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Abstract. We investigate L1(R4)→ L∞(R4) dispersive estimates for the Schrödinger operator

H = −∆ + V when there are obstructions, a resonance or an eigenvalue, at zero energy. In

particular, we show that if there is a resonance or an eigenvalue at zero energy then there is a

time dependent, finite rank operator Ft satisfying ‖Ft‖L1→L∞ . 1/ log t for t > 2 such that

‖eitHPac − Ft‖L1→L∞ . t−1, for t > 2.

We also show that the operator Ft = 0 if there is an eigenvalue but no resonance at zero energy.

We then develop analogous dispersive estimates for the solution operator to the four dimensional

wave equation with potential.

1. Introduction

The free Schrödinger evolution on Rn,

e−it∆f(x) =
1

(4πit)
n
2

∫
Rn
e−i|x−y|

2/4tf(y) dy

maps L1(Rn) to L∞(Rn) with norm bounded by Cn|t|−n/2. This dispersive estimate for the

Schrödinger equation, and the time-decay of solutions it implies provides a valuable counterpart

to the conservation law in L2(Rn).

There is a substantial body of work concerning the validity of dispersive estimates for a

Schrödinger operator of the form H = −∆ + V , where V is a real-valued potential on Rn

decaying at spatial infinity with the assumption that zero is a regular point of the spectrum of

H, see for example [31, 40, 37, 22, 39, 20, 19, 9, 14, 24]. Local dispersive estimates, studying the

evolution on weighted L2(Rn) spaces were studied first, see [35, 28, 26, 34, 27]. Where possible,

the estimate is presented in the form

(1)
∥∥eitHPac(H)

∥∥
L1(Rn)→L∞(Rn)

. |t|−n/2.
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Projection onto the continuous spectrum is needed as the perturbed Schrödinger operator H

may possesses pure point spectrum. If the potential satisfies a pointwise bound |V (x)| . 〈x〉−β

for some β > 1, then the spectrum of H is purely absolutely continuous on (0,∞), see [36,

Theorem XIII.58]. This leaves two principal areas of concern: a high-energy region when the

spectral parameter λ satisfies λ > λ1 > 0 and a low-energy region 0 < λ < λ1.

It was observed by the second author and Visan [23] in dimensions n ≥ 4, that it is possible

for the dispersive estimate to fail as t → 0 even for a bounded compactly supported potential.

The failure of the dispersive estimate is a high energy phenomenon. Positive results have been

obtained in dimensions n = 4, 5 by Cardoso, Cuevas, and Vodev [9] using semi-classical tech-

niques assuming that V has n−3
2 +ε derivatives, and by the first and third authors in dimensions

n = 5, 7, [14] under the assumption that V is differentiable up to order n−3
2 . The much earlier

result of Journé, Soffer, Sogge [31] requires that V̂ ∈ L1(Rn) in lieu of a specific number of

derivatives.

Our main focus in this paper is the study of the evolution in four spatial dimensions when

there are obstructions at zero energy. There are two types of obstructions at zero energy, both

of which can be characterized by non-trivial distributional solutions of Hψ = 0. If ψ /∈ L2(R4)

but 〈·〉0−ψ ∈ L2(R4) we say there is a resonance at zero energy and if ψ ∈ L2(R4) we say there

is an eigenvalue at zero energy, see Section 7 for a more detailed characterization. Resonances

and eigenvalues occur at zero precisely when the resolvents

R±V (λ2) = lim
ε↘0

(−∆ + V − (λ2 ± iε))−1,

considered as maps from 〈x〉−1L2 to 〈x〉L2, are unbounded in norm as λ→ 0. It is known that

in general obstructions at zero lead to a loss of time decay in the dispersive estimate. Jensen

and Kato [28] showed that in three dimensions, if there is a resonance at zero energy then

the propagator eitHPac(H) (as an operator between polynomially weighted L2(R3) spaces) has

leading order decay of |t|−1/2 instead of |t|−3/2. In general the same effect occurs if zero is an

eigenvalue, even though Pac(H) explicitly projects away from the associated eigenfunction.

Define a smooth cut-off function χ(λ) with χ(λ) = 1 if λ < λ1/2 and χ(λ) = 0 if λ > λ1, for

a sufficiently small 0 < λ1 � 1. We prove the following low energy bounds.

Theorem 1.1. Assume that |V (x)| . 〈x〉−β and that zero is not a regular point of the spec-

trum of H. There exists a time dependent operator Ft of finite rank (at most two) satisfying

‖Ft‖L1→L∞ . 1/ log t such that, for t > 2,∥∥eitHχ(H)Pac(H)− Ft
∥∥
L1→L∞ . t

−1.
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i) If there is a resonance at zero but no eigenvalue, Ft is rank one provided β > 4.

ii) If there is an eigenvalue at zero but no resonance, then Ft = 0 provided β > 8.

iii) If there is an eigenvalue and a resonance at zero, Ft is rank at most two provided β > 8.

A precise set of definitions for resonances is provided in Definition 2.5 below. The above

statements paraphrase Theorems 3.1, 4.1, and 5.1. These can be combined with a high en-

ergy estimate, see [9], to obtain estimates for
∥∥eitHPac(H)− Ft

∥∥
L1→L∞ , assuming V is Hölder

continuous of order greater than 1
2 and satisfies |V (x) − V (y)|/|x − y|

1
2

+ < C〈x〉−4 whenever

|x − y| < 1. Our results can be seen as translation-invariant versions of the local dispersive

estimates proven by Jensen in [27].

The primary global dispersive estimates when zero is not regular are due to Yajima [42]

and the first author and Schlag [17] in three dimensions, the first and third authors [15] in two

dimensions, and the second author and Schlag [22] in one dimension. Except for the last of these,

the low-energy argument builds upon the series expansion for resolvents set forth in [28, 29].

Some additional results are known if zero is an eigenvalue only, see [42, 21, 15].

In addition there has been work on the Lp boundedness of the wave operators, which are

defined by strong limits on L2(R4)

W± = s- lim
t→±∞

eitHeit∆.

The Lp boundedness of the wave operators is particularly relevant to our line of inquiry because

of the so-called intertwining property

f(H)Pac = W±f(−∆)W ∗±

which is valid for Borel functions f . In particular we note the results of Jensen and Yajima in

[30], in which the case of an eigenvalue but no resonance in dimension four was considered. In

this case they showed that the wave operators are bounded on Lp(R4) for 4
3 < p < 4. Roughly

speaking, this corresponds to time decay of size |t|−1+ for large t.

As usual (cf. [37, 22, 39]), the dispersive estimates follow from treating eitHχ(H)Pac(H) as an

element of the functional calculus of H. These operators are expressed using the Stone formula

eitHχ(H)Pac(H)f(x) =
1

2πi

∫ ∞
0

eitλ
2
λχ(λ)[R+

V (λ2)−R−V (λ2)]f(x) dλ(2)

with the difference of resolvents R±V (λ) providing the absolutely continuous spectral measure.

For λ > 0 (and if also at λ = 0 if zero is a regular point of the spectrum) the resolvents are well

defined on certain weighted L2 spaces, see [2]. The key issue when zero energy is not regular is to

control the singularities in the spectral measure as λ→ 0. Accordingly, we study expansions for
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the resolvent operators R±V (λ2) in a neighborhood of zero. The type of terms present is heavily

influenced by whether n is even or odd. In odd dimensions the expansion is a formal Laurent

series R±V (λ2) = Aλ−2 + Bλ−1 + C + . . . with operator-valued coefficients. In even dimensions

the expansion is more complicated, involving terms of the form λk(log λ)`, k ≥ −2. For this

reason our analysis is most similar to the two-dimensional work in [15].

In addition to our analysis of the Schrödinger evolution, eitHPac(H), our techniques also allow

us to study the low energy evolution of solutions to the four-dimensional wave equation with

potential.

utt + (−∆ + V )u = 0, u(x, 0) = f(x), ut(x, 0) = g(x).(3)

We can formally write the solution to (3) as

u(x, t) = cos(t
√
H)f(x) +

sin(t
√
H)√

H
g(x).(4)

This representation makes sense if, for example, (f, g) ∈ L2×Ḣ−1. In the free case, when V = 0,

the solution operators are known to satisfy a dispersive bound which decays like |t|−
3
2 for large

t if f, g possess a sufficient degree of regularity.

