning should be
clear from context.

Most properties of the low-energy expansion for R‘i/()\Q) are inherited in some way from the
free resolvent R (A\?) = (=A — (A2 4i0))~". In this section we gather facts about Ri(\?) and
examine the algebraic relation between R{F(\?) and R3 (\?).

Recall that the free resolvent in four dimensions has the integral kernel
i A

7 RE(\? =4+-— "  Hf\z-—

( ) O( )(x7y) 427T‘(17—y‘ 1 ( ‘.%' y‘)
where H 1i are the Hankel functions of order one:

(8) HE(2) = Ji(2) £ iY1(2).

From the series expansions for the Bessel functions, see [1], as z — 0 we have

1 1 ~
O A= 5P O,
2 2 ~
(10) Yi(z) = -t log(2/2)J1(2) + b1z + baz® 4+ O1(2°)
2 1 1 .~
(11) =-—+ ;zlog(z/2) + b1z — 877723 log(2/2) + baz® + O1(2° log 2).

Here by, b2 € R. Further, for |z| > 1, we have the representation (see, e.g., [1])
(12) HE(z) = ePwi(z), Wl () SQ+]a)727 6=0,1,2,....
This implies that (with r = |z — y|)

(13) RENY)(z,y) = r2p_ (W) +rIXeF 2 p, ().

1
2

], py is supported on [1,00) satisfying the estimates |p_(2)] < 1

Here p_ is supported on [0 I

and py(z) = 6(2_%)
To obtain expansions for R‘%()\Z) around zero energy we utilize the symmetric resolvent iden-
tity. Let U(z) = 1if V(z) > 0 and U(z) = —1if V(z) < 0, and let v = [V|'/2, so that V = Uv?.

Then the formula
(14) Ry(A?) = Ry (X)) = Ry (\)vM=(A\) "Ry (A?),

is valid for 3(\) > 0, where M*(\) = U 4+ vRE (\?)w.

Note that the statements of Theorem 1.1 control operators from L'(R*) to L>°(R*), while our
analysis of M*()\2?) and its inverse will be conducted in L?(R*). Since the leading term of the
free resolvent in R* has size |x — y|~2 for |x — y| < 1, the free resolvents do not map L' — L?

or L? — L. However, we show below that iterated resolvents provide a bounded map between
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these spaces. Therefore to use the symmetric resolvent identity, we need two resolvents on either

side of M*(A\)~!. Accordingly, from the standard resolvent identity we have:
(15) R (\) =Ry (X*) — Ry (\)V Ry (\) + Ry (\*)V Ry (A*)V R (V).
Combining this with (14), we have

(16) RE(N) =R3 (V) = Ry (W)VRE(N) + RE(V)VRE (V)R (V)
(17) — RF(V)VRy (\)vME(\)wRs (A?)V RS (A?).

Provided V() decays sufficiently, we will show that [RE (\)V RE (A\?)v](x, ) € L*(R*) uniformly
in , and that M*()) is invertible in L?(R%).

Lemma 2.1. If |V(z)| < (x) 7P~ for some B > 2, then for any o > max(%,3 — 8) we have

sup |[[Ry (\*)V Ry W)@, 9)ll 20 S N)-
z€R4 Y
Consequently HROi()?)VR(jf(/\Z)vHLQ_wm < (N).

Before we prove the lemma we note the following bounds, whose proofs we omit. First,
Lemma 6.2 of [14]:

Lemma 2.2. Fiz uj,uo € R" andlet 0 <kl <n, >0, k+{0+8>n,k+{€#n. We have

<Z>_’B_ " (‘miuﬂ)max((),k-&-f—n) ‘Ul o u2| <1
re |2 —wlFlz —uglt T (2 )min(k,&kHJrB*n)

lup —ug| > 1
We also note Lemma 5.5 of [24]
Lemma 2.3. Let 0 < p,~y be such that and n < v+ p. Then
[t =)y S (o)),

Proof of Lemma 2.1. Using (13) we have

1
P LI
|x*y| ’x—y’i

(18) | Ry (A%) ()

Thus

|R3[(/\2)(a:,z)V(Z)R(j)E()‘Q)(Zvy)’A<J<)‘>|V(Z)’< TtEe )( 1 : )

+
|:v—z|% |z — 2| |z—y|% 2 —yl?
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We need only concern ourselves with the most singular and slowest decaying terms to establish
local L? behavior and determine the appropriate weight needed. We use that for a,b > 0
1 < 1 n 1
a2b? ™~ a?2-b2 a2t

to avoid logarithmic singularities. So that, using Lemma 2.2

1 1 1
<z>_f8_< + — + ) dz
/]R4 |:L‘—Z|%|Z—y|% [z — 2P|z —yl* |z — 2Pz —yl?

—min(2,8— — min(2—,8— — — min
S (=) ™G (g — )T IRCET) 4 g — g 0 (g — )T BN

~

_ — min(3 8-
Sl =yl (@ — )~

Using Lemma 2.3 this is clearly in Lf/ia uniformly in = provided ¢ > max(%,B — ). Mul-
tiplication by v(y) < (y)~?/? suffices to remove the weights because g > max(%,B — B) for
8> 2.

]

To invert M*()\) in L? under various spectral assumptions on the zero energy we need to
obtain several different expansions for M*()). The following operators arise naturally in these
expansions (see (9), (10)):

1 fy .
(19) Cof(r) = Wy = (-2) (),

dn? Jpa |-y

(20) G1fa) = ~gr3 [ Toxlle — )0}y,
(21) Gaf(@) = ca [ |r=ui*Fu) dy
(22) Gaf(@) = s [l =y log(le — o)) dy

Here cs, c3 are certain real-valued constants, the exact values are unimportant for our analysis.
We will use Gj(x,y) to denote the integral kernel of the operator G;. In addition, the following

functions appear naturally,

(23) g () = g1 (\) = X(arlog(A) + 21)

(24) 95 () = g5 (\) = (a2 log(X) + 22).

