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TWO-DIMENSIONAL SCHRÖDINGER OPERATORS WITH

THRESHOLD OBSTRUCTIONS
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Abstract. Let H = −∆ + V be a Schrödinger operator on L2(R2) with real-valued

potential V , and let H0 = −∆. If V has sufficient pointwise decay, the wave operators

W± = s − limt→±∞ eitHe−itH0 are known to be bounded on Lp(R2) for all 1 < p < ∞ if

zero is not an eigenvalue or resonance. We show that if there is an s-wave resonance or an

eigenvalue only at zero, then the wave operators are bounded on Lp(R2) for 1 < p < ∞.

This result stands in contrast to results in higher dimensions, where the presence of zero

energy obstructions is known to shrink the range of valid exponents p.

1. Introduction

Let H = −∆+V be a Schrödinger operator with a real-valued potential V and H0 = −∆.

If |V (x)| . 〈x〉−β for some β > 2, then the spectrum of H is composed of a finite collection

of non-positive eigenvalues along with the absolutely continuous spectrum on [0,∞), [24].

The wave operators are defined by the strong limits on L2(Rn)

W±f = lim
t→±∞

eitHe−itH0f.(1)

Such limits are known to exist and be asymptotically complete for a wide class of potentials

V . Furthermore, one has the identities

W ∗±W± = I, W±W
∗
± = Pac(H),(2)

with Pac(H) the projection onto the absolutely continuous spectral subspace associated

with the Schrödinger operator H.

This work continues a line of inquiry on the Lp(Rn) and W k,p(Rn) boundedness of the

wave operators. It is known, see [28, 29, 20, 31, 11, 3, 4, 5, 7] that the wave operators are
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bounded on Lp(Rn) for 1 ≤ p ≤ ∞ in dimensions n ≥ 3 provided that zero energy is regular,

with varying assumptions on the decay and smoothness of the potential V .

We say that zero energy is regular if there are no zero energy eigenvalues or resonances.

There is a zero energy eigenvalue if there is a solution to Hψ = 0 with ψ ∈ L2(Rn), and

a resonance if ψ belongs to a function space (depending on n ≤ 4) strictly larger than

L2(Rn). In dimension n = 2, there is a rich structure of threshold obstructions. If Hψ = 0

with ψ ∈ L∞(R2) \ L2(R2) we say there is a zero energy resonance. If ψ ∈ L∞(R2) but

ψ /∈ Lp(R2) for any p < ∞, we say that ψ is an s-wave resonance. If ψ ∈ Lp(R2) for all

p > 2, we say that ψ is a p-wave resonance. We say there is a resonance of the first kind

at zero if there is an s-wave resonance, but no p-wave resonance or eigenfunction at zero

energy.

In dimensions n ≥ 3, recent work of Yajima [32, 34] and the second and third authors [15,

16] show that zero-energy eigenvalues generically shrink the range of Lp(Rn) boundedness

to 1 < p < n if n = 3, 4 and 1 < p < n
2 if n ≥ 5, with conditions on vanishing moments

of the product of the potential and the zero-energy eigenfunctions allowing one to push the

upper range to 1 < p < ∞. In dimensions n > 4 or n = 3, one can obtain the p = 1

endpoint, [15, 34].

The endpoints of p = 1 and p = ∞ are elusive in lower dimensions. Weder showed that

the wave operators are bounded on Lp(R) for 1 < p < ∞, and that the endpoint p = 1

is possible under certain conditions on the Jost solutions, but is weak-type in general [27].

See also [6]. In two dimensions, Yajima showed that the wave operators are bounded for

1 < p < ∞, when zero is regular and
∫
R2 V (x) dx 6= 0, [30]. The last hypothesis on V

was shown to be unneccessary in [20]. To the best of the authors’ knowledge, there are no

results in the literature when zero is not regular and n = 2.

The intertwining identity

f(H)Pac(H) = W±f(−∆)W ∗±,(3)

which is valid for Borel functions f , allows one to deduce properties of the perturbed

operator f(H) from the simpler operator f(−∆), provided one has control on mapping

properties of the wave operators W± and W ∗±. In two dimensions, boundedness of the wave

operators on Lp(R2) for a given p ≥ 2 imply the dispersive estimates

(4) ‖eitHPac(H)‖Lp′→Lp . |t|−1+ 2
p .

Here p′ is the Hölder conjugate defined by 1
p + 1

p′ = 1.
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There has been much work on dispersive estimates for the Schrödinger evolution with

zero energy obstructions in recent years by Schlag, Toprak and the authors in various

combinations, see [10, 12, 9, 8, 13, 14, 26] in which L1(Rn) → L∞(Rn) were studied for

all n > 1. Estimates in Lp(Rn) are obtained by interpolating these results with the L2

conservation law. These works have roots in previous work of [22], and also in [18, 23]

where the dispersive estimates were studied as operators on weighted L2(Rn) spaces.

Our main results are inspired by the dispersive estimates proven in [9]. In particular, it

was shown that the existence of an s-wave resonance at zero does not destroy the natural

t−1 dispersive estimate. It was further shown that in the case of an eigenvalue only, one can

attain a t−1 dispersive decay at the cost of polynomial spatial weights. These estimates,

along with the intertwining identity (3) suggest that the wave operators should be Lp(R2)

bounded for a non-trivial range of p. Our main result affirms this.

Theorem 1.1. Assume that |V (x)| . 〈x〉−β.

i) If there is an s-wave resonance, but no p-wave resonance or eigenvalue at zero, then

the wave operators extend to bounded operators on Lp(R2) for all 1 < p <∞ provided

β > 6.

ii) If there is an eigenvalue at zero but no resonances, then the wave operators extend to

bounded operators on Lp(R2) for all 1 < p <∞ provided β > 12.