The spectral issues for H are the same as in the case of the Schrödinger evolution, in particular

we have the representation

cos(t
√
H)Pacf(x) =

1

πi

∫ ∞
0

cos(tλ)λ[R+
V (λ2)−R−V (λ2)]f(x) dλ,(5)

sin(t
√
H)√

H
Pacg(x) =

1

πi

∫ ∞
0

sin(tλ)[R+
V (λ2)−R−V (λ2)]g(x) dλ(6)

The key observation here is that the spectral measure is the same, but instead of the functional

calculus yielding multiplication by eitλ
2
λ we have multiplication by cos(tλ)λ and sin(tλ).

Dispersive estimates for the wave equation, with a loss of derivatives, are not as well studied

as (1). The bulk of the results are in three dimensions, we note for example [4, 3, 11, 18, 12, 6].

Some advances have been made in other dimensions, [32] in dimension two in the weighted L2

sense, and [10] for dimensions 4 ≤ n ≤ 7. These results all require the assumption that zero is

regular. Less is known if zero energy is not a regular point of the spectrum, we note [33, 25, 13] in

dimensions three, two and one respectively. Here we establish a low energy L1 → L∞ dispersive

bound for solutions to the wave equation with potential in four spatial dimensions. We note

that the loss of derivatives on the initial data in the dispersive estimate for the wave equation

is a high energy phenomenon.
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Theorem 1.2. Suppose |V (x)| . 〈x〉−β. Then there exist finite rank operators Ft and Gt with

the norm bounds ‖Ft‖L1→L∞ . 1/ log t, and ‖Gt‖L1→L∞ . t/ log t so that

‖ cos(t
√
H)χ(H)Pac(H)− Ft‖L1→L∞ . t

−1, t > 2.∥∥∥sin(t
√
H)√

H
χ(H)Pac(H)−Gt

∥∥∥
L1→L∞

. t−1, t > 2,

Where:

i) if there is a resonance at zero but no eigenvalue, then Ft and Gt are rank one operators

provided β > 4.

ii) if there is an eigenvalue at zero but no resonance, then Ft = Gt = 0, provided β > 8.

iii) if there is an eigenvalue and a resonance at zero, then Ft and Gt are of rank at most two

provided β > 8.

The difference in the time behavior of Ft and Gt is because of the fact that

sin(tλ)

λ
∼ t whereas cos(tλ) ∼ 1

for small λ. Our analysis follows the analysis done in [25] in two dimensions when zero is not

regular, which was inspired by observations in [32] and [34], which studied the evolution in the

setting of weighted L2 spaces. This result, along with a high energy bound in [10] can be used

to develop an estimate without the cut-off χ(H).

The contents of the paper are organized as follows. In Section 2 we develop expansions for

the free resolvent and related operators needed to understand the behavior of R±V (λ2) for small

λ. We then consider the effect of the various spectral conditions at zero on the evolution of

the Schrödinger operator, (2), in Sections 3, 4 and 5. In Section 6 we show how the analysis of

the previous sections can be used to understand the evolution of the wave equation. Finally in

Section 7 we characterize the spectral subspaces of L2(R4) related to the various obstructions

at zero energy.

2. Resolvent expansions around zero

We use the notation

f(λ) = Õ(g(λ))

to denote
dj

dλj
f = O

( dj
dλj

g
)
, j = 0, 1, 2, 3, ...

Unless otherwise specified, the notation refers only to derivatives with respect to the spectral

variable λ. If the derivative bounds hold only for the first k derivatives we write f = Õk(g). In
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this paper we use that notation for operators as well as scalar functions; the meaning should be

clear from context.

Most properties of the low-energy expansion for R±V (λ2) are inherited in some way from the

free resolvent R±0 (λ2) = (−∆− (λ2 ± i0))−1. In this section we gather facts about R±0 (λ2) and

examine the algebraic relation between R±V (λ2) and R±0 (λ2).

Recall that the free resolvent in four dimensions has the integral kernel

R±0 (λ2)(x, y) = ± i
4

λ

2π|x− y|
H±1 (λ|x− y|)(7)

where H±1 are the Hankel functions of order one:

H±1 (z) = J1(z)± iY1(z).(8)

From the series expansions for the Bessel functions, see [1], as z → 0 we have

J1(z) =
1

2
z − 1

16
z3 + Õ1(z5),(9)

Y1(z) = − 2

πz
+

2

π
log(z/2)J1(z) + b1z + b2z

3 + Õ1(z5)(10)

= − 2

πz
+

1

π
z log(z/2) + b1z −

1

8π
z3 log(z/2) + b2z

3 + Õ1(z5 log z).(11)

Here b1, b2 ∈ R. Further, for |z| > 1, we have the representation (see, e.g., [1])

H±1 (z) = e±izω±(z), |ω(`)
± (z)| . (1 + |z|)−

1
2
−`, ` = 0, 1, 2, . . . .(12)

This implies that (with r = |x− y|)

R±0 (λ2)(x, y) = r−2ρ−(λr) + r−1λe±iλrρ+(λr).(13)

Here ρ− is supported on [0, 1
2 ], ρ+ is supported on [1

4 ,∞) satisfying the estimates |ρ−(z)| . 1

and ρ+(z) = Õ(z−
1
2 ).

To obtain expansions for R±V (λ2) around zero energy we utilize the symmetric resolvent iden-

tity. Let U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, and let v = |V |1/2, so that V = Uv2.

Then the formula

(14) R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2),

is valid for =(λ) > 0, where M±(λ) = U + vR±0 (λ2)v.

Note that the statements of Theorem 1.1 control operators from L1(R4) to L∞(R4), while our

analysis of M±(λ2) and its inverse will be conducted in L2(R4). Since the leading term of the

free resolvent in R4 has size |x − y|−2 for |x − y| < 1, the free resolvents do not map L1 → L2

or L2 → L∞. However, we show below that iterated resolvents provide a bounded map between



DISPERSIVE ESTIMATES FOR SCHRÖDINGER AND WAVE EQUATIONS 7

these spaces. Therefore to use the symmetric resolvent identity, we need two resolvents on either

side of M±(λ)−1. Accordingly, from the standard resolvent identity we have:

R±V (λ2) =R±0 (λ2)−R±0 (λ2)V R±0 (λ2) +R±0 (λ2)V R±V (λ2)V R±0 (λ2).(15)

Combining this with (14), we have

R±V (λ2) =R±0 (λ2)−R±0 (λ2)V R±0 (λ2) +R±0 (λ2)V R±0 (λ2)V R±0 (λ2)(16)

−R±0 (λ2)V R±0 (λ2)vM±(λ)−1vR±0 (λ2)V R±0 (λ2).(17)

Provided V (x) decays sufficiently, we will show that [R±0 (λ2)V R±0 (λ2)v](x, ·) ∈ L2(R4) uniformly

in x, and that M±(λ) is invertible in L2(R4).

Lemma 2.1. If |V (x)| . 〈x〉−β− for some β > 2, then for any σ > max(1
2 , 3− β) we have

sup
x∈R4

‖[R±0 (λ2)V R±0 (λ2)](x, y)‖
L2,−σ
y
. 〈λ〉.

Consequently
∥∥R±0 (λ2)V R±0 (λ2)v

∥∥
L2→L∞ . 〈λ〉.

Before we prove the lemma we note the following bounds, whose proofs we omit. First,

Lemma 6.2 of [14]:

Lemma 2.2. Fix u1, u2 ∈ Rn and let 0 ≤ k, ` < n, β > 0, k + `+ β ≥ n, k + ` 6= n. We have∫
Rn

〈z〉−β−

|z − u1|k|z − u2|`
dz .

 ( 1
|u1−u2|)

max(0,k+`−n) |u1 − u2| ≤ 1(
1

|u1−u2|
)min(k,`,k+`+β−n) |u1 − u2| > 1

We also note Lemma 5.5 of [24]

Lemma 2.3. Let 0 < µ, γ be such that and n < γ + µ. Then∫
Rn
〈y〉−γ〈x− y〉−µ dy . 〈x〉−min(γ,µ,γ+µ−n).

Proof of Lemma 2.1. Using (13) we have

|R±0 (λ2)(x, y)| . 1

|x− y|2
+

λ
1
2

|x− y|
3
2

.(18)

Thus

|R±0 (λ2)(x, z)V (z)R±0 (λ2)(z, y)| . 〈λ〉|V (z)|
(

1

|x− z|
3
2

+
1

|x− z|2

)(
1

|z − y|
3
2

+
1

|z − y|2

)
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We need only concern ourselves with the most singular and slowest decaying terms to establish

local L2 behavior and determine the appropriate weight needed. We use that for a, b > 0

1

a2b2
.