Here a; € R\ {0} and z; € C\ R.

We also define the operators

(25) T:=M*0)=U+vGov, P := |V v(v,-).
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Finally we recall the definition of the Hilbert-Schmidt norm of an operator K with kernel K (x,y),

s = ( [[ | i dedy)l

Lemma 2.4. Assuming that v(z) < (x)78. If B > 2, then we have

(26) MF(N) =T + My (N,

| sup AP MG(N)|lgs + | sup ATFOMF (N |las S 1,
0<A<AL 0<A< A1

and
(27) ME=(\) =T+ [[V]1gi (\)P + NvGrv + MiF(N),

| sup A2 MEN)|us + || sup ATTONME(N)||us S 1
0<A< A1 0<A<A1L

If 8 > 4, we have
(28) MEN) =T + |[V]1g5E (V)P 4+ AN20G1v 4 g5 (A\)vGav + AuGsv 4+ M (N),

I sup AME (Vs + | sup AP OAMy (M)|lms S 1.
0<A<A 0<A<AL

Proof. Using the notation introduced in (19)-(24) in (7), (9), and (10), we obtain (for A\|z —y| <

1)

(29) Ry (A\)(z,y) = Go(x,y) + O1(X*")

(30) Ry (W)(z,y) = Golw,y) + g7 (\) + N’Gi(2,y) + Or(\'|z — y|* log (Al — y1))-

(31) Ry (A\*)(z,y) = Golz,y) + g (N) + N2G1(z,y) + g3 (\)Ga(z,y) + X'Gs(z,y)
+01(Xa — y|*log(Alz — y])).

In light of these expansions and using the notation in (25), we define M ji()\) by the identities

(32) M*(\) = U +vRE(\2)v =T + MF ().
(33) MEN) =T + ||[V]1g- (V)P 4 A20Grv + ME(N).
(34) MEN) =T+ |[V]1gE WP + N2uGrv + g5 (\vGav + NuGav + ME(N).

For the bounds on M ji’s we omit the superscripts. For Az — y| < 1, the bounds will follow
from the expansions (29), (30), (31).
For M|z —y| 2 1, we use (7) and (12) to see (for any > 0 and k =0, 1)

5 {Aem-y'ww ),
A

(35) [OXRo(X*) (@, )| = Ep

} \ < (M — g+ — o2
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Using (29), (32), and (35) with a = % — k, we have

v(@)v(y)O1 (W), Az —y| <1
v(@)v(y)[Golx,y) + O1(N)], Az —y| 21
= v(z)v(y)O01 (A7),

Mo(A)(z,y) = {

This yields the bounds in (26) since v(z) < (x)~2".
The other assertions of the lemma follow similarly. We note that we take o = 3 — k+ in (35)
and use
O1(N'[z — y[*log(Az — y])) = O1(N*(Az — y)°*),  for Az —y| < 1
to obtain (27), whereas we take a = 2 — k— in (35) and use

O1(Mlz = y|"log(Alz — y])) = OL(N* (N = y)**),  for Az —y| < 1

to obtain (28). We close the argument by noting that an operator with integral kernel v(x)|z —
y[Yv(y), v > 0, is Hilbert-Schmidt provided 8 > 2 + .
O

One can see that the invertibility of M*()\) as an operator on L? for small A depends upon
the invertibility of the operator 7' on L?, see (25). We now give the definition of resonances at

Z€ero energy.

Definition 2.5. (1) We say zero is a reqular point of the spectrum of H = —A+V provided
T is invertible on L?(R*).

(2) Assume that zero is not a regular point of the spectrum. Let Sy be the Riesz projection
onto the kernel of T as an operator on L?>(R*). Then T + Sy is invertible on L?*(R*).
Accordingly, we define Do = (T + S1)~! as an operator on L*(R*). We say there is a
resonance of the first kind at zero if the operator Ty := S1PSy is invertible on Sy L*(R%).

(3) Assume that Ty is not invertible on S1L?(R*). Let Sy be the Riesz projection onto the
kernel of T1 as an operator on SlLQ(R‘l). Then Ty + Sa is tnvertible on SlLZ(R4). We
say there is a resonance of the second kind at zero if So = S1. If S1 — So # 0, we say

there is a resonance of the third kind.

Remarks. i) We note that S} — Sy # 0 corresponds to the existence of a resonance at zero
energy, and Sy # 0 corresponds to the existence of an eigenvalue at zero energy (see Section 7
below). That is, a resonance of the first kind means that there is a resonance at zero only, a

resonance of the second kind means that there is an eigenvalue at zero only, and a resonance
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of the third kind means that there is both a resonance and an eigenvalue at zero energy. For
technical reasons, we need to employ different tools to invert M*(\) for the different types of
resonances. It is well-known that different types of resonances at zero energy lead to different

expansions for M*(\)~!

in other dimensions, see [16, 17, 15]. Accordingly, we will develop
different expansions for M*(\)~! in the following sections.
ii) Since T is self-adjoint, S7 is the orthogonal projection onto the kernel of 7', and we have
(with Dy = (T + S1)71)

S1Dg = DyS1 = 5.
This statement also valid for Ss and (T} + S2) 1.
iii) Since T is a compact perturbation of the invertible operator U, the Fredholm alternative
guarantees that S; and S are finite-rank projections in all cases.

See Section 7 below for a full characterization of the spectral subspaces of L? associated to
H=-A+V.

Definition 2.6. We say an operator K : L*>(R*) — L?*(R*) with kernel K(-,-) is absolutely
bounded if the operator with kernel |K(-,-)| is bounded from L*(R*) to L*(R%).