The near full range of Lp(R2) boundedness is somewhat surprising due to the known

results in higher dimensions in which further assumptions on the eigenspace are needed,

[15, 33, 16]. See also Remark 1.3 in [30]. The range for the eigenvalue only case uti-

lizes orthogonality properties between the zero energy eigenfunctions and the potential. In

particular, we have for any zero energy eigenfunction ψ that∫
R2

V ψ(x) dx =

∫
R2

xjV ψ(x) dx = 0, j = 1, 2.

In higher dimensions, [15, 33, 16], the addition of these vanishing moment assumptions are

crucial to extending the range of Lp(Rn) boundedness to 1 ≤ p <∞.

We prove Theorem 1.1 for W = W−. The proof for W+ is identical up to complex

conjugation. The limiting resolvent operators are defined by R±0 (λ2) := lim
ε→0+

(H0 − (λ ±

iε)2)−1 and R±V (λ2) := lim
ε→0+

(H − (λ ± iε)2)−1. We refer to these operators as the free

and perturbed resolvents, respectively. These operators are well-defined on polynomially

weighted L2(R2) spaces due to the limiting absorption principle of Agmon, [2].
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It is well-known that the free resolvent operator may be expressed in terms of special

functions. In particular,

(5) R±0 (λ2)(x, y) = ± i
4
H±0 (λ|x− y|),

where H±0 (z) = J0(z)± iY0(z) are the Hankel functions of order zero, which are composed

of the Bessel functions J0 and Y0.

The starting point for our analysis is the so-called “stationary representation” of the wave

operator,

(6) W−u = u− 1

πi

∫ ∞
0

λR−V (λ2)V [R+
0 −R

−
0 ](λ2)u dλ

Due to the results of Yajima, [30], the high energy portion of the wave operator, when

λ > λ0 > 0 for any λ0 � 1, is bounded on Lp(R2) for 1 < p < ∞. Accordingly, we are

interested in the low energy contribution, so we insert the cut-off χ(λ) which is equal to one

if 0 < λ < λ1 and is zero if λ > 2λ1 for a small fixed constant λ1 � 1.

The paper is organized as follows. We begin in Section 2 developing the necessary low

energy expansions of the perturbed resolvent operators R±V (λ2) in the presence of zero-

energy obstructions. In Section 3, we prove that in the case of an s-wave resonance at zero

energy, the most singular term may be bounded pointwise by an operator that is bounded

on the full range of 1 ≤ p ≤ ∞. In Section 4, we show that in the case of an eigenvalue only

at zero energy, the leading term is bounded on 1 ≤ p < ∞. In Section 5 we provide the

proof of Theorem 1.1. Finally, in Section 6, we prove necessary technical integral estimates.

2. Resolvent Expansions

In this section we recall, and modify as needed, expansions for the low energy resolvent

R±V (λ2) derived in [9], see also [19, 25]. These expansions were developed to study the

L1(R2)→ L∞(R2) estimates, and require some modifications to suit the goal of established

boundedness of the wave operators.

To analyze the low energy contribution of the wave operator we employ the symmetric

resolvent identity for the perturbed resolvent operator. We define U(x) = 1 when V (x) ≥ 0

and U(x) = −1 if V (x) < 0, v = |V |
1
2 . Then V = Uv2 and for =(λ) 6= 0, we have

RV (λ2)V = R0(λ2)vM(λ)−1v,

where

M(λ) = U + vR0(λ2)v.
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For λ ∈ R \ {0} define M±(λ) = U + vR±0 (λ2)v. The invertibility of M±(λ) around λ = 0

is intimately tied to the existence of obstructions (eigenvalues and/or resonances) at the

threshold λ = 0, see [19, 9]. So, inserting the resolvent identity into (6), our goal is to

bound the integral kernel of

1

πi

∫ ∞
0

R−0 vM
−(λ)−1v[R+

0 −R
−
0 ](λ2)λχ(λ) dλ.(7)

We note that expansions for M±(λ)−1 and hence of the resolvent R±V (λ2) in the pres-

ence of zero energy obstructions were a significant achievement in the work of Jensen and

Nenciu [19]. Further study was performed by the first and third authors, [9], in service of

establishing dispersive estimates. From these works it is known that the singular behavior

of M±(λ)−1 as λ → 0 is highly dependent on the type of obstruction at zero energy. We

recall the following definitions from [9], see also [19, 25].

Definition 2.1. We say an operator T : L2(R2)→ L2(R2) with kernel T (·, ·) is absolutely

bounded if the operator with kernel |T (·, ·)| is bounded from L2(R2) to L2(R2).

It is worth noting that Hilbert-Schmidt and finite-rank operators are absolutely bounded.

We say that an absolutely bounded operator T (λ)(·, ·) is Õk(λ
s) if the integral kernel

satisfies ∥∥ sup
0<λ<2λ1

λj−s|∂jλT (λ)(·, ·)|
∥∥
L2→L2 . 1, 0 ≤ j ≤ k.(8)

Define P to be the projection onto the span of v, and Q := 1− P .

For small energies near the threshold, the expansion for the perturbed resolvent R±V is

found through expansions for the free resolvents R±0 both directly and through the operators

M±(λ)−1. In particular, we recall (see Section 3 of [25] for example), that the integral kernel

of the free resolvents satisfy

R±0 (λ2)(x, y) = g±(λ) +G0(x, y) + E±0 (λ)(x, y)

Here, E0 is an error term, and

(9) G0f(x) = − 1

2π

∫
R2

log |x− y|f(y) dy,

We note that G0 is the fundamental solution to the Laplace equation on R2. This naturally

yields an expansion for the operators M±(λ). With T = U + vG0v, we have

M±(λ) = g±(λ)P + T + vE±0 (λ)v.
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The nature of the threshold obstruction dictates the properties one needs from E0. We

develop appropriate expansions in Lemma 2.3 and 2.4.

Definition 2.2. (1) We say zero is a regular point of the spectrum of H = −∆ + V

provided QTQ = Q(U + vG0v)Q is invertible on QL2(R2).