1

a2−b2
+

1

a2+b2

to avoid logarithmic singularities. So that, using Lemma 2.2∫
R4

〈z〉−β−
(

1

|x− z|
3
2 |z − y|

3
2

+
1

|x− z|2−|z − y|2
+

1

|x− z|2+|z − y|2

)
dz

. 〈x− y〉−min( 3
2
,β−1) + 〈x− y〉−min(2−,β−) + |x− y|0−〈x− y〉−min(2,β+)+

. |x− y|0−〈x− y〉−min( 3
2
,β−1)

Using Lemma 2.3 this is clearly in L2,−σ
y uniformly in x provided σ > max(1

2 , 3 − β). Mul-

tiplication by v(y) . 〈y〉−β/2 suffices to remove the weights because β
2 > max(1

2 , 3 − β) for

β > 2.

�

To invert M±(λ) in L2 under various spectral assumptions on the zero energy we need to

obtain several different expansions for M±(λ). The following operators arise naturally in these

expansions (see (9), (10)):

G0f(x) = − 1

4π2

∫
R4

f(y)

|x− y|2
dy = (−∆)−1f(x),(19)

G1f(x) = − 1

8π2

∫
R4

log(|x− y|)f(y) dy,(20)

G2f(x) = c2

∫
R4

|x− y|2f(y) dy(21)

G3f(x) = c3

∫
R4

|x− y|2 log(|x− y|)f(y) dy(22)

Here c2, c3 are certain real-valued constants, the exact values are unimportant for our analysis.

We will use Gj(x, y) to denote the integral kernel of the operator Gj . In addition, the following

functions appear naturally,

g+
1 (λ) = g−1 (λ) = λ2(a1 log(λ) + z1)(23)

g+
2 (λ) = g−2 (λ) = λ4(a2 log(λ) + z2).(24)

Here aj ∈ R \ {0} and zj ∈ C \ R.

We also define the operators

T := M±(0) = U + vG0v, P := ‖V ‖−1
1 v〈v, ·〉.(25)
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Finally we recall the definition of the Hilbert-Schmidt norm of an operatorK with kernelK(x, y),

‖K‖HS :=

(∫∫
R2n

|K(x, y)|2 dx dy
) 1

2

Lemma 2.4. Assuming that v(x) . 〈x〉−β. If β > 2, then we have

(26) M±(λ) = T +M±0 (λ),

‖ sup
0<λ<λ1

λ−2+M±0 (λ)‖HS + ‖ sup
0<λ<λ1

λ−1+∂λM
±
0 (λ)‖HS . 1,

and

(27) M±(λ) = T + ‖V ‖1g±1 (λ)P + λ2vG1v +M±1 (λ),

‖ sup
0<λ<λ1

λ−2−M±1 (λ)‖HS + ‖ sup
0<λ<λ1

λ−1−∂λM
±
1 (λ)‖HS . 1.

If β > 4, we have

(28) M±(λ) = T + ‖V ‖1g±1 (λ)P + λ2vG1v + g±2 (λ)vG2v + λ4vG3v +M±2 (λ),

‖ sup
0<λ<λ1

λ−4−M±2 (λ)‖HS + ‖ sup
0<λ<λ1

λ−3−∂λM
±
2 (λ)‖HS . 1.

Proof. Using the notation introduced in (19)–(24) in (7), (9), and (10), we obtain (for λ|x−y| �
1)

R±0 (λ2)(x, y) = G0(x, y) + Õ1(λ2−)(29)

R±0 (λ2)(x, y) = G0(x, y) + g±1 (λ) + λ2G1(x, y) + Õ1(λ4|x− y|2 log(λ|x− y|)).(30)

R±0 (λ2)(x, y) = G0(x, y) + g±1 (λ) + λ2G1(x, y) + g±2 (λ)G2(x, y) + λ4G3(x, y)(31)

+ Õ1(λ6|x− y|4 log(λ|x− y|)).

In light of these expansions and using the notation in (25), we define M±j (λ) by the identities

M±(λ) = U + vR±0 (λ2)v = T +M±0 (λ).(32)

M±(λ) = T + ‖V ‖1g±1 (λ)P + λ2vG1v +M±1 (λ).(33)

M±(λ) = T + ‖V ‖1g±1 (λ)P + λ2vG1v + g±2 (λ)vG2v + λ4vG3v +M±2 (λ).(34)

For the bounds on M±j ’s we omit the superscripts. For λ|x − y| � 1, the bounds will follow

from the expansions (29), (30), (31).

For λ|x− y| & 1, we use (7) and (12) to see (for any α ≥ 0 and k = 0, 1)

|∂kλR0(λ2)(x, y)| =
∣∣∣∣∂kλ[λeiλ|x−y|ω(λ|x− y|)

|x− y|

]∣∣∣∣ . (λ|x− y|)
1
2

+α|x− y|k−2.(35)
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Using (29), (32), and (35) with α = 3
2 − k, we have

M0(λ)(x, y) =

{
v(x)v(y)Õ1(λ2−), λ|x− y| � 1

v(x)v(y)[G0(x, y) + Õ1(λ2)], λ|x− y| & 1

= v(x)v(y)Õ1(λ2−).

This yields the bounds in (26) since v(x) . 〈x〉−2−.

The other assertions of the lemma follow similarly. We note that we take α = 3
2 − k+ in (35)

and use

Õ1(λ4|x− y|2 log(λ|x− y|)) = Õ1(λ2(λ|x− y|)0+), for λ|x− y| � 1

to obtain (27), whereas we take α = 7
2 − k− in (35) and use

Õ1(λ6|x− y|4 log(λ|x− y|)) = Õ1(λ2(λ|x− y|)2+), for λ|x− y| � 1

to obtain (28). We close the argument by noting that an operator with integral kernel v(x)|x−
y|γv(y), γ > 0, is Hilbert-Schmidt provided β > 2 + γ.

�

One can see that the invertibility of M±(λ) as an operator on L2 for small λ depends upon

the invertibility of the operator T on L2, see (25). We now give the definition of resonances at

zero energy.

Definition 2.5. (1) We say zero is a regular point of the spectrum of H = −∆+V provided

T is invertible on L2(R4).

(2) Assume that zero is not a regular point of the spectrum. Let S1 be the Riesz projection

onto the kernel of T as an operator on L2(R4). Then T + S1 is invertible on L2(R4).

Accordingly, we define D0 = (T + S1)−1 as an operator on L2(R4). We say there is a

resonance of the first kind at zero if the operator T1 := S1PS1 is invertible on S1L
2(R4).

(3) Assume that T1 is not invertible on S1L
2(R4). Let S2 be the Riesz projection onto the

kernel of T1 as an operator on S1L
2(R4). Then T1 + S2 is invertible on S1L

2(R4). We

say there is a resonance of the second kind at zero if S2 = S1. If S1 − S2 6= 0, we say

there is a resonance of the third kind.

Remarks. i) We note that S1 − S2 6= 0 corresponds to the existence of a resonance at zero

energy, and S2 6= 0 corresponds to the existence of an eigenvalue at zero energy (see Section 7

below). That is, a resonance of the first kind means that there is a resonance at zero only, a

resonance of the second kind means that there is an eigenvalue at zero only, and a resonance
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of the third kind means that there is both a resonance and an eigenvalue at zero energy. For

technical reasons, we need to employ different tools to invert M±(λ) for the different types of

resonances. It is well-known that different types of resonances at zero energy lead to different

expansions for M±(λ)−1 in other dimensions, see [16, 17, 15]. Accordingly, we will develop

different expansions for M±(λ)−1 in the following sections.

ii) Since T is self-adjoint, S1 is the orthogonal projection onto the kernel of T , and we have

(with D0 = (T + S1)−1)

S1D0 = D0S1 = S1.

This statement also valid for S2 and (T1 + S2)−1.

iii) Since T is a compact perturbation of the invertible operator U , the Fredholm alternative

guarantees that S1 and S2 are finite-rank projections in all cases.

See Section 7 below for a full characterization of the spectral subspaces of L2 associated to

H = −∆ + V .