Note that Hilbert-Schmidt and finite rank operators are absolutely bounded.

Lemma 2.7. The operator Dy is absolutely bounded in L.
Proof. First note that

0=5(U+vGyw) = SU=-5vGw = S5 =-5S1vGw.
Using this and the resolvent identity

Do = U — Do(vGov + S1)U

twice, we obtain

Dy =U — U(vGov + S1)U + Dy(vGow — S1vGov) (vGow — S1vGov).

We note that S; is a finite rank projection operator, and U is absolutely bounded on L?. Note
that vGow is absolutely bounded on L? since Gy is a multiple of the fractional integral operator
I which is a compact operator on L?>? — L*79 if ¢ > 1, see Lemma 2.3 of [26]. Thus, if
v(z) < (x)~17 then vGow is absolutely bounded on L2. We note that by (19), Lemma 2.2, and
Lemma 2.3 one can see that (vGow — S1vGv)(vGow — S1vGov) is Hilbert-Schmidt provided
v(z) < (x)~!~. Thus the the final operator in the expansion for Dy is Hilbert-Schmidt since the

composition of a bounded and a Hilbert-Schmidt operator is Hilbert-Schmidt. [l
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To invert M*(\) = U 4+ vRF (A\*)v for small \, we use the following lemma (see Lemma 2.1
in [29]).

Lemma 2.8. Let A be a closed operator on a Hilbert space H and S a projection. Suppose A+ S
has a bounded inverse. Then A has a bounded inverse if and only if
B:=S—-S(A+9)"'s
has a bounded inverse in SH, and in this case
A=A+ '+ (A+ 8 IsBIS(A+9)" L

We will apply this lemma with A = M*()\) and S = 51, the orthogonal projection onto the
kernel of 7. Thus, we need to show that M*()) 4+ 57 has a bounded inverse in L*(R*) and

(36) Bi(\) =81 — S1(MET(\) + S1)71s)

has a bounded inverse in S;L?(R%).
The invertibility of the operator By will be studied in various different ways depending on

the resonance type at zero. For M*(\) 4 Sy, we have

Lemma 2.9. Suppose that zero is not a regular point of the spectrum of H = —A 4+ V, and
let Sy be the corresponding Riesz projection. Then for sufficiently small A1 > 0, the operators
M*(X\) + Sy are invertible for all 0 < X\ < A1 as bounded operators on L2(R*). Further, one has
(with gi(A) = IV ]9t (\))

(37) (M*E(X) + S1) ™" = Dy — §1(\) DoPDy — A2 DovGrvDy + O1(A*T)

(38) = Do+ O1(A\*7)

as an absolutely bounded operator on L?(R*) provided v(z) < (x)~2~.

Proof. We give the proof for M ()\) and drop the superscript from the formulas, M~ (\) follows
similarly. We use the expansion (27) for M (A) given in Lemma 2.4, and then for A < A\

sufficiently small we have
(M(A)+81)7 = [T+ 51+ G (AP + NvGrv+ My(M\)]
= Do[1 + G1(\)PDy + XN*vG1vDy + My (X\) Do) .
Using a Neumann series expansion and the error bounds on M; in (27), we have
(M*(A) 4 81)~! = Do — §1(A\)DgPDy — N>DovGrvDg + O1(A*H) = Dy + O1(A>7).

These operators are absolutely bounded since Dy is an absolutely bounded operator. O
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We will use this lemma in all cases, however we also need a refinement if there is an eigenvalue
at zero, see (50).

3. RESONANCE OF THE FIRST KIND

Here we consider the case of a resonance of the first kind, that is when S7 # 0 and Sy = 0.
We note that in this case Sy is of rank one by Corollary 7.3. In this section we develop the tools
necessary to prove the first claim of Theorem 1.1 when there is only a resonance at zero energy.

In particular, we prove

Theorem 3.1. Suppose that |V (z)| < (x)~4~. If there is a resonance of the first kind at zero,

then there is a rank one operator Fy such that
HeitHX(H)PaC(H) — Fillpispee gtilv t>2.

with
1
2 < t>2
|| t”Ll—)L ~ logt

We will need the following lemma to obtain the time-decay rate for F; in Theorem 3.1.
Lemma 3.2. If £(\) = O1((Alog \)~2), then

/ - M A (N)E(N) dA

0

< — t> 2.

~

1
logt’
Proof. We first divide the integral into two pieces,

/ iy AA)EN) dA = /

0 0

t—1/2

e A (NE(N) dA + / h e A (AN)E(N) dA

t—1/2

For the first integral, we note

t—1/2
</ b o< b
~Jo AlogA)2 "~ logt

For the second integral, we integrate by parts once to see

00 ] —-1/2 oo
‘ / e Ay (NEN) d/\‘ < Ul I G /
—1/2 t t Ji-1/2

t71/2 '
‘ / e Ay (A)E(N) dA
0

a4
d\

(VEW) ' dx

_1 1
1 1 1 [/t 1 1 /2 1 1
< - 44 — A+ - —d)\< )
~ (logt)? Tty /t—é 2| log t|2 3 /t—zlg A2 7™ (logt)?

Here we used that the integral converges on [%, 00).

To invert M*()\) using Lemma 2.8, we need to compute B (), (36).
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Lemma 3.3. In the case of a resonance of the first kind at zero, under the hypotheses of

Theorem 3.1 we have for small X\, B (\) is invertible and

(39) B\t = fE(N)S,
where
(40) ) = — ! —F O

A2 glog A + z 4+ O1(\OF)
for some a € R/{0} and z € C/R.

Proof. Noting that S1Dg = DyS1 = 51, we have
SIUMEN) 4 8117181 = 81 — G (V) S1PS) — A2S10G10S) + S101(A*)S).
So that (for some ¢y, c2 € R, 1 # 0),

Bi(\) = GE(N)S1PS) + A2810G10S) + 5101(A*H) S,

[1GE (V) + 22 + O1 (A )] ).