(2) Assume that zero is not a regular point of the spectrum. Let S1 be the Riesz pro-

jection onto the kernel of QTQ as an operator on QL2(R2). Then QTQ + S1 is

invertible on QL2(R2). Accordingly, we define D0 = (QTQ+ S1)−1 as an operator

on QL2(R2). We say there is a resonance of the first kind at zero if the operator

T1 := S1TPTS1 is invertible on S1L
2(R2). In this case, we define D1 := T−1

1 as an

operator on S1L
2(R2).

The projection S1 is finite rank. Further details on this inversion process and the related

spectral analysis may be found in [19] and [9, Section 5]. We note further that the operator

QD0Q is absolutely bounded.

If there is a resonance of the first kind at zero, the fact that the rank-one operator T1 is

invertible on S1L
2(R2) immediately implies that S1 is a rank-one projection and D1 acts on

a one-dimensional subspace of L2(R2). It is shown in [19] that a resonance of the first kind

occurs precisely when there is an s-wave resonance at zero but no eigenfunctions or p-wave

resonances at zero. The bounded solution of Hψ = 0 can be recovered directly from the

image of S1.

The following functions arise naturally in the expansion of the resolvent operators:

g±(λ) = a lnλ+ z a ∈ R\{0}, z ∈ C\R.

These arise from the small argument expansion of the Bessel functions, [1, 25, 9]. We employ

the notation a− := a− ε for an arbitrarily small, but fixed ε > 0. Similarly, a+ := a+ ε.

Lemma 2.3. Assuming |V (x)| . 〈x〉−5−, and there is an s-wave resonance only at zero,

then for a sufficiently small λ1 > 0 and 0 < λ < λ1, we have

M±(λ) = g±(λ)P + T + Õ2(λ
3
2

+),(10)

(M±(λ) + S1)−1 = h±(λ)−1S +QD0Q+ Õ2(λ
3
2

+),(11)

M±(λ)−1 = −h±(λ)S1D1S1 − SS1D1S1 − S1D1S1S(12)

− h±(λ)−1SS1D1S1S + h±(λ)−1S +QD0Q+ Õ2(λ
3
2

+).

Here h±(λ) = g±(λ) + b for some b ∈ R\{0}. Both D1 and S are finite-rank absolutely

bounded operators on L2(R2), with Rank(D1) = 1 and Rank(S) ≤ 2.
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Proof. The first bound is a simple adjustment of Lemma 2.2 in [9] taking k = 3
2+ for the

first derivative terms. Since we need two derivatives of the error term, this requires the

additional decay assumed on the potential. The proof follows exactly as in [9] until one

gets to the second derivative of the error term M0(λ). In this case, recalling (5) and the

expansion of the Bessel functions about infinity, we have

|∂2
λR
±
0 (λ2)(x, y)χ̃(λ|x− y|)| . |x− y|

3
2

λ
1
2

.

The expansions of the Bessel functions used in [9] near zero require no further modifications.

Once this bound is achieved the remaining bounds follow from the proofs of Lemma 2.5,

Proposition 2.6 and Corollary 2.7 in [9]. �

Thus, in the case of an s-wave only at zero energy, we have the expansion for (7), and

may express the low-energy portion of the wave operator as

(13)
1

πi

∫ ∞
0

R−0 v

[
− h±(λ)S1D1S1 − SS1D1S1 − S1D1S1S +QD0Q

− h±(λ)−1SS1D1S1S + h±(λ)−1S + Õ2(λ
3
2

+)

]
v[R+

0 −R
−
0 ](λ2)λχ(λ) dλ.

On the other hand, if there is an eigenvalue only at zero,

Lemma 2.4. Assume that there is an eigenvalue but no resonances at zero, and that

|V (x)| . 〈x〉−12−. Then

(14) M±(λ)−1 =
S3D3S3

λ2
+ (a1 log λ+ b1,±)Ξ1 +

(
1 +

b3,±
a2 log λ+ b2,±

)
Ξ2

+
1

h±(λ)
Ξ3 + (M±(λ) + S1)−1 + Õ2(λ1+).

Here, S3D3S3 is a finite-rank operator, Ξi are real-valued absolutely bounded operators, Ξ2

and Ξ3 have a projection orthogonal to P on at least one side, and Ξ1 have orthogonal

projections on both sides. Further ai ∈ R \ {0} and bi,+ = bi,−.

This expansion, with a slightly different error term, is found in [9, Corollary 6.2] to

ensure that the error terms is amenable to the full range of p. This requires only slightly

more decay on the potential. Define g±2 (λ) = λ4(a2 log λ + b2,±) and g3(λ) = a3λ
4 with

a2, a3 ∈ R\{0} and b2,− = b2,+. Also let Gj be integral operators with the kernel |x− y|j+1

for j = 1, 3, and if j = 2, 4, Gj has kernel is |x− y|j log |x− y|.

(15) M±0 (λ) = g±1 (λ)vG1v + λ2vG2v + g±2 (λ)vG3v + g3(λ)vG4v + Õ2(λ5+),
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by expanding the Bessel functions to order z6 log z and estimating the error term as in

Lemma 2.2 in [9]. This extra λ smallness in the error term is paired with a spatial growth

of size v(x)|x− y|5+v(y), which necessitates that |V (x)| . 〈x〉−12− to be Hilbert-Schmidt.

We note that the only the most singular λ−2 term is new in this case. The Ξ1 term is

entirely analogous to the ‘s-wave’ term S1D1S1 in the expansion in Lemma 2.3 with respect

to the spectral parameter λ and the orthogonality properties that we use. The operator with

the λ−2 term is similar to the eigenvalue term encountered in higher dimensions [15, 16]

and has orthogonality properties that we exploit to prove an expanded range of Lp(R2)

boundedness.