Definition 2.6. We say an operator K : L2(R4) → L2(R4) with kernel K(·, ·) is absolutely

bounded if the operator with kernel |K(·, ·)| is bounded from L2(R4) to L2(R4).

Note that Hilbert-Schmidt and finite rank operators are absolutely bounded.

Lemma 2.7. The operator D0 is absolutely bounded in L2.

Proof. First note that

0 = S1(U + vG0v) ⇒ S1U = −S1vG0v ⇒ S1 = −S1vG0w.

Using this and the resolvent identity

D0 = U −D0(vG0v + S1)U

twice, we obtain

D0 = U − U(vG0v + S1)U +D0(vG0w − S1vG0v)(vG0w − S1vG0v).

We note that S1 is a finite rank projection operator, and U is absolutely bounded on L2. Note

that vG0w is absolutely bounded on L2 since G0 is a multiple of the fractional integral operator

I2 which is a compact operator on L2,σ → L2,−σ if σ > 1, see Lemma 2.3 of [26]. Thus, if

v(x) . 〈x〉−1− then vG0w is absolutely bounded on L2. We note that by (19), Lemma 2.2, and

Lemma 2.3 one can see that (vG0w − S1vG0v)(vG0w − S1vG0v) is Hilbert-Schmidt provided

v(x) . 〈x〉−1−. Thus the the final operator in the expansion for D0 is Hilbert-Schmidt since the

composition of a bounded and a Hilbert-Schmidt operator is Hilbert-Schmidt. �
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To invert M±(λ) = U + vR±0 (λ2)v for small λ, we use the following lemma (see Lemma 2.1

in [29]).

Lemma 2.8. Let A be a closed operator on a Hilbert space H and S a projection. Suppose A+S

has a bounded inverse. Then A has a bounded inverse if and only if

B := S − S(A+ S)−1S

has a bounded inverse in SH, and in this case

A−1 = (A+ S)−1 + (A+ S)−1SB−1S(A+ S)−1.

We will apply this lemma with A = M±(λ) and S = S1, the orthogonal projection onto the

kernel of T . Thus, we need to show that M±(λ) + S1 has a bounded inverse in L2(R4) and

B±(λ) = S1 − S1(M±(λ) + S1)−1S1(36)

has a bounded inverse in S1L
2(R4).

The invertibility of the operator B± will be studied in various different ways depending on

the resonance type at zero. For M±(λ) + S1, we have

Lemma 2.9. Suppose that zero is not a regular point of the spectrum of H = −∆ + V , and

let S1 be the corresponding Riesz projection. Then for sufficiently small λ1 > 0, the operators

M±(λ) +S1 are invertible for all 0 < λ < λ1 as bounded operators on L2(R4). Further, one has

(with g̃±1 (λ) = ‖V ‖1g±1 (λ))

(M±(λ) + S1)−1 = D0 − g̃1(λ)D0PD0 − λ2D0vG1vD0 + Õ1(λ2+)(37)

= D0 + Õ1(λ2−)(38)

as an absolutely bounded operator on L2(R4) provided v(x) . 〈x〉−2−.

Proof. We give the proof for M+(λ) and drop the superscript from the formulas, M−(λ) follows

similarly. We use the expansion (27) for M(λ) given in Lemma 2.4, and then for λ < λ1

sufficiently small we have

(M(λ) + S1)−1 = [T + S1 + g̃1(λ)P + λ2vG1v +M1(λ)]−1

= D0[1 + g̃1(λ)PD0 + λ2vG1vD0 +M1(λ)D0]−1.

Using a Neumann series expansion and the error bounds on M1 in (27), we have

(M±(λ) + S1)−1 = D0 − g̃1(λ)D0PD0 − λ2D0vG1vD0 + Õ1(λ2+) = D0 + Õ1(λ2−).

These operators are absolutely bounded since D0 is an absolutely bounded operator. �
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We will use this lemma in all cases, however we also need a refinement if there is an eigenvalue

at zero, see (50).

3. Resonance of the first kind

Here we consider the case of a resonance of the first kind, that is when S1 6= 0 and S2 = 0.

We note that in this case S1 is of rank one by Corollary 7.3. In this section we develop the tools

necessary to prove the first claim of Theorem 1.1 when there is only a resonance at zero energy.

In particular, we prove

Theorem 3.1. Suppose that |V (x)| . 〈x〉−4−. If there is a resonance of the first kind at zero,

then there is a rank one operator Ft such that

‖eitHχ(H)Pac(H)− Ft‖L1→L∞ . t
−1, t > 2.

with

‖Ft‖L1→L∞ .
1

log t
, t > 2.

We will need the following lemma to obtain the time-decay rate for Ft in Theorem 3.1.

Lemma 3.2. If E(λ) = Õ1((λ log λ)−2), then∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)E(λ) dλ

∣∣∣∣ . 1

log t
, t > 2.

Proof. We first divide the integral into two pieces,∫ ∞
0

eitλ
2
λχ(λ)E(λ) dλ =

∫ t−1/2

0
eitλ

2
λχ(λ)E(λ) dλ+

∫ ∞
t−1/2

eitλ
2
λχ(λ)E(λ) dλ

For the first integral, we note∣∣∣∣ ∫ t−1/2

0
eitλ

2
λχ(λ)E(λ) dλ

∣∣∣∣ . ∫ t−1/2

0

1

λ(log λ)2
dλ .

1

log t

For the second integral, we integrate by parts once to see∣∣∣∣ ∫ ∞
t−1/2

eitλ
2
λχ(λ)E(λ) dλ

∣∣∣∣ . |E(t−1/2)|
t

+
1

t

∫ ∞
t−1/2

∣∣∣∣ ddλ(χ(λ)E(λ)
)∣∣∣∣ dλ

.
1

(log t)2
+

1

t
+

1

t

∫ t−
1
4

t−
1
2

1

λ2| log t|2
dλ+

1

t

∫ 1
2

t−
1
4

1

λ2
dλ .

1

(log t)2
.

Here we used that the integral converges on [1
2 ,∞).

�

To invert M±(λ) using Lemma 2.8, we need to compute B±(λ), (36).
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Lemma 3.3. In the case of a resonance of the first kind at zero, under the hypotheses of

Theorem 3.1 we have for small λ, B±(λ) is invertible and

B±(λ)−1 = f±(λ)S1,(39)

where

f+(λ) =
1

λ2

1

a log λ+ z + Õ1(λ0+)
= f−(λ)(40)

for some a ∈ R/{0} and z ∈ C/R.

Proof. Noting that S1D0 = D0S1 = S1, we have

S1[M±(λ) + S1]−1S1 = S1 − g̃±1 (λ)S1PS1 − λ2S1vG1vS1 + S1Õ1(λ2+)S1.

So that (for some c1, c2 ∈ R, c1 6= 0),

B±(λ) = g̃±1 (λ)S1PS1 + λ2S1vG1vS1 + S1Õ1(λ2+)S1

=
[
c1g̃
±
1 (λ) + c2λ

2 + Õ1(λ2+)
]
S1.

In the second equality we used the fact that S1 is of rank one in the case of a resonance of the

first kind.

�

In particular we note that for 0 < λ < λ1,

f+(λ)− f−(λ) =
1

λ2

(
(a log λ+ z)− (a log λ+ z) + Õ1(λ0+)

(a log λ+ z)(a log λ+ z) + Õ1(λ0+)

)
= Õ1((λ log λ)−2).(41)

We are now ready to use Lemma 2.8 to see

Proposition 3.4. If there is a resonance of the first kind at zero, then

M±(λ)−1 = f±(λ)S1 +K + Õ1(1/ log(λ)),

where K is a λ independent absolutely bounded operator.

Proof. We note by Lemma 2.8 and (39) we have

M±(λ)−1 = (M±(λ) + S1)−1 + (M±(λ) + S1)−1S1B±(λ)−1S1(M±(λ) + S1)−1

= (M±(λ) + S1)−1 + f±(λ)(M±(λ) + S1)−1S1(M±(λ) + S1)−1.
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The representation (38) in Lemma 2.9 takes care of the first summand. Using (37), and

S1D0 = D0S1 = S1, we have

(M±(λ) + S1)−1S1 = S1 − g̃±1 (λ)D0PS1 − λ2D0vG1vS1 + Õ1(λ2+),

S1(M±(λ) + S1)−1 = S1 − g̃±1 (λ)S1PD0 − λ2S1vG1vD0 + Õ1(λ2+).