In the second equality we used the fact that S is of rank one in the case of a resonance of the
first kind.
O

In particular we note that for 0 < A < Aq,

(41) )= () 1((alog)\+z) — (alog A + %) + 01 (\°F)

_ = I
e (alog A+ 2)(alog A + Z) + Oy (A\0+) ) = O1((AlogX)™7)

We are now ready to use Lemma 2.8 to see

Proposition 3.4. If there is a resonance of the first kind at zero, then
MEN) = FE)S) + K + 01(1/1og(N),

where K is a A independent absolutely bounded operator.

Proof. We note by Lemma 2.8 and (39) we have

MEN) T = (MF(A) 4+ 51) 7+ (MEN) + S1) 7 S Be(A) T S (ME(N) + 1) 7!
= (MEN) +S) 7L+ FANMEN) + S) LS (MEN) + S1) 7L
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The representation (38) in Lemma 2.9 takes care of the first summand. Using (37), and

Sng = DgSl = Sl, we have

(Mi(/\) + 51)7151 = Sl — ﬁit(/\)DoPSl — AQDQ’UGﬂ)Sl + 61 ()\2+),
SIUMEN) + 81)7 = 81 — GE(A)S1PDy — A2S10G v Dy 4 O (A*H).

When an error term of size O1 (A2") interacts with f=()), the product satisfies O3 (A1) fE(\) =
O1(\9F), which is stronger than O1(1/log((\)). Therefore, it suffices to prove that

~ G (N fFEN)[DoPSy + S1PDg) — N2 fE(N\)[DovG10S) + S1vGyvDy)

equals to a A independent operator plus an error term of size 51((10g A)~1). This follows from

the following calculations

— ey g\ L A e D). an
TN = e IS = o+ Oulllog) ™), and
N FE() = ! — Oy((log \)7).

alog A + z* + O1(\0+)

Here we consider the contribution of the most singular f*())S; term in Proposition 3.4.
Lemma 3.5. For each x,y € R* we have the identity
(TR VR vS1vR{V RS — f~ (A Ry VRyvSivRy VRy (2, y)
= (f+(>\) — [T (W) [GoVGovS1vGoV Gol(,y) + Ly y(N)
with

(42) sup
z,ycR4

/ N AN Ly y (V) dA| St t> 2,
0

Before proving this lemma, we note that the most singular term of the expansion takes the

form
FE) = (VK.

where K1 = GoVGovS1vGyV Gy is a rank one operator. The contribution of this to the Stone’s

formula, (2), gives us the operator F; in Theorem 3.1:

F =K, /OOO N ANFT(N) — F7(N)]dA = O(1/ log(t)) K,
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where we used Lemma 3.2 in the last equality. The desired L' — L* bound follows from this

and the observation that

(43) sup [[GoV Gov(x, 21)llzz, 151l r2 22 lvGoV Golz2, )2, < 0.
z,yeR

Here we used Lemmas 2.2 and 2.3 and the fact that S; is absolutely bounded.
Proof. Consider
(44) TRV RivS1vREV RS — f~ (A Ry VRyvS1vRy VRy .

Using the algebraic fact,

M M M /—1 M
(45) HA;_HAzz( Ak>(Aj—A€)< II A;),
k=0 k=0 k=0

=0 k=0+1

rewrite (44) as

(46) [fT(\) = f~ (V)] RFVRFvS1vRy V Ry
(47) + FEN) RS — Ry |VREvS1vRTV RE
(48) + fENRIVI[RS — Ry|vS1vREV RE

+ similar terms.

We further write

(49) (46) = (f+()\) — f_ ()\)) [GoVGoQ}SlUGQVGO
+ GoVGovS1vGoV (RE — Go) + GoVGovSiv(RE — Go)VRE
+ GoV (RS — Go)vS1vRsV Ry + (Ry — Go)V Ry vS1vR; V Ry |
The first line corresponds to the operator K, which we’ve seen is rank one and its contribution
to the Stone formula decays like 1/logt. We now show that the remaining terms along with

(47) and (48), denoted L, ,(\) in the statement of the Lemma obey the bound (42).

Now consider the contribution of the second most singular term in (49):

/OO N AN (N) = F~(N]GoV GovSivGoV (RE — Go)dA.
0

We need to use the representation (with r = |z — y|) which follows from (9), (11), and (12):

(R(j)c(/\g) — Go)(z,y) = x(Ar) [c)\2 log(Ar) + 51(/\47“2 log()\r))] + 51(/\2).
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Using (41), we need to estimate the integral

/oo S5 (0) [X()\r) [eA2log(Ar) + O1 (A2 log(Ar))] + O1(A2)
0 X A2|alog(N) + 2|2 + O1(A2F)

+O1(A7) [dA.

We define the function log™ (y) := |logy|x(o,1)(y). Integrating by parts we bound this integral

by (ignoring the terms when the derivative hits the cutoff functions)

+ 207 |dA

1/°° ()\)[x(/\r)llog(kr)l X(Ar)Ar?|log(Ar)| 1
0

t Malog(N) + 2|3 lalog(\) + 2|2 Malog(\) + z|2

< =[1+1og™ (r)].

| =

To obtain the last inequality note that the last two summands are clearly integrable. The
second summand can be estimated by noting that the denominator is bounded away from zero
and then changing the variable Ar — A. Finally, the first summand can be estimated by using

the inequality
X(A)x(Ar)[log(Ar)| < 1+ [log(A)] + log™ (r).

This yields the required inequality asserted in Theorem 3.1 by noting that
sup v(y)GoV (1 +log™ (|- —z[)) € Ly(R").
z€R?

and employing an analysis as in (43).