We show that many of the terms that arise in this expansion have an integral kernel that

is admissible. We say that an operator K with integral kernel K(x, y) is admissible if

sup
x∈Rn

∫
Rn

|K(x, y)| dy + sup
y∈Rn

∫
Rn

|K(x, y)| dx <∞.

It is well-known that an operator with an admissible kernel is bounded on Lp(Rn) for all

1 ≤ p ≤ ∞. In addition, we use the following lemma whose proof is in Section 6.

Lemma 2.5. If K is an integral operator whose kernel satisfies the pointwise estimate

|K(x, y)| . 1

〈x〉〈|x| − |y|〉2
or

1

〈x〉1−ε〈|x| − |y|〉〈|x|+ |y|〉

for any 0 < ε < 1, then K is bounded on Lp(R2) for all 1 ≤ p <∞.

3. The s-wave only case

In this section our goal is to show the Lp(R2) boundedness of the most singular term

that arises in the expansion (13). In contrast to the treatment of the analogous terms in

the dispersive estimate treatment, [9], we employ an integral formulation of the Mean Value

Theorem which utilizes the orthogonality porperties of the leading operator. This allows us

to gain faster pointwise decay of the integral kernel, which leads to the extended range of

Lp-boundedness. To that end, we prove

Proposition 3.1. The operator defined by

Au =
1

πi

∫ ∞
0

h−(λ)R−0 (λ2)vS1D1S1v
[
R+

0 (λ2)−R−0 (λ2)
]
λχ(λ)u dλ(16)

may be extended to a bounded operator on Lp(R2) for any 1 ≤ p ≤ ∞, provided that

v(x) . 〈x〉−3−.
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Here we take advantage of the fact that the projection operator S1 ≤ Q has the orthog-

onality property that S1v1 = 0. In addition, using (5), we see that

(17) R+
0 (λ2)(x, y)−R−0 (λ2)(x, y) =

i

2
J0(λ|x− y|).

This observation is vital as the small argument behavior of J0 is better than that of Y0 in

the spectral parameter λ. We need to consider

(18)

∫ ∞
0

∫∫
R4

H−0 (λ|x− z|)[vS1D1S1v](z, w)J0(λ|w − y|)h−(λ)λχ(λ) dwdz dλ.

Using the orthogonality conditions, we can replace H−0 (λ|x− z|) in (26) with

(19) H−0 (λ|x− z|)−H−0 (λ〈x〉) = λ

∫ |x−z|
〈x〉

(H−0 )′(λr) dr,

and replace J0(λ|y − w|) with

(20) J0(λ|y − w|)− J0(λ|y|) = λ

∫ |y−w|
|y|

J ′0(λs) ds.

As a result, we make use the following oscillatory integral estimate, whose proof we postpone

to Section 6.

Lemma 3.2. For fixed constants r, s > 0, we have the bound∣∣∣ ∫ ∞
0

(H−0 )′(λr)J ′0(λs)λ3h−(λ)χ(λ) dλ
∣∣∣ . k(r, s),

where

k(r, s) :=
1√

rs〈r − s〉2
+

1

r〈r + s〉2+
.

With this estimate, we can prove the main proposition of this section.

Proof of Proposition 3.1. Substituting (19) and (20) into (18), the result is

(21)

∫ ∞
0

∫∫
R4

∫ |x−z|
〈x〉

∫ |y−w|
|y|

(H−0 )′(λr)[vS1D1S1v](z, w)J ′0(λs)λ3h−(λ)χ(λ) dsdrdwdzdλ.

Note that we can change the order of integration provided that |v(x)| . 〈x〉−
3
2
−. Evaluating

the λ integral first using Lemma 3.2 the resulting expression is bounded by

(22)

∫∫
R4

∫ |x−z|
〈x〉

∫ |y−w|
|y|

k(r, s)[vS1D1S1v](z, w) dsdrdwdz.

Let T (z, w) = 〈z〉N 〈w〉N [vS1D1S1v](z, w), with N = 2+. Note that |T | is integrable in z

and w by the absolute boundedness of S1D1S1 provided that |v(x)| . 〈x〉−3−, which suffices

to ensure that 〈·〉Nv ∈ L2. Interchanging the order of integration of s and w yields
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|(22)| .
∫
R2

∫ |x−z|
〈x〉

∫ |y|
0

∫
|y−w|<s

k(r, s)〈z〉−N 〈w〉−N |T (z, w)| dwdsdrdz

+

∫
R2

∫ |x−z|
〈x〉

∫ ∞
|y|

∫
|y−w|>s

k(r, s)〈z〉−N 〈w〉−N |T (z, w)| dwdsdrdz

≤
∫
R2

∫ |x−z|
〈x〉

∫ ∞
0

∫
|w|≥|s−|y||

k(r, s)〈z〉−N 〈w〉−N |T (z, w)| dwdsdrdz

.
∫
R2

∫ |x−z|
〈x〉

∫ ∞
0

∫
R2

k(r, s)〈z〉−N |T (z, w)|
〈s− |y|〉N

dwdsdrdz.

Repeating the same argument with z and r integrals, noting that r > min(1, |x − z|), and

selecting 0 < ε < 1
2 , we obtain the bound∫ 1

0

∫ ∞
0

∫∫
R4

k(r, s)rε(1 + |x− z|−ε)|T (z, w)|
〈r − |x|〉N 〈s− |y|〉N

dzdwdsdr

+

∫ ∞
1

∫ ∞
0

∫∫
R4

k(r, s)|T (z, w)|
〈r − |x|〉N 〈s− |y|〉N

dzdwdsdr.

Evaluating the w and z integrals (noting that
∫

(1+ |x−z|−ε)|T (z, w)|dzdw . 1), we obtain

the bound

(23) |(22)| .
∫ ∞

0

∫ ∞
0

rεk(r, s)

〈r〉ε〈r − |x|〉N 〈s− |y|〉N
dsdr.