When an error term of size Õ1(λ2+) interacts with f±(λ), the product satisfies Õ1(λ2+)f±(λ) =

Õ1(λ0+), which is stronger than Õ1(1/ log((λ)). Therefore, it suffices to prove that

−g̃±1 (λ)f±(λ)[D0PS1 + S1PD0]− λ2f±(λ)[D0vG1vS1 + S1vG1vD0]

equals to a λ independent operator plus an error term of size Õ1((log λ)−1). This follows from

the following calculations

g̃±1 (λ)f±(λ) =
g̃±1 (λ)

c1g̃
±
1 (λ) + c2λ2 + Õ1(λ2+)

=
1

c1
+ Õ1((log λ)−1), and

λ2f±(λ) =
1

a log λ+ z± + Õ1(λ0+)
= Õ1((log λ)−1).

�

Here we consider the contribution of the most singular f±(λ)S1 term in Proposition 3.4.

Lemma 3.5. For each x, y ∈ R4 we have the identity

[f+(λ)R+
0 V R

+
0 vS1vR

+
0 V R

+
0 − f

−(λ)R−0 V R
−
0 vS1vR

−
0 V R

−
0 ](x, y)

= (f+(λ)− f−(λ))[G0V G0vS1vG0V G0](x, y) + Lx,y(λ)

with

sup
x,y∈R4

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)Lx,y(λ) dλ

∣∣∣∣ . t−1, t > 2.(42)

Before proving this lemma, we note that the most singular term of the expansion takes the

form

[f+(λ)− f−(λ)]K1.

where K1 = G0V G0vS1vG0V G0 is a rank one operator. The contribution of this to the Stone’s

formula, (2), gives us the operator Ft in Theorem 3.1:

Ft := K1

∫ ∞
0

eitλ
2
λχ(λ)[f+(λ)− f−(λ)]dλ = O(1/ log(t))K1,
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where we used Lemma 3.2 in the last equality. The desired L1 → L∞ bound follows from this

and the observation that

sup
x,y∈R4

‖G0V G0v(x, z1)‖L2
z1
‖|S1|‖L2→L2‖vG0V G0(z2, y)‖L2

z1
<∞.(43)

Here we used Lemmas 2.2 and 2.3 and the fact that S1 is absolutely bounded.

Proof. Consider

f+(λ)R+
0 V R

+
0 vS1vR

+
0 V R

+
0 − f

−(λ)R−0 V R
−
0 vS1vR

−
0 V R

−
0 .(44)

Using the algebraic fact,

M∏
k=0

A+
k −

M∏
k=0

A−k =
M∑
`=0

( `−1∏
k=0

A−k

)(
A+
` −A

−
`

)( M∏
k=`+1

A+
k

)
,(45)

rewrite (44) as [
f+(λ)− f−(λ)

]
R±0 V R

±
0 vS1vR

±
0 V R

±
0(46)

+ f±(λ)[R+
0 −R

−
0 ]V R±0 vS1vR

±
0 V R

±
0(47)

+ f±(λ)R±0 V [R+
0 −R

−
0 ]vS1vR

±
0 V R

±
0(48)

+ similar terms.

We further write

(49) (46) =
(
f+(λ)− f−(λ)

)[
G0V G0vS1vG0V G0

+G0V G0vS1vG0V (R±0 −G0) +G0V G0vS1v(R±0 −G0)V R±0

+G0V (R±0 −G0)vS1vR
±
0 V R

±
0 + (R±0 −G0)V R±0 vS1vR

±
0 V R

±
0

]
The first line corresponds to the operator K1, which we’ve seen is rank one and its contribution

to the Stone formula decays like 1/ log t. We now show that the remaining terms along with

(47) and (48), denoted Lx,y(λ) in the statement of the Lemma obey the bound (42).

Now consider the contribution of the second most singular term in (49):∫ ∞
0

eitλ
2
λχ(λ)[f+(λ)− f−(λ)]G0V G0vS1vG0V (R±0 −G0)dλ.

We need to use the representation (with r = |x− y|) which follows from (9), (11), and (12):

(R±0 (λ2)−G0)(x, y) = χ(λr)
[
cλ2 log(λr) + Õ1(λ4r2 log(λr))

]
+ Õ1(λ2).
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Using (41), we need to estimate the integral∫ ∞
0

eitλ
2
λχ(λ)

[χ(λr)
[
cλ2 log(λr) + Õ1(λ4r2 log(λr))

]
+ Õ1(λ2)

λ2|a log(λ) + z|2 + Õ1(λ2+)
+ Õ1(λ1−)

]
dλ.

We define the function log−(y) := | log y|χ(0,1)(y). Integrating by parts we bound this integral

by (ignoring the terms when the derivative hits the cutoff functions)

1

t

∫ ∞
0

χ(λ)
[ χ(λr)| log(λr)|
λ|a log(λ) + z|3

+
χ(λr)λr2| log(λr)|
|a log(λ) + z|2

+
1

λ|a log(λ) + z|2
+ λ0−

]
dλ

.
1

t
[1 + log−(r)].

To obtain the last inequality note that the last two summands are clearly integrable. The

second summand can be estimated by noting that the denominator is bounded away from zero

and then changing the variable λr → λ. Finally, the first summand can be estimated by using

the inequality

χ(λ)χ(λr)| log(λr)| . 1 + | log(λ)|+ log−(r).

This yields the required inequality asserted in Theorem 3.1 by noting that

sup
x∈R4

v(y)G0V (1 + log−(| · −x|)) ∈ L2
y(R4).

and employing an analysis as in (43).

The contribution of the remaining terms in (49) can be estimated by writing R0 = (R0−G0)+

G0. The contribution of G0 terms is similar to the one above. The contribution of the terms

with at least two factors of R0 −G0 can be obtained by using the bound R0 −G0 = Õ1(λ2−).

The contribution of (47) (and (48)) can be estimated similarly. It suffices to study the case

when one replaces R0’s with G0’s. The bound for the low energy part of R+
0 −R

−
0 is similar to

the one above. For the high energy part, the bound Õ1(λ2) no longer suffices. Instead using the

asymptotics of R0 for large energies, we have the λ integral∫ ∞
0

eitλ
2
λχ(λ)f±(λ)χ̃(λr)eiλr

λ

r
ω+(λr)dλ.

Here χ̃ = 1 − χ is a cut-off away from zero. After an integration by parts and by ignoring the

logarithmic terms in the denominator, we bound this integral by

1

t

∫ 1

1/r

(
λ−5/2r−3/2 + λ−3/2r−1/2

)
.

1

t
.

Where we use that, on the support of χ̃(λr)χ(λ) we have that r & 1, in the last inequality.

�
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Proof of Theorem 3.1. The proof follows from Proposition 3.4, Lemma 3.5, the discussion of the

contribution of the operator K1 to the Stone formula following Lemma 3.5 and the following

observations. The contribution of the other terms in Proposition 3.4 can be bounded as in

Lemma 3.5 noting that both the λ independent operator K and the error term Õ1(1/ log λ) are

much smaller than f± and f+ − f−.

For completeness, we now consider the contribution of the finite Born series terms, (16), to

the Stone formula, (2). We will only obtain the decay rate t−1 although it is possible to prove

that these terms decay like t−2. To show the dispersive nature of the terms of (16), we note that

the first term is the free resolvent and clearly disperses. For the other terms, we take advantage

of the cancellation between the ‘+’ and ‘-’ terms. Accordingly, we consider the contribution of

the second term of (16) to the (2),∫ ∞
0

eitλ
2
λχ(λ)[R+

0 (λ2)(x, z)V (z)R+
0 (λ2)(z, y)−R−0 (λ2)(x, z)V (z)R−0 (λ2)(z, y)] dλ.

Using that R±0 = G0 + Õ1(λ2−), we can rewrite the integral above as∫ ∞
0

eitλ
2
λχ(λ)[G0V Õ1(λ2−) + Õ1(λ2−)V G0 + Õ1(λ2−)V Õ1(λ2−)]dλ.

It is easy to see that this integral is O(1/t) by an integration by parts. The contribution of the

third term in the Born series is similar. We note that by Lemma 2.2

sup
x,y∈R4

∫
R4

[1 +G0(x, z) +G0(z, y)]V (z) dz <∞

which closes the argument.