The contribution of the remaining terms in (49) can be estimated by writing Ry = (Ro—Go)+
Go. The contribution of Gy terms is similar to the one above. The contribution of the terms
with at least two factors of Ry — G can be obtained by using the bound Ry — Gy = 61()\2*).

The contribution of (47) (and (48)) can be estimated similarly. It suffices to study the case
when one replaces Ry’s with Gg’s. The bound for the low energy part of Rf — Ry is similar to
the one above. For the high energy part, the bound 61()\2) no longer suffices. Instead using the

asymptotics of Ry for large energies, we have the \ integral
oo D
/ e A (N) FEN XA Zwt (Ar)dA.
0 T

Here ¥ = 1 — x is a cut-off away from zero. After an integration by parts and by ignoring the

logarithmic terms in the denominator, we bound this integral by

1
1/ (A5/2p8/2 4 \=3/2,71/2) <
1/r

| =

t

Where we use that, on the support of X(Ar)x(A) we have that » 2 1, in the last inequality.
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Proof of Theorem 3.1. The proof follows from Proposition 3.4, Lemma 3.5, the discussion of the
contribution of the operator K to the Stone formula following Lemma 3.5 and the following
observations. The contribution of the other terms in Proposition 3.4 can be bounded as in
Lemma 3.5 noting that both the A independent operator K and the error term 51(1/ log \) are
much smaller than f* and f+ — f.

For completeness, we now consider the contribution of the finite Born series terms, (16), to
the Stone formula, (2). We will only obtain the decay rate t~! although it is possible to prove
that these terms decay like t~2. To show the dispersive nature of the terms of (16), we note that
the first term is the free resolvent and clearly disperses. For the other terms, we take advantage
of the cancellation between the ‘+’ and ‘-’ terms. Accordingly, we consider the contribution of
the second term of (16) to the (2),

/OOO e AN[RG (W) (2, 2)V ()RS (V)(2,9) — Ry (V) (i, 2)V (2) Ry (\) (2, )] dA.

Using that RY = G + 01(A\27), we can rewrite the integral above as

/oo "™ A (N [GoVO1(A27) 4+ 01(A27)V Gy + O1 (A2 VO (A27)]dA.
0

It is easy to see that this integral is O(1/t) by an integration by parts. The contribution of the

third term in the Born series is similar. We note that by Lemma 2.2

sup [ (14 Gola,2) + Gl )V () ds < o
z,ycR4 JRR4

which closes the argument.

4. RESONANCE OF THE SECOND KIND
In this section we prove Theorem 1.1 in the case of a resonance of the second kind, that is
when S7 # 0, and S; — S92 = 0. In particular, we prove
Theorem 4.1. Suppose that |V (x)| < (x)787. If there is a resonance of the second kind at zero,
then
e X(H) Pac(H) |1 ST £>2.

Despite the fact that the spectral measure is more singular as A — 0 in this case, the analysis

is somehow simpler than when there is a resonance of the first kind at zero.
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To understand the expansion for M*(\)~! in this case we need more terms in the expansion
of (M*()\) + S1)~! than was provided Lemma 2.9. From Lemma 2.4, specifically (34), we have

by a Neumann series expansion
(MF=(A) +81)7"
= Do[1 + GE(A\)PDo + N2 vG1vDg + g5 (\)vGavDg + NoGzvDo + M3 (N) Do)~
(50) =Dy — ﬁ(A)DOPDO — M DyvGivDy + (ﬁfc(/\))zDoPDoPDo
+ A2GE(A)[Do P DovGyv Dy + DovGvDoP Do) — g5 (A) DovGav Dy
— M DyvG3vDg + DoE5E(\) Do
with Ef (\) = O1(\*F).
In the case of a resonance of the second kind, we recall that S; = S5. By Lemma 7.4
below the operator S;vGivS; is invertible on S;L? (which is Sy L2 in this case). We define

Dy = (S1vG1vS1)~! as an operator on SoL?(R*). Noting that Dy = S1DS1, the operator is
absolutely bounded.

Proposition 4.2. If there is a resonance of the second kind at zero, then

D £\ ~
(51) MEN = _722 + 92;4 )K1 + Ko + 01 (A1)

where K1, Ko are X independent absolutely bounded operators.

Proof. We note the identity SoP = PSs = 0, which is shown in Section 7 below. In addition,
use SlDo = DoSl = Sl = SQ to see

S1(ME(N) 4 81)71S1 = 81 — N2S10G1vS) — g5 (\)S1vGavSt — A S1vG3vSt + S1E5F (M) Sy.

Therefore
(52) BE(N) = A2510G 1081 + g5 (V) S19GovS) + M S1vG3vS) — S1EE(M)S),
and
BEO) ' = % 1+ gi@ S1vGvS) Dy + \2S1vG0S, Ds + Sy EQJ;A) $Dy| "
_ % + 95_;9) D5 + D + O, (A°F)

with D5, Dg absolutely bounded operators with real-valued kernels. We note that when S = So,

using (37) we have

(M:t()\) + 51)_151 =5 — )\2D0UG1U51 + 61()\2+),
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SIME(N) 4+ 51) 7t = 8 — N2S1vGvDg + O1(AF).
So that

(53) (ME(\) +81) 718 BE(W) IS (ME(N) + 51) 7t

_ Dy (V)
B

S1D551 -+ 51D651 — Sﬂ)Gﬂ)SlDQ — DQSl'UGl'USl + 61()\0+).

This along with the bound (M*(\) + 81)~! = Dy + O1(A27) in Lemma 2.8 establishes the

claim. O

The form of this expansion is similar to that found in Lemma 3.2 in [30] using non-symmetric

resolvent expansions. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We need to understand the contribution of Proposition 4.2 to the Stone

formula. To get the ¢! decay rate, we need to use cancellation between the ‘+’ and ‘-’ terms in
REVRIoM YN "WRIVRS — RyVRyvM ™~ (\) 'Ry VRy.