Note that this is an admissible kernel since N = 2+. Noting that∫
R2

1

〈r − |x|〉N
dx . 〈r〉,

with the growth in r due to the contribution on the annulus r − 1 ≤ |x| ≤ r + 1 when r is

large. For (23), the L1
x integral is bounded by∫ ∞

0

∫ ∞
0

〈r〉1−εrεk(r, s)

〈s− |y|〉N
drds =

∫ ∞
0

∫ ∞
0

( 〈r〉√
rs〈r − s〉2

+
〈r〉1−εrε−1

〈r + s〉2+

) 1

〈s− |y|〉N
drds

.
∫ ∞

0

1 + s−
1
2

〈s− |y|〉N
ds . 1.

This bound is uniform in y ∈ R2. Similarly, the L1
y integral is bounded by∫ ∞

0

∫ ∞
0

〈s〉rεk(r, s)

〈r〉ε〈r − |x|〉N
drds

=

∫ ∞
0

∫ ∞
0

( 〈s〉√
rs〈r − s〉2

+
〈s〉

〈r〉εr1−ε〈r + s〉2+

) 1

〈r − |x|〉N
dsdr

.
∫ ∞

0

1 + rε−1

〈r − |x|〉N
dr . 1.
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This bound is uniform in x ∈ R2. Hence, the kernel is admissible which finishes the

proof. �

It is easy to see that argument above suffices to bound the QD0Q term as well, which is

slightly better behaved in the spectral variable λ.

Corollary 3.3. The operator defined by

Au =
1

πi

∫ ∞
0

R−0 (λ2)vQD0Qv
[
R+

0 (λ2)−R−0 (λ2)
]
λχ(λ)u dλ(24)

may be extended to a bounded operator on Lp(R2) for any 1 ≤ p ≤ ∞, provided that

v(x) . 〈x〉−3−.

4. Eigenvalue Only

In this section we show that the kernel of the leading singular term in the resolvent

expansion when there is only an eigenvalue at zero is pointwise bounded by a kernel which

is bounded on Lp(R2) for 1 ≤ p < ∞. As in the case of s-wave resonance, we choose to

utilize the orthogonality relationship S1v = 0 in an integral formulation of the Mean Value

Theorem. Noting the expansion for M±(λ)−1 in Lemma 2.4, the most singular term involves

a singularity of size λ−2 as λ→ 0, while the remaining terms have analogous counterparts

in the case of an s-wave resonance. In this section we prove

Proposition 4.1. The operator defined by

Au =
1

πi

∫ ∞
0

R−0 (λ2)vS3D3S3v
[
R+

0 (λ2)−R−0 (λ2)
]
λ−1χ(λ)u dλ(25)

may be extended to a bounded operator on Lp(R2) for any 1 ≤ p < ∞, provided that

v(x) . 〈x〉−4−.

Once again we take advantage of the fact that the projection operator S3 ≤ S1 ≤ Q

has the orthogonality property that S3v1 = 0. In addition, since D3 acts on the finite

dimensional space S3L
2, and using (5) and (17), there will be a finite number of terms to

consider of the form

(26)

∫ ∞
0

∫∫
R4

H−0 (λ|x− z|)vφ(z)vψ(w)J0(λ|w − y|)λ−1χ(λ) dwdz dλ,

where φ, ψ ∈ S3L
2(R2). See Section 5 of [9] for further details on the spectral subspaces of

L2(R2) associated to the zero-energy obstructions. The singularity λ−1H−0 (λ|x− z|) is not

integrable at the λ = 0 endpoint. Therefore, as in the proof of Proposition 3.1 we must take

advantage of the cancellation condition
∫
R2 vψ(w) dw = 0 just to show that the resulting
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operator kernel is finite anywhere. The additional cancellation condition
∫
R2 wjvψ(w) dw =

0, j = 1, 2, will be needed to show that it is bounded on Lp(R2) for 1 ≤ p < ∞. With

these orthogonality conditions, we can replace H−0 (λ|x − z|) in (26) with (19) and replace

J0(λ|y − w|) with

(27) J0(λ|y − w|)− J0(λ|y|) + λ
w · y
|y|

J ′0(λ|y|)

= λ(|y − w| − |y|+ w·y
|y| )J

′
0(λ|y|) + λ2

∫ |y|
|y−w|

(s− |y − w|)J ′′0 (λs) ds.

We will make use of oscillatory integral estimates similar to Lemma 3.2, whose proofs we

also postpone to Section 6.

Lemma 4.2. For fixed constants r, s > 0, we have the bound∣∣∣ ∫ ∞
0

(H−0 )′(λr)J ′′0 (λs)λ2χ(λ) dλ
∣∣∣ . k2(r, s),

where

k2(r, s) :=
1√

rs〈r − s〉2−
+

1

r〈r + s〉2
.

We also need another bound for the first derivative with one less power of λ.

Lemma 4.3. For fixed constants r, s > 0, we have the bound∣∣∣ ∫ ∞
0

(H−0 )′(λr)J ′0(λs)λχ(λ) dλ
∣∣∣ . s〈log〈r〉〉

r〈r + s〉〈r − s〉
.

With these estimates, we are now ready to prove the main proposition of this section.

Proof of Proposition 4.1. When we substitute (19) and the second term on the right side

of (27) into (26), the result is

(28)

∫ ∞
0

∫∫
R4

∫ |x−z|
〈x〉

∫ |y|
|y−w|

(s− |y −w|)(H−0 )′(λr)vφ(z)vψ(w)J ′′0 (λs)λ2χ(λ) dsdrdwdzdλ.

This is now integrable at λ = 0, and so long as |vψ(w)| . 〈w〉−4− we may change the

order of integration to evaluate the λ integral first. It is also clear from the domain that∣∣s− |y − w|∣∣ ≤ ∣∣|y| − |y − w|∣∣ ≤ |w|. For similar reasons,
∣∣s− |y|∣∣ ≤ |w| as well. According

to Lemma 4.2 the resulting expression is bounded by∫∫
R4

∫ |x−z|
〈x〉

∫ |y|
|y−w|

k2(s, r)|vφ(z)vψ(w)||w| dsdrdwdz.