�

4. Resonance of the second kind

In this section we prove Theorem 1.1 in the case of a resonance of the second kind, that is

when S1 6= 0, and S1 − S2 = 0. In particular, we prove

Theorem 4.1. Suppose that |V (x)| . 〈x〉−8−. If there is a resonance of the second kind at zero,

then

‖eitHχ(H)Pac(H)‖L1→L∞ . t
−1, t > 2.

Despite the fact that the spectral measure is more singular as λ→ 0 in this case, the analysis

is somehow simpler than when there is a resonance of the first kind at zero.
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To understand the expansion for M±(λ)−1 in this case we need more terms in the expansion

of (M±(λ) + S1)−1 than was provided Lemma 2.9. From Lemma 2.4, specifically (34), we have

by a Neumann series expansion

(M±(λ) + S1)−1

= D0[1 + g̃±1 (λ)PD0 + λ2vG1vD0 + g±2 (λ)vG2vD0 + λ4vG3vD0 +M±2 (λ)D0]−1

= D0 − g̃±1 (λ)D0PD0 − λ2D0vG1vD0 + (g̃±1 (λ))2D0PD0PD0(50)

+ λ2g̃±1 (λ)[D0PD0vG1vD0 +D0vG1vD0PD0]− g±2 (λ)D0vG2vD0

− λ4D0vG3vD0 +D0E
±
2 (λ)D0

with E±2 (λ) = Õ1(λ4+).

In the case of a resonance of the second kind, we recall that S1 = S2. By Lemma 7.4

below the operator S1vG1vS1 is invertible on S1L
2 (which is S2L

2 in this case). We define

D2 = (S1vG1vS1)−1 as an operator on S2L
2(R4). Noting that D2 = S1D2S1, the operator is

absolutely bounded.

Proposition 4.2. If there is a resonance of the second kind at zero, then

(51) M±(λ)−1 = −D2

λ2
+
g±2 (λ)

λ4
K1 +K2 + Õ1(λ0+)

where K1,K2 are λ independent absolutely bounded operators.

Proof. We note the identity S2P = PS2 = 0, which is shown in Section 7 below. In addition,

use S1D0 = D0S1 = S1 = S2 to see

S1(M±(λ) + S1)−1S1 = S1 − λ2S1vG1vS1 − g±2 (λ)S1vG2vS1 − λ4S1vG3vS1 + S1E
±
2 (λ)S1.

Therefore

B±(λ) = λ2S1vG1vS1 + g±2 (λ)S1vG2vS1 + λ4S1vG3vS1 − S1E
±
2 (λ)S1,(52)

and

B±(λ)−1 =
D2

λ2

[
1 +

g±2 (λ)

λ2
S1vG2vS1D2 + λ2S1vG3vS1D2 + S1

E±2 (λ)

λ2
S1D2

]−1

=
D2

λ2
+
g±2 (λ)

λ4
D5 +D6 + Õ1(λ0+)

with D5, D6 absolutely bounded operators with real-valued kernels. We note that when S1 = S2,

using (37) we have

(M±(λ) + S1)−1S1 = S1 − λ2D0vG1vS1 + Õ1(λ2+),



20 ERDOĞAN, GOLDBERG, GREEN

S1(M±(λ) + S1)−1 = S1 − λ2S1vG1vD0 + Õ1(λ2+).

So that

(53) (M±(λ) + S1)−1S1B
±(λ)−1S1(M±(λ) + S1)−1

=
D2

λ2
+
g±2 (λ)

λ4
S1D5S1 + S1D6S1 − S1vG1vS1D2 −D2S1vG1vS1 + Õ1(λ0+).

This along with the bound (M±(λ) + S1)−1 = D0 + Õ1(λ2−) in Lemma 2.8 establishes the

claim. �

The form of this expansion is similar to that found in Lemma 3.2 in [30] using non-symmetric

resolvent expansions. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We need to understand the contribution of Proposition 4.2 to the Stone

formula. To get the t−1 decay rate, we need to use cancellation between the ‘+’ and ‘-’ terms in

R+
0 V R

+
0 vM

+(λ)−1vR+
0 V R

+
0 −R

−
0 V R

−
0 vM

−(λ)−1vR−0 V R
−
0 .

As with resonances of the first kind, we use the algebraic fact (45). Two kinds of terms occur

in this decomposition; one featuring the difference M+(λ)−1 −M−(λ)−1 and ones containing a

difference of free resolvents. For the first kind we use Proposition 4.2 and that g+
2 − g

−
2 = cλ4

to obtain

M+(λ)−1 −M−(λ)−1 = cK1 + Õ1(λ0+).(54)

We use that R0 = G0 +Õ1(λ0+) and consider the most singular terms this difference contributes,

i.e.,

G0V G0vS1D5S1vG0V G0 + Õ1(λ0+).

The time decay follows from∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)[1 + Õ1(λ0+)] dλ

∣∣∣∣ . t−1,

and an analysis as in (43) noting that K1 is absolutely bounded. For the terms of the second

kind the difference of ‘+’ and ‘-’ terms in (45) acts on one of the resolvents. As usual, the most

delicate case is of the form

(R+
0 (λ2)−R−0 (λ2))V G0v[(51)]vG0V G0.
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Since R+
0 −R

−
0 = cλ2 + Õ1(λ4r2) for λr . 1, we need to bound

cV G0vD2vG0V G0 + Õ1(λ4r2)V G0v
D2

λ2
vG0V G0 + Õ1(λ0+).

The first and third terms clearly satisfy the t−1 decay rate from the previous discussion. For

the second term, we recall the support conditions to see∫ ∞
0

eitλ
2 χ(λ)

λ
Õ1(λ4r2) dλ . t−1r2

∫ 1/r

0
λ dλ . t−1.

On the other hand, if λr & 1, we do not use the cancellation of the ‘+’ and ‘-’ terms but

instead use the expansion (12). The most singular term is of the form∫ ∞
1/r

eitλ
2
λχ(λ)

eiλrω(λr)

λr
dλ.

Using ω(z) = Õ((1 + |z|)−
1
2 ) after an integration by parts, we bound by

t−1

∫ ∞
1/r

∣∣∣∣ ddλ(χ(λ)
eiλrω(λr)

λr

)∣∣∣∣ dλ . t−1

∫ ∞
1/r

r−
3
2λ−

5
2 + r−

1
2λ−

3
2 dλ

. t−1(1 + r−
3
2 ) . t−1.

Where we used that r & 1 in the last step. The integrals in the spatial variables is controlled as

in (43) since D2 is absolutely bounded.

The remaining terms can be bounded as in the case of a resonance of the first kind in Section 3.

�

5. Resonance of the third kind

In this section we prove Theorem 1.1 in the case of a resonance of the third kind, that is when

S1 6= 0, S2 6= 0 and S1 − S2 6= 0. In particular, we prove

Theorem 5.1. Suppose that |V (x)| . 〈x〉−8−. If there is a resonance of the third kind at zero,

then there is a finite rank operator Ft such that

‖eitHχ(H)Pac(H)− Ft‖L1→L∞ . t
−1, t > 2.

with

‖Ft‖L1→L∞ .
1

log t
, t > 2.
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In fact, Ft has rank at most two. This follows from the expansions below and the rank of the

operator S defined in (55). We note that the expansion in (50) is valid, but in this section we

do not have that S1P = 0. Using (34) in Lemma 2.4, we have

B±(λ) = g̃±1 (λ)S1PS1 + λ2S1vG1vS1 − (g̃±1 (λ))2S1PD0PS1

− λ2g̃±1 (λ)[S1PD0vG1vS1 + S1vG1vD0PS1] + g±2 (λ)S1vG2vS1

+ λ4S1vG3vS1 + Õ1(λ4+)

=: g̃±1 (λ)S1PS1 + λ2S1vG1vS1 + (g̃±1 (λ))2Γ1 + λ2g̃±1 (λ)Γ2 + g±2 (λ)Γ3

+ λ4Γ4 + Õ1(λ4+).

According to Lemma 2.8 we need to invert B±(λ), however since S2 6= 0 the kernel of S1PS1 is

non-trivial. Rather than use Lemma 2.8 again, we use the well-known Feshbach formula. Define

the operator Γ by S1 = S2 + Γ. We note that Γ is a rank one operator by Corollary 7.3 below.

We will first express B±(λ) with respect to the decomposition S1L
2(R4) = S2L

2(R4)⊕ΓL2(R4).