As with resonances of the first kind, we use the algebraic fact (45). Two kinds of terms occur
in this decomposition; one featuring the difference M+ (\)~! — M~ (\)~! and ones containing a
difference of free resolvents. For the first kind we use Proposition 4.2 and that g; — gy =c\

to obtain
(54) MY =M~ (W) = eKy + 0, (\).

We use that Ry = G —|—61()\0+) and consider the most singular terms this difference contributes,

i.e.,
GoV GovS1 D5 S1vGoV Gy + O1(A°H).
The time decay follows from
‘ /OOO e A (V)[1 + 01 (AN dA| St

and an analysis as in (43) noting that K is absolutely bounded. For the terms of the second
kind the difference of ‘4’ and ‘-’ terms in (45) acts on one of the resolvents. As usual, the most

delicate case is of the form

(RS (W) = Ry (\2)V Gou[(51)JvGoV G
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Since RT — Ry = cA? + O1(\*?) for Ar < 1, we need to bound
U O ~ )

D,

eV GouDawGoV Go + O1(N'r?)V Gov 3

vGoV Gy + 61 ()\0+) .

The first and third terms clearly satisfy the t~! decay rate from the previous discussion. For
the second term, we recall the support conditions to see

o \) ~ 1/r
/ ezt)\z()\)ol()\4r2) ) < t—1r2/ XA <t
0 0

On the other hand, if Ar 2 1, we do not use the cancellation of the ‘4’ and ‘-’ terms but

~

instead use the expansion (12). The most singular term is of the form

00 AT
A2 e w(Ar)
AY(AN) ——————=d .
/l/r ‘ X( ) Ar

Using w(z) = O((1 + ]z\)_%) after an integration by parts, we bound by

t1 /oo
1/r

d eArw(Ar) ®© 3 _s 13
—(y)———2) [ dh < ¢ T2AT2 472N T2 d)N
d)\<X() v )' = /1/T7“ 2 2 +7r 2 2

S+ Sl

Where we used that 2 1 in the last step. The integrals in the spatial variables is controlled as
in (43) since Dy is absolutely bounded.
The remaining terms can be bounded as in the case of a resonance of the first kind in Section 3.

O

5. RESONANCE OF THE THIRD KIND

In this section we prove Theorem 1.1 in the case of a resonance of the third kind, that is when

S1#0, Sy #0and S; — So # 0. In particular, we prove

Theorem 5.1. Suppose that |V (z)| < (x) 787, If there is a resonance of the third kind at zero,

then there is a finite rank operator Fy such that
H\(H)Pyo(H) - F, Sttt 2
e X(H) Pac(H) = Fillpiope ST, 1>2.

with

1
F eSS — t>2
H t”Ll—)L ~ logt
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In fact, F} has rank at most two. This follows from the expansions below and the rank of the
operator S defined in (55). We note that the expansion in (50) is valid, but in this section we
do not have that S;P = 0. Using (34) in Lemma 2.4, we have

BE(\) = GE(V\)S1PS1 + N2S1vGvS) — (§E(N)2S1 PDoPS;
— N2GEN)[S1PDyvGvS) + S1vG1vDoPS1] + g5 (M) S1vG20S)
+ /\451’UG3’L)51 + 51 ()\4+)
=: §i (NS1PS1 + A2810G 1081 + (G (N)T1 + A%57 (A2 + g5 (A3
+ M0y 4 O (AM).
According to Lemma 2.8 we need to invert B¥()\), however since Sy # 0 the kernel of S; PS; is

non-trivial. Rather than use Lemma 2.8 again, we use the well-known Feshbach formula. Define
the operator I by S1 = S5 + I'. We note that I' is a rank one operator by Corollary 7.3 below.

We will first express B¥(\) with respect to the decomposition Sy L?(R*) = SoL?(R*) @ T L2(R%).
We define the finite rank operator S by

T —FUleDQ

(55) S =
—DovGioll DovGrul'vGivDo

Lemma 5.2. In the case of a resonance of the third kind we have

(56) B = S + 224 B0k 1 6(1/1080).

Here Ky, K2 are \ independent absolutely bounded operators, fi"(A) = (\(alog\ + z))~! with

a € R\ {0} and z € C\ R, and f; (\) = f;F ().

Proof. Here we use that SoP = PS; = 0 to see that the two leading terms of B*()\) can be

written as

~—t
(57) Ai(A) L )\2 gl/\(g)\) T'PT + FlevF FUleSQ
‘ SavGrol’ SovGrvSy

The Feshbach formula tells us that

-1

w o [me e e

-1 -1 -1 -1
as| as9 —Q9y (210 (g9g 02104012095 T+ Ugy

provided ags is invertible and a = (a1; — a12a2_21a21)*1 exists.



DISPERSIVE ESTIMATES FOR SCHRODINGER AND WAVE EQUATIONS 23

In our case, ags = Sov(G1vS2 is known to be invertible by Lemma 7.4 below. We denote

Dy := (SovG1vS3) ™! and note that SoDy = DsSo = Dy. Further

~t -1 ~—t —1
A A
a= gl)\(Q )FPP + I'vGholl — FlenglevF] = [gl)\(Q )cl +co+c3| T
= hE(\)7'T

Here ¢; =Trace(I'PT), ca =Trace(T'vGyol'), and ¢z =Trace(T'vGivDovG1ol) are real-valued
constants. Further, h*()\) = alog A + z with a € R\ {0} and z € C \ R.
Therefore, by the Feshbach formula we have

1 r —T'vGivD D
(59) A:I:()\)—l = (USSR ] 722
A%h ()‘) —DQUGﬂ)F DQUGl'UF’UGl’UDQ A
D
= fE(N)S + 722

Here the matrix operator S has rank at most two. By a Neumann expansion, we obtain
BEO) = AR N1 (BE() - AF) AR ) ]
— AE()TL = AU BEN) — AE(N)]AE )+ O (A7),
Here we note that D3S1P = D9S9P = 0. Therefore
['1 Dy = Dol'y = Dol'g Dy = 0.
Further noting that
fEN@EN) = e+ 01(1/ log(V),

(60) L5 03) = 2+ B1(1/low(0),

FEOON [T V)Pg5 (\) = 01(1/ log(N)),

establishes the claim.