Proceeding as in the proof of Proposition 3.1 (see the estimate (23) of (22)), we bound the

integral above by
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(29)

∫ ∞
0

∫ ∞
0

rεk2(s, r)

〈r〉ε〈s− |y|〉2+〈r − |x|〉3+
dsdr

.
∫ ∞

0

∫ ∞
0

1√
rs〈r − s〉2−〈s− |y|〉2+〈r − |x|〉3+

dsdr

+

∫ ∞
0

∫ ∞
0

1

r1−ε〈r〉ε〈r + s〉2〈s− |y|〉2+〈r − |x|〉3+
dsdr,

provided that |vψ(w)| . 〈w〉−5−. We claim that the first integral in the right hand side of

(29) gives an admissible kernel. Indeed, as in the bound for (23), the L1
y integral is bounded

by ∫ ∞
0

∫ ∞
0

〈s〉√
rs〈r − s〉2−〈r − |x|〉3+

dsdr .
∫ ∞

0

1 + r−
1
2

〈r − |x|〉3+
dr . 1

uniformly in x. Similarly, the L1
x integral is bounded uniformly in y.

Using Lemma 6.2 in the s variable in the second integral on the right hand side of (29)

gives the bound∫ ∞
0

1

r1−ε〈r〉ε〈r − |y|〉2〈r − |x|〉3+
dr .

∫ ∞
0

1

r1−ε〈r〉ε〈r − |x|〉1+〈|x| − |y|〉2
dr.

The last bound follows from 〈r − |y|〉〈r − |x|〉 & 〈|x| − |y|〉. Finally, using a simple variant

of Lemma 6.2, noting that the region where r < 1 produces a better bound, we obtain the

bound
1

〈x〉〈|x| − |y|〉2
.

This is a bounded operator in Lp for 1 ≤ p <∞ by Lemma 2.5.

If we instead substitute the first term on the right side of (27) into the same expression,

the result is∫ ∞
0

∫∫
R4

∫ |x−z|
〈x〉

(|y − w| − |y|+ w·y
|y| )(H

−
0 )′(λr)vφ(z)vψ(w)J ′0(λ|y|)λχ(λ) drdwdzdλ.

Once again it is permissible to change the order of integration and evaluate the dλ integral

first. Lemma 4.3 provides the bound∫∫
R4

∫ |x−z|
〈x〉

〈log〈r〉〉(|y − w| − |y|+ w·y
|y| )|y|

r〈r + |y|〉〈r − |y|〉
vφ(z)vψ(w) drdwdz.

Note that ||y−w|−|y|+ w·y
|y| ||y| . |w|2 by considering cases |y| . |w| and |y| � |w| separately.

Using this bound and proceeding as in the proof of Proposition 3.1 by changing the order

of z and r integrals, and then evaluating the integrals in z and w, we obtain the bound∫ ∞
0

〈log〈r〉〉
〈r〉εr1−ε〈r + |y|〉〈r − |y|〉〈r − |x|〉3+

dr,
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provided that |v(x)| . 〈x〉−5−. Using 〈r± |y|〉〈r− |x|〉 & 〈|x| ± |y|〉 and then using a simple

variant of Lemma 6.2 yields the bound

1

〈|x| − |y|〉〈|x|+ |y|〉

∫ ∞
0

〈log〈r〉〉
〈r〉εr1−ε〈r − |x|〉1+

dr .
1

〈x〉1−〈|x| − |y|〉〈|x|+ |y|〉
.

This makes it a bounded operator on Lp(R2), 1 ≤ p <∞ by Lemma 2.5 �

5. Proof of Theorem 1.1

In this section we combine the results of the previous sections to prove Theorem 1.1. In

addition to the results established in Sections 2 and 4, we need to control the error term in

our expansions. The following lemma is a modification of Lemma 4.1 in [30].

Lemma 5.1. Assume that ` > 1 is fixed and N(λ) is an operator that satisfies∥∥∥∥ djdλjN(λ)

∥∥∥∥
L2→L2

. λ`−j , j = 0, 1, 2, 0 < λ < 2λ1.

Then the operator A defined by

(30) Au = − 1

πi

∫ ∞
0

R−0 (λ2)vN(λ)v
[
R+

0 (λ2)−R−0 (λ2)
]
λχ(λ)u dλ

may be extended to an operator bounded on Lp(R2) for any 1 ≤ p ≤ ∞, provided that

v(x) . 〈x〉−2−.

In other words, if χ(λ)N(λ) = Õ2(λ`) as an operator on L2, then (30) is bounded on

1 ≤ p ≤ ∞.

Proof. Define the functions

G±y (y1) = e∓iλ|y|R±0 (λ2)(y1, y).

Then, noting (3.4) in [30], we have the bounds∣∣∣∣ ∂j∂λjG±y (y1)

∣∣∣∣ . 〈y1〉j√
λ|y1 − y|

.(31)

Then, the λ integral in (30) may be written as

(32)

∫ ∞
0

e−iλ(|x|±|y|)a±x,y(λ)χ(λ) dλ

where

ax,y(λ) := λ〈N(λ)vG±y , vG
−
x 〉.

By assumption on N(λ) and (31), we have

|∂jλa
±
x,y(λ)| . λ`−j

(〈x〉〈y〉)
1
2

.
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Here we used that decay of v along with the fact that∥∥∥∥∥ 〈x1〉−1−

|x− x1|
1
2

∥∥∥∥∥
L2
x1

.
1

〈x〉
1
2

.

This yields the bound

|(32)| . 1

(〈x〉〈y〉)
1
2

∫ 2λ1

0
λ` dλ .

1

(〈x〉〈y〉)
1
2

.