We define the finite rank operator S by

S :=

[
Γ −ΓvG1vD2

−D2vG1vΓ D2vG1vΓvG1vD2

]
(55)

Lemma 5.2. In the case of a resonance of the third kind we have

B±(λ)−1 = f±1 (λ)S +
D2

λ2
+
g±2 (λ)

λ4
K1 +K2 + Õ1(1/ log(λ)).(56)

Here K1,K2 are λ independent absolutely bounded operators, f+
1 (λ) = (λ2(a log λ + z))−1 with

a ∈ R \ {0} and z ∈ C \ R, and f−1 (λ) = f+
1 (λ).

Proof. Here we use that S2P = PS2 = 0 to see that the two leading terms of B±(λ) can be

written as

A±(λ) := λ2

 g̃±1 (λ)

λ2
ΓPΓ + ΓvG1vΓ ΓvG1vS2

S2vG1vΓ S2vG1vS2

 .(57)

The Feshbach formula tells us that[
a11 a12

a21 a22

]−1

=

[
a −aa12a

−1
22

−a−1
22 a21a a−1

22 a21aa12a
−1
22 + a−1

22

]
,(58)

provided a22 is invertible and a = (a11 − a12a
−1
22 a21)−1 exists.
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In our case, a22 = S2vG1vS2 is known to be invertible by Lemma 7.4 below. We denote

D2 := (S2vG1vS2)−1 and note that S2D2 = D2S2 = D2. Further

a =

[
g̃±1 (λ)

λ2
ΓPΓ + ΓvG1vΓ− ΓvG1vD2vG1vΓ

]−1

=

[
g̃±1 (λ)

λ2
c1 + c2 + c3

]−1

Γ

:= h±(λ)−1Γ

Here c1 =Trace(ΓPΓ), c2 =Trace(ΓvG1vΓ), and c3 =Trace(ΓvG1vD2vG1vΓ) are real-valued

constants. Further, h±(λ) = a log λ+ z with a ∈ R \ {0} and z ∈ C \ R.

Therefore, by the Feshbach formula we have

A±(λ)−1 =
1

λ2h±(λ)

[
Γ −ΓvG1vD2

−D2vG1vΓ D2vG1vΓvG1vD2

]
+
D2

λ2
(59)

=: f±1 (λ)S +
D2

λ2
.

Here the matrix operator S has rank at most two. By a Neumann expansion, we obtain

B±(λ)−1 = A±(λ)−1[1 + (B±(λ)−A±(λ))A±(λ)−1]−1

= A±(λ)−1 −A±(λ)−1[B±(λ)−A±(λ)]A±(λ)−1 + Õ1(λ0+).

Here we note that D2S1P = D2S2P = 0. Therefore

Γ1D2 = D2Γ1 = D2Γ2D2 = 0.

Further noting that

(60)

f±1 (λ)g̃1
±(λ) = c1 + Õ1(1/ log(λ)),

f±1 (λ)

λ2
g±2 (λ) = c2 + Õ1(1/ log(λ)),

f±1 (λ)λ2, [f±1 (λ)]2g±2 (λ) = Õ1(1/ log(λ)),

establishes the claim.

�

Proposition 5.3. If there is a resonance of the third kind at zero, then

M±(λ)−1 = f±1 (λ)S1SS1 +
D2

λ2
+
g±2 (λ)

λ4
D2Γ3D2 +K + Õ1(1/ log(λ)),

where K is a λ independent absolutely bounded operator.

We note that the expansion of M±(λ)−1 is a sum of terms similar to the ones in Propo-

sitions 3.4 and 4.2. Accordingly, we will refer to Sections 3 and 4 for most of the required

bounds.
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Proof. We note by Lemma 2.8 we have

M±(λ)−1 = (M±(λ) + S1)−1 + (M±(λ) + S1)−1S1B±(λ)−1S1(M±(λ) + S1)−1.

The representation (38) takes care of the first summand. Using (37), and S1D0 = D0S1 = S1,

we have

(M±(λ) + S1)−1S1 = S1 − g̃±1 (λ)D0PS1 − λ2D0vG1vS1 + Õ1(λ2+),

S1(M±(λ) + S1)−1 = S1 − g̃±1 (λ)S1PD0 − λ2D0vG1vS1 + Õ1(λ2+).

This, the representation (56) and the discussion preceding it, the property D2S1P = D2S2P = 0,

and (60) yield the proposition. �

We are now ready to prove the Theorem.

Proof of Theorem 5.1. The contribution of the first term in the proposition is essentially iden-

tical to the most singular term in the case of first kind. Using Lemma 3.2 gives, for t > 2,

φ(t)K2 with φ(t) = O(1/ log(t)),

where K2 = G0V G0vS1SS1vG0V G0 is of rank at most two.

For the terms K+ Õ1(1/ log(λ)), one can easily get a time decay rate of t−1 by an integration

by parts.

The terms with
g±2 (λ)

λ4
D2Γ3D2 also appeared in the case of a resonance of the second kind,

and leads to the decay rate t−1 as in the proof of Theorem 4.1.

The terms arising from the operator D2
λ2

are more complicated. Decomposing

R+
0 V R

+
0 v
D2

λ2
vR+

0 V R
+
0 −R

−
0 V R

−
0 v
D2

λ2
vR−0 V R

−
0

by (45), the nonzero terms all contain a difference R+
0 − R

−
0 , which is a constant multiple of

λ
r J1(λr). Hence the most singular term to consider is

1

λr
J1V G0vD2vG0V G0,

and similar terms with J1 changing places with any of the operators G0. The contribution of

this to the Stone’s formula leads to t−1 decay after an integration by parts by considering the

cases λr � 1 and λr & 1 separately. For λr � 1, ignoring the operator V G0vD2vG0V G0, we

use (9) to bound[ ∫ ∞
0

eitλ
2
λχ(λ)[1 + Õ1(λ2r2)] dλ

]
.

1

t

∫ ∞
0

χ′(λ) dλ+
1

t

∫ 1/r

0
λr2 dλ .

1

t
.

Here we used the support condition λ . 1
r in the second integral.
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On the other hand, if λr & 1, we use the asymptotics (12) and bound∫ ∞
0

eitλ
2
λχ(λ)

e±iλr

r2
ω±(λr) dλ.

Integrating by parts once, and using the support condition λ & 1
r we have the bound

1

t

∫ 1

1/r

1

λ
1
2 r

3
2

+
1

λ
3
2 r

3
2

dλ .
1

t
(1 + r−2) .

1

t

as we have r & 1.

�

6. Four dimensional wave equation with potential

In this section we sketch the argument for Theorem 1.2. As we can use much of the analysis

for the evolution of the Schrödinger operator in the previous sections to understand the wave

equation, we provide only a brief sketch of the proof. In Sections 3, 4 and 5 to obtain a t−1

decay rate for various terms in the evolution we needed to bound integrals of the form∫ ∞
0

eitλ
2
λE(λ) dλ

where E(λ) is supported on λ� 1 and E(λ) = Õ1(1 + 1/ log(λ)) or smaller. We then integrated

by parts once to bound with∣∣∣∣ ∫ ∞
0

eitλ
2
λE(λ) dλ

∣∣∣∣ . |E(0)|
t

+
1

t

∫ ∞
0
|E ′(λ)| dλ . 1

t
.

We can similarly control the evolution of the cosine and sine operators, (5) and (6) by a similar

argument, ∣∣∣∣ ∫ ∞
0

sin(tλ)E(λ) dλ

∣∣∣∣ . |E(0)|
t

+
1

t

∫ ∞
0
|E ′(λ)| dλ . 1

t
.

So that the analysis in controlling the final integral of |E ′(λ)| follows for the sine operator exactly

from the analysis of the Schrödinger evolution. For the cosine operator, we have an extra power

of λ, this integral is even better since λ� 1. This yields the desired bounds except for the most

singular terms which arise when there is a resonance of first or third kind at zero energy.

We now sketch the argument for the most singular terms in the cases of resonances of the

first or third kind at zero for the cosine evolution (5). This immediately follows from the bound

below, which is a modification of Lemma 3.2, and is proven analogously.

Lemma 6.1. If E(λ) = Õ1((λ log λ)−2), then∣∣∣∣ ∫ ∞
0

cos(tλ)λχ(λ)E(λ) dλ

∣∣∣∣ . 1

log t
, t > 2.
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Unfortunately, the evolution of the sine operator, (6), behaves much worse, this is due to the

following bound.