Proposition 5.3. If there is a resonance of the third kind at zero, then

MEN)™ = FE$SS, + 22 9 V) porap, + K O1(1/ log(A
=1 1 1+ﬁ+ PURRERE: o+ K + 01(1/log(N)),

where K is a A independent absolutely bounded operator.

We note that the expansion of M*(A\)~! is a sum of terms similar to the ones in Propo-
sitions 3.4 and 4.2. Accordingly, we will refer to Sections 3 and 4 for most of the required

bounds.
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Proof. We note by Lemma 2.8 we have
MEN) T = (MEQ) + 81) 7+ (MEN) + S1) 7 i BL(N) T ES1 (ME(N) + S1) 7

The representation (38) takes care of the first summand. Using (37), and S1D¢ = DyS; = Si,

we have
(M) +51)7181 = S1 — G (W) Do PS1 — A2DgvGruS; + O1(A*F),
Sl(Mi()\) + Sl)_l =51 — git(/\)SlPDo — AZD()’UGl’USl -+ 61 ()\2+).

This, the representation (56) and the discussion preceding it, the property D2S1P = D2SoP = 0,
and (60) yield the proposition. d

We are now ready to prove the Theorem.

Proof of Theorem 5.1. The contribution of the first term in the proposition is essentially iden-

tical to the most singular term in the case of first kind. Using Lemma 3.2 gives, for ¢ > 2,
p(t)Kzy  with  ¢(t) = O(1/log(t)),

where Ko = GogVGovS1551vGoV Gy is of rank at most two.
For the terms K + 61(1/ log(A)), one can easily get a time decay rate of ¢t~ by an integration

by parts.
The terms with 95‘;9) DyI'3 D4 also appeared in the case of a resonance of the second kind,
and leads to the decay rate ¢! as in the proof of Theorem 4.1.
The terms arising from the operator % are more complicated. Decomposing
Do Do

RKVRKUVURJVR(T - REVREUﬁUREVRE
by (45), the nonzero terms all contain a difference Rj — Ry, which is a constant multiple of
%Jl()\r). Hence the most singular term to consider is
S
Ar

and similar terms with J; changing places with any of the operators Gg. The contribution of

J1 VG()UDQUG()VG(),

this to the Stone’s formula leads to t~! decay after an integration by parts by considering the
cases \r < 1 and Ar 2 1 separately. For Ar < 1, ignoring the operator VGovD2vGoV Gg, we

use (9) to bound

oo _ 1 [ 1 [Ur 1

[ / G Ay (V1 + 01 (A22)] d)\} <1 / YO+ [T aang L

0 t Jo t Jo t
Here we used the support condition A < % in the second integral.

~
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On the other hand, if Ar 2 1, we use the asymptotics (12) and bound

0, etiAr
/ et Ay (M) < 5wz () dX.
0

Integrating by parts once, and using the support condition A 2 % we have the bound

~y

1 /1 1 1
/ 1 3 + 3 3 d\ S 7(1 +r )S
1/r A2r2 A2z Tt

S

as we have r 2 1.

6. FOUR DIMENSIONAL WAVE EQUATION WITH POTENTIAL

In this section we sketch the argument for Theorem 1.2. As we can use much of the analysis
for the evolution of the Schrédinger operator in the previous sections to understand the wave
equation, we provide only a brief sketch of the proof. In Sections 3, 4 and 5 to obtain a ¢!

decay rate for various terms in the evolution we needed to bound integrals of the form
o0
/ MM AE(N) dA
0

where £()) is supported on A < 1 and E(A) = O1(1+1/log(\)) or smaller. We then integrated
by parts once to bound with

‘/ e AE(A d/\‘ |‘€( Iy 1/ \8’(A)\d)\§%.
0

We can similarly control the evolution of the cosine and sine operators, (5) and (6) by a similar

argument,

1 [° 1
‘/ Sin(t\N)E d)\‘ ’5(0)‘+/ €A <
0

t t t
So that the analysis in controlling the final integral of |€(\)] follows for the sine operator exactly
from the analysis of the Schrodinger evolution. For the cosine operator, we have an extra power
of A, this integral is even better since A < 1. This yields the desired bounds except for the most
singular terms which arise when there is a resonance of first or third kind at zero energy.
We now sketch the argument for the most singular terms in the cases of resonances of the
first or third kind at zero for the cosine evolution (5). This immediately follows from the bound

below, which is a modification of Lemma 3.2, and is proven analogously.

Lemma 6.1. If £(\) = O1((Alog\)~2), then

o0 1
< L ).
‘ /0 COSIINNEN DA S o >
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Unfortunately, the evolution of the sine operator, (6), behaves much worse, this is due to the

following bound.

Lemma 6.2. If £(\) = O((Alog \)~2), then

oo t
3 < __
‘/0 sin(t\)x (A)E(N) d)\‘ S gt t>2.

Proof.

/OO ()X (WE) dA <t/t11d>\+/OOX(/\)d>\<t
, X ~' ) Alog )2 1 A2(log M2 7~ logt

0

Theorem 1.2 now follows from the arguments in Theorems 3.1, 4.1 and 5.1 with the modifi-

cation described above.