Now, using the smallness of a±x,y(λ) and ∂λa
±
x,y(λ) as λ → 0 and the support of the cutoff

function, we may integrate by parts twice without boundary terms to see

|(32)| . 1

(|x| ∓ |y|)2(〈x〉〈y〉)
1
2

∫ 2λ1

0
λ`−2 dλ .

1

(|x| ∓ |y|)2(〈x〉〈y〉)
1
2

.

Since ` > 1, λ`−2 is integrable in a neighborhood of zero. These two bounds yield that

|(32)| . 1

〈|x| ∓ |y|〉2(〈x〉〈y〉)
1
2

which is an admissible kernel. �

Proof of Theorem 1.1. Due to the high-energy wave operator bounds established in Sec-

tions 2 and 3 of [30], we need only prove the Lp boundedness for small energies. We prove

Theorem 1.1 Part i) first. Recall the expansion of the low-energy contribution to the wave

operator in (13). The leading order term involves the operator −h±(λ)S1D1S1 is shown to

be bounded on the full range 1 ≤ p ≤ ∞ in Proposition 3.1. Similarly the contribution of

the operator QD0Q is bounded on the full range as well due to Corollary 3.3. The remaining

terms involving the operator S are bounded on the range 1 < p <∞ in Section 2.2 in [20].

Finally, the error term is bounded on the full range 1 ≤ p ≤ ∞ by Lemma 5.1.

For the Part ii, we employ the low-energy expansion of the wave operator obtained by

inserting the expansion of Lemma 2.4 into (7). The majority of the terms, all except the

leading λ−2 term, can be bounded similar to their counterparts already bounded in Part i.

The contribution of the remaining most singular term was shown to extend to a bounded

operator if 1 ≤ p < ∞ in Proposition 4.1. Again, the error term may be controlled by

Lemma 5.1, completing the proof. �

Remark 5.2. We note that these techniques would allow for a slight improvement in The-

orem 1.2 of [9]. In particular, one can obtain the t−1 time decay rate as an operator from

L1,0+ → L∞,0− in the case of an eigenvalue only at zero. This removes one power of spatial

weight from both spaces.



16 M.B. ERDOĞAN, M. J. GOLDBERG, W. R. GREEN

Our analysis does not seem to be immediately applicable to showing Lp boundedness

when there is a p-wave resonance at zero. In Section 4 of [16], the difficulties inherent in

the four dimensional resonance are discussed in detail. Due to the similarities to the two

dimensional p-wave resonance, many of the technical issues that provide a challenge to our

pointwise bound approach remain. If the wave operators were Lp bounded for any p > 2,

it would imply a polynomial time decay of size |t|(2/p)−1 as an operator on Lp → Lp
′

due

to the intertwining identity (3). However, the dispersive estimate in [9] or the weighted L2

estimate in [23], along with a detailed analysis as in [21, 8], shows that the leading term in

the dispersive bound can decay no faster than (log t)−1 for large t. The even-dimensional

resonances are not well understood, while in three dimensions recent work of Yajima, [34],

shows that the wave operators are bounded if and only if 1 < p < 3 in the presence of a

threshold resonance in three spatial dimensions.

The endpoints of p = 1 and p = ∞ provide a serious technical challenge. Even in

the case when zero is regular, the low energy expansion is only known to be bounded on

1 < p < ∞. In particular, the contribution of the terms involving the finite-rank operator

S are uncontrolled at the endpoints. The lack of projections orthogonal to v do not allow

one to use the cancellation that was vital to our results in Theorem 1.1. Heuristically, the

(log λ)−1 behavior near λ = 0 does not provide enough smallness to improve the decay rate

for large x or y by more than (log |x|)−1 or (log |y|)−1, which is not enough to reach the

endpoints by considering only pointwise bounds.

6. Integral estimates

Finally in this section, we collect the technical integral estimates necessary for the proofs

in Sections 3, 4, and 5. We first note the following result on the pointwise decay of zero

energy eigenfunctions, which follows from the proof of Lemma 5.5 in [9].

Lemma 6.1. If ψ is a zero energy eigenfunction, that is if ψ ∈ L2(R2) with Hψ = 0, then

ψ ∈ L∞(R2). Furthermore, we have the pointwise bound |ψ(x)| . 〈x〉−1−.

We use the following simple integral bound,

Lemma 6.2. If 0 < α, β, α, β 6= n and α+ β > n then∫
Rn

〈x− x1〉−α〈x1〉−β dx1 . 〈x〉−min(α,β,α+β−n).

We now prove Lemma 2.5.
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Proof of Lemma 2.5. We first note the integral kernel is admissible on the set |y| < 2|x|.
First, consider the subset when |y| < 1

2 |x|. In this case |x| − |y| ≈ |x|, so

|K(x, y)| . 1

〈x〉3−ε
.

Then, since 0 < ε < 1,

sup
x

∫
|y|< 1

2
|x|
|K(x, y)| dy + sup

y

∫
|x|>2|y|

|K(x, y)| dx . sup
x

1

〈x〉1−ε
+

∫
R2

1

〈x〉3+ε
dx . 1.

When |x| ≈ |y|, if |K(x, y)| . 1
〈x〉〈|x|−|y|〉2 , after changing to polar co-ordinates, we have

sup
y

∫
|x|≈|y|

|K(x, y)| dx . sup
y

1

〈y〉

∫ 2|y|

|y|/2

r

〈r − |y|〉2
dr . sup

y

∫
R

1

〈r − |y|〉2
dr . 1.

By symmetry, an identical bound holds when x and y are reversed. For the second pointwise

bound, we have

sup
y

∫
|x|≈|y|

|K(x, y)| dx . sup
y

1

〈y〉2−ε

∫ 2|y|

|y|/2

r

〈r − |y|〉
dr

. sup
y

1

〈y〉1−ε

∫ 2|y|

|y|/2

1

〈r − |y|〉
dr . sup

y

〈log〈y〉〉
〈y〉1−ε

. 1.