Lemma 6.2. If E(λ) = Õ((λ log λ)−2), then∣∣∣∣ ∫ ∞
0

sin(tλ)χ(λ)E(λ) dλ

∣∣∣∣ . t

log t
, t > 2.

Proof. ∣∣∣∣ ∫ ∞
0

sin(tλ)χ(λ)E(λ) dλ

∣∣∣∣ . t∫ t−1

0

1

λ(log λ)2
dλ+

∫ ∞
t−1

χ(λ)

λ2(log λ)2
dλ .

t

log t
.

�

Theorem 1.2 now follows from the arguments in Theorems 3.1, 4.1 and 5.1 with the modifi-

cation described above.

7. Spectral subspaces related to −∆ + V

We characterize the subspaces and their relation to the invertibility of operators in our re-

solvent expansions. The results below are essentially Lemmas 5–7 of [16] modified to suit four

spatial dimensions.

Lemma 7.1. Suppose |V (x)| . 〈x〉−4. Then f ∈ S1L
2 \ {0} if and only if f = wg for some

g ∈ L2,0− \ {0} such that

(−∆ + V )g = 0

holds in the sense of distributions.

Proof. We first note that

(−∆ + V )g = 0 ⇔ (I +G0V )g = 0.

First, suppose that f ∈ S1L
2 \ {0}. Then (U + vG0v)f = 0, and multiplying by U , one has

f(x) = −w(x)G0f =
w(x)

4π2

∫
R4

v(y)f(y)

|x− y|2
dy.

Accordingly, we define

g(x) =
1

4π2

∫
R4

v(y)f(y)

|x− y|2
dy

(
= −G0vf(x)

)
.(61)

Since vf ∈ L2,2, we have that g ∈ L2,0− by viewing G0 as a mutliple of the Riesz potential, see

Lemma 2.3 in [26]. Further f(x) = w(x)g(x) and

g(x) = −G0vf(x) = −G0V g(x), ⇒ (I +G0V )g(x) = 0.
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Secondly, assume f = wg for g a non-zero distributional solution to (−∆ + V )g = 0. It is clear

that f ∈ L2,2− and now

(U + vG0v)f(x) = v(x)g(x) + v(x)G0V g(x) = v(x)(I +G0V )g(x) = 0.

Thus showing that f ∈ S1L
2.

�

Recall that S2 is the projection onto the kernel of S1PS1. Note that for f ∈ S2L
2, since S1, S2

and P are projections and hence self-adjoint we have

0 = 〈S1PS1f, f〉 = 〈Pf, Pf〉 = ‖Pf‖22

Thus PS2 = S2P = 0.

Lemma 7.2. Suppose |V (x)| . 〈x〉−4−. Then f ∈ S2L
2 \ {0} if and only if f = wg for some

g ∈ L2 \ {0} such that

(−∆ + V )g = 0

holds in the sense of distributions.

Proof. Assume first that f ∈ S2L
2 \{0}. Since S2 ≤ S1, using Lemma 7.1, we need only to show

that g ∈ L2. Since Pf = 0 we have ∫
R4

v(y)f(y) dy = 0.

Using this, our definition of g(x) and (19) we have

g(x) =
1

4π2

∫
R4

[
1

|x− y|2
− 1

1 + |x|2

]
v(y)f(y) dy

Using ∣∣∣∣ 1

|x− y|2
− 1

1 + |x|2

∣∣∣∣ . 〈y〉
〈x〉|x− y|2

+
〈y〉

|x− y|〈x〉2

and noting that 〈·〉vf ∈ L2,1+, the Riesz potential I2 maps L2,1+ to L2,−1, and I3 maps L2,1+

to L2,−2 shows that g ∈ L2 as desired.

On the other hand, if f = wg as in the hypothesis we have

g(x) =
1

4π2

∫
R4

[
1

|x− y|2
− 1

1 + |x|2

]
v(y)f(y) dy +

1

4π2(1 + |x|2)

∫
R4

v(y)f(y) dy.(62)

The first term and g(x) are in L2. Thus, we must have that

1

4π2(1 + |x|2)

∫
R4

v(y)f(y) dy ∈ L2(R4).
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This necessitates that
∫
v(y)f(y) dy = 0, that is 0 = Pf = S1PS1f and f ∈ S2L

2 as desired.

�

Corollary 7.3. Suppose |V (x)| . 〈x〉−4−. Then

Rank(S1) ≤ Rank(S2) + 1.

Proof. It suffices to prove that if f1, f2 ∈ S1(L2)\{0}, then the corresponding distributional

solutions g1, g2 of the equation (−∆ + V )g = 0 satisfies

g2 = cg1 + h

for some h ∈ L2 and a constant c. This follows immediately from the equation (62). �

Lemma 7.4. If |V (x)| . 〈x〉−5−, then the kernel of S2vG1vS2 = {0} on S2L
2.

Proof. Assume that f ∈ S2L
2 is in the kernel of S2vG1vS2. That is,

0 = 〈G1vf, vf〉

Using the expansion in (30) and the fact that Pf = 0 for f ∈ S2L
2, we have

0 = 〈G1vf, vf〉

= lim
λ→0

〈R0 −G0 − g̃1(λ)

λ2
vf, vf

〉
= lim

λ→0

〈R0 −G0

λ2
vf, vf

〉
= lim

λ→0

∫
R4

(
−1

4π2ξ2 + λ2
+

1

4π2ξ2

)
v̂f(ξ)v̂f(ξ) dξ

= lim
λ→0

1

16π4

∫
R4

|v̂f |2(ξ)

ξ2(ξ2 + λ2)
dξ =

1

16π4

∫
R4

|v̂f |2

ξ4
dξ = 〈G0vf,G0vf〉

where we used the monotone convergence theorem. This shows that v̂f = 0 and thus vf = 0

and f = 0.

�

Lemma 7.5. The projection onto the eigenspace at zero is G0vS2[S2vG1vS2]−1S2vG0.

Proof. Let φj , j = 1, 2, . . . , N be an orthonormal basis for S2L
2. Then

0 = (U + vG0v)φj ,

0 = (I + wG0v)φj = φj + wG0vφj .

Let ψj = −G0vφj . Note that ψj ’s are linearly independent and that

φj = wψj ,
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and hence

ψj = −G0vφj = −G0V ψj .

Therefore, for any f ∈ L2 we have

S2f =

N∑
j=1

〈f, φj〉φj ,

S2vG0f =
N∑
j=1

〈S2vG0f, φj〉φj =
N∑
j=1

〈f,G0vφj〉φj = −
N∑
j=1

〈f, ψj〉φj

Let Aij be the matrix representation of SvG2vS with respect to {φj}Nj=1. That is,

Aij = 〈φi, S2vG1vS2φj〉 = 〈G0vφi, G0vφj〉 = 〈G0V φi, G0V φj〉 = 〈ψi, ψj〉.

Denoting Q = G0vS2[S2vG1vS2]−1S2vG0, for f ∈ L2 we have

Qf = G0vS2[S2vG1vS2]−1S2vG0f = G0vS2[S2vG1vS2]−1
(
−

N∑
j=1

〈f, ψj〉φj
)

= −
N∑
j=1

G0vS2[S2vG1vS2]−1φj〈f, ψj〉 =
N∑

i,j=1

G0vS2(A−1
ij )φi〈f, ψj〉

= −
N∑

i,j=1

G0vφi(A
−1
ij )〈f, ψj〉 =

N∑
i,j=1

(A−1
ij )ψi〈f, ψj〉.

For f = ψk we have

Qψk =

N∑
i,j=1

(A−1
ij )ψi〈ψk, ψj〉 =

N∑
i,j=1

(A−1
ij )(Ajk)ψi = ψk.

Thus, we have that the range of Q is the span of {ψj}Nj=1 and is the identity on the range of Q.

Since Q is self-adjoint, we are done.

�
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30 ERDOĞAN, GOLDBERG, GREEN

[4] Beals, M. and Strauss, W. Lp estimates for the wave equation with a potential. Comm. Partial Differential

Equations 18 (1993), no. 7–8, 1365–1397.

[5] Beceanu, M. Dispersive estimates in R3 with Threshold Resonances. Preprint (2012).

[6] Beceanu, M. and Goldberg, M. Strichartz Estimates and Maximal Operators for the Wave Equation in R3.

Preprint, 2012.

[7] Bollé, D., Danneels, C., Gesztesy, F. Threshold scattering in two dimensions. Ann. Inst. H. Poincaré Phys.
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