7. SPECTRAL SUBSPACES RELATED TO —A +V

We characterize the subspaces and their relation to the invertibility of operators in our re-
solvent expansions. The results below are essentially Lemmas 5-7 of [16] modified to suit four

spatial dimensions.

Lemma 7.1. Suppose |V (z)| < (z)~*. Then f € S1L?\ {0} if and only if f = wg for some
g € L?9=\ {0} such that
(A +V)g=0

holds in the sense of distributions.
Proof. We first note that
(—A+V)g=0 & ({[+GiV)g=0.

First, suppose that f € S1L?\ {0}. Then (U + vGov)f = 0, and multiplying by U, one has
w(x) / v(y)f(y) .
R

472 Jpa |z —y|?

f(@) = —w(z)Gof =

Accordingly, we define

(61) o) = 13 [ YW 4~ _Gpf(a)).

an? Rt |z —yl?
Since vf € L*2, we have that g € L*°~ by viewing Gy as a mutliple of the Riesz potential, see
Lemma 2.3 in [26]. Further f(z) = w(x)g(x) and

g(x) = =Govf(x) = =GoVg(z), = I+ GoV)g(z)=0.
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Secondly, assume f = wg for g a non-zero distributional solution to (—A + V')g = 0. It is clear

that f € L»?~ and now
(U + vGov) f(z) = v(w)g(x) + v(2)GoVg(w) = v(x)(I + GoV)g(x) = 0.

Thus showing that f € S;L2.
O

Recall that Ss is the projection onto the kernel of S;PS;. Note that for f € SyL?, since S1, Sa

and P are projections and hence self-adjoint we have

0=(SiPSif, f) = (Pf, Pf) = | Pfll3
Thus PSQ == SQP = 0.
Lemma 7.2. Suppose |V (z)| < (x)™4. Then f € SoL?\ {0} if and only if f = wg for some

g € L2\ {0} such that
(—A+V)g=0

holds in the sense of distributions.

Proof. Assume first that f € SoL?\ {0}. Since Sy < Si, using Lemma 7.1, we need only to show
that g € L?. Since Pf = 0 we have

/ o(y) f(y) dy = 0.
R4

Using this, our definition of g(z) and (19) we have

1 1 1
o) =123 [ |t - T )

Using
1 1

jz—yl> 1+ |z?

(y) (y)
@)z -yl o —yl(z)?
and noting that (-)vf € L?!*, the Riesz potential I5 maps L>'T to L*»~!, and I3 maps L>'*
to L2 shows that g € L? as desired.

On the other hand, if f = wg as in the hypothesis we have

1 1 1 1
(62) g(x) = ) /]1@4 [[w — T1r MQ}U(Z/)J”(Q) dy + m /R4 v(y)f(y) dy.

The first term and g(z) are in L. Thus, we must have that

1
421+ [2]2) /R4”<y)f(y> dy € L*(R*).
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This necessitates that [v(y)f(y)dy =0, that is 0 = Pf = S;PS; f and f € SoL? as desired.
]

Corollary 7.3. Suppose |V (z)| < (x)~*~. Then
Rank(S1) < Rank(S2) + 1.

Proof. It suffices to prove that if fi, f» € S1(L?)\{0}, then the corresponding distributional
solutions g1, g2 of the equation (—A 4 V)g = 0 satisfies

g2=cg1+h
for some h € L? and a constant c. This follows immediately from the equation (62). O
Lemma 7.4. If |V (x)| < (x)75~, then the kernel of SovGivSs = {0} on Sy L2.
Proof. Assume that f € SoL? is in the kernel of SovG1vSy. That is,

0= <G1Uf7 Uf>

Using the expansion in (30) and the fact that Pf = 0 for f € S3L?, we have

0= (Grof,vf)
_ ;E%<RO - G;z— 51(A)vavf> _ ;%<1%(JA;2GOMW>
—tin [ (g + o )T (€) dg
= 1617r4 R4 52@15;2) de = 1617T4 / @'2 d§ = (Govf,Govf)

where we used the monotone convergence theorem. This shows that ﬁ =0 and thus vf =0
and f = 0.
O

Lemma 7.5. The projection onto the eigenspace at zero is GOUSQ[SQ'UGl'USQ]_lSQUGO.
Proof. Let ¢;, j =1,2,..., N be an orthonormal basis for SoL?. Then

0= (U +vGov)e;,

0= (I +wGov)p; = ¢p; + wGove;.
Let v; = —Govej. Note that 1;’s are linearly independent and that
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and hence
Y = —Govp; = —GoV ;.

Therefore, for any f € L? we have

N
Saf = {f,65)5,

j=1
N N N

SovGof =Y (SovGof,;); = Y (f,Govdy)d; = — > (f1;)d;
j=1 j=1 j=1

Let A;; be the matrix representation of SvGavS with respect to {gf)j}?f:l. That is,

Aij = (pi, S20G10S205) = (Govgs, Gove;) = (GoV i, GoV ds) = (i, 1)5).

Denoting Q = GovSs[S2vG1vS2] 1 SovGy, for f € L? we have

N
Qf = GovSa[S2vG1v82] ™ Sp0Go f = GovSalSavGrusa) ™ (= D ()65
J=1

N
== GovSa[SavG1vS] by (f. 1) = Z GovSa(Aj;")i(f15)
j=1 ij=1
N
= Z Govdi(AZ ) (f ) = Y (Al f, ).
,5=1 1,j=1
For f = 1 we have
N N
Que = > (AW, = Y (A (Ajr) i = ¥
i,j=1 tj=1

Thus, we have that the range of @) is the span of {1; }jvzl and is the identity on the range of Q.
Since @ is self-adjoint, we are done.

O
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