Finally, we consider the region on which |y| > 2|x|. We first show that the operator is

bounded when p = 1. In either case, we have that |K(x, y)| . 〈x〉−3+ε. Then, since this is in

L1
x(R2) uniformly in y, K is bounded on L1(R2). This follows since if |K(x, y)| . k1(x)k2(y),

then

‖Ku‖p =

∥∥∥∥∫
R2

K(x, y)u(y) dy

∥∥∥∥ . ‖k1‖p‖k2‖p′‖u‖p.

Thus K is Lp-bounded provided one can control the norms of k1 and k2.

Next, we show that K is bounded on Lp with p arbitrarily large, but finite. Equivalently,

we take p′ > 1. In either case, we may bound the kernel with |K(x, y)| . 〈x〉−1+ε〈y〉−2.

Since 〈x〉−1+ε ∈ Lp(R2) for any p > 2
1−ε , we need only consider the integral for y. Now,

〈y〉−2 ∈ Lp
′
(R2) for any p′ > 1, or equivalently any p < ∞. Under the assumptions, we

have the K is bounded on any 2
1−ε < p < ∞. We note that the lower bound of 2

1−ε is not

sharp, however interpolation between these bounds suffices to prove the claimed range of p.

�

We now prove lemmas 4.2, 4.3, and 3.2.

Proof of Lemma 4.2. We use the notation ω(z) to denote any function satisfying

(33) |ω(j)(z)| . |z|−
1
2
−jχ̃(z), j = 0, 1, 2, ...,
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and use the notation ρ for functions supported on [0, 1] and satisfying

(34) |ρ(`)(z)| . 1, ` = 0, 1, 2, ...

Recall that J0(z) and H−0 (z) = J0(z)− iY0(z) satisfy (see, e.g., [9])

J ′0(z) = zρ(z) + eizω(z) + e−izω(z),

J ′′0 (z) = ρ(z) + eizω(z) + e−izω(z),

(H−0 )′(z) = η(z) + e−izω(z),

where η is supported on [0, 1] and

(35) |η(`)(z)| . z−1−`, ` = 0, 1, 2, ...

Therefore the integral is∫ ∞
0

η(λr)ρ(λs)λ2χ(λ)dλ+

∫ ∞
0

eiλ(r±s)ω(λr)ω(λs)λ2χ(λ)dλ

+

∫ ∞
0

e±iλsη(λr)ω(λs)λ2χ(λ)dλ+

∫ ∞
0

eiλrω(λr)ρ(λs)λ2χ(λ)dλ

=: A+B + C +D.

Using (34) and (35) we have

A .
∫ min(1,r−1,s−1)

0
λr−1dλ .

1

r〈r + s〉2
.

Note that C = 0 unless s & r and s & 1, in which case integrating by parts twice using (35)

and (33), and noting that the effect of each derivative is division by λ, we obtain

C .
1

rs5/2

∫ 1

s−1

1

λ3/2
dλ .

1

rs2
.

1

r〈r + s〉2
.

Similarly, D = 0 unless r & s and r & 1. Three integration by parts give

D .
1

r7/2

∫ 1

r−1

1

λ3/2
dλ .

1

r3
.

1

r〈r + s〉2
.

We consider the term B only for the minus sign, the other case is easier. Note that B = 0

unless r, s & 1. This term is easily seen to be bounded by 1√
rs

. In the case |r − s| � 1,

using (33), the integral is bounded by 1√
rs
. 1√

rs〈r−s〉2− . In the case |r− s| & 1, integration

by parts yield

B .
1

|r − s|

∣∣∣ ∫ ∞
0

eiλ(r−s)f(λ)dλ
∣∣∣,

where

(36) f(λ) =
∂

∂λ

(
ω(λr)ω(λs)λ2χ(λ)

)
= O

( 1√
rs

)
.
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The following bound is well known (for L > 1)

(37)
∣∣∣ ∫ ∞

0
e±iλLf(λ)dλ

∣∣∣ . ‖f‖L∞
L

+

∫ ∞
0
|f(λ+

π

L
)− f(λ)|dλ.

Using the Mean Value Theorem in (36), we have

|f(λ+
π

L
)− f(λ)| . 1

L
sup

ρ∈(λ,λ+π/L)

∣∣ ∂2

∂ρ2

(
ω(ρr)ω(ρs)ρ2χ(ρ)

∣∣ . 1

Lλ
√
rs
.

Interpolating this with the bound in (36), we obtain

|f(λ+
π

L
)− f(λ)| . 1

L1−λ1−√rs

Using this bound, (36), and (37) for B, we have (for L = |r − s| & 1)

B .
1

|r − s|

[ 1

|r − s|
√
rs

+
1

|r − s|1−
√
rs

∫ 1

0

1

λ1−dλ
]
.

1√
rs〈r − s〉2−

.

�

The proof of Lemma 3.2 is similar for the terms analogous to A,C, and D, for the B

term two integration by parts yield the bound instead of using (37).

Proof of Lemma 4.3. Using the notation of the proof of Lemma 4.2, the integral is equal to

sA+ sD +

∫ ∞
0

eiλ(r±s)ω(λr)ω(λs)λχ(λ)dλ+

∫ ∞
0

e±iλsη(λr)ω(λs)λχ(λ)dλ

=: sA+ sD +B1 + C1.

The bounds we obtained for A,D above yield the required bound for these terms:

sA+ sD .
s

r〈r + s〉2
.

The bound for C1 is similar to the bound for C above by integrating by parts only once.

Finally, in the cases s� r or r � s, three integration by parts yield

B1 .
min(r, s)2

√
rsmax(r, s)3

.
s

r〈r + s〉〈r − s〉
.

When r ≈ s, an integration by parts yield

B1 .
log(r)

r〈r − s〉
.

�
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