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Abstract. Let H = −∆+V , where V is a real valued potential on R2 satisfying |V (x)| .

〈x〉−3−. We prove that if zero is a regular point of the spectrum of H = −∆ + V , then

‖w−1eitHPacf‖L∞(R2) .
1

|t| log2(|t|)
‖wf‖L1(R2), |t| > 2,

with w(x) = log2(2 + |x|). This decay rate was obtained by Murata in the setting of

weighted L2 spaces with polynomially growing weights.

1. Introduction

The free Schrödinger evolution on Rd,

e−it∆f(x) = Cd
1
td/2

∫
Rd
e−i|x−y|

2/4tf(y)dy,

satisfies the dispersive estimate

‖e−it∆f‖∞ .
1
|t|d/2

‖f‖1.

In recent years many authors (see, e.g., [20, 28, 13, 11, 12, 29, 14, 37, 9, 5, 6], and the survey

article [31]) worked on the problem of extending this bound to the perturbed Schrödinger

operator H = −∆ + V , where V is a real-valued potential with sufficient decay at infinity

and some smoothness for d > 3. Since the perturbed operator may have negative point

spectrum one needs to consider eitHPac(H), where Pac(H) is the orthogonal projection

onto the absolutely continuous subspace of L2(R2). One also assumes that zero is a regular

point of the spectrum of H. This is equivalent to the boundedness of the resolvent,

R±V (λ2) = RV (λ2 ± i0) = (H − (λ2 ± i0))−1,

as an operator between certain weighted L2 spaces as λ→ 0.

It is easy to see that t−d/2 decay rate at infinity is optimal for the free evolution. In

dimensions d ≥ 3 one can not hope to have a faster decay rate for the perturbed operator.

In fact, it is known that (see, e.g., [26, 17, 24, 15, 16, 8, 36, 10, 3, 7]) the decay rate as
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t→∞ is in general slower if zero is not regular point of the spectrum. In dimensions d = 1

and d = 2, zero is not a regular point of the spectrum of the Laplacian since the constant

function is a resonance. Therefore, for the perturbed operator −∆ + V , one may expect

to have a faster dispersive decay at infinity if zero is regular. Indeed, in [24, Theorem 7.6],

Murata proved that if zero is a regular point of the spectrum, then for |t| > 2

‖w−1
1 eitHPac(H)f‖L2(R1) . |t|−

3
2 ‖w1f‖L2(R1),

‖w−1
2 eitHPac(H)f‖L2(R2) . |t|−1(log |t|)−2‖w2f‖L2(R2).

Here w1 and w2 are weight functions growing at a polynomial rate at infinity. It is also

assumed that the potential decays at a polynomial rate at infinity (for d = 2, it suffices to

assume that w2(x) = 〈x〉−3− and |V (x)| . 〈x〉−6− where 〈x〉 := (1 + |x|2)
1
2 ). This type of

estimates are very useful in the study of nonlinear asymptotic stability of (multi) solitons

in lower dimensions since the dispersive decay rate in time is integrable at infinity (see, e.g.,

[30, 21, 22]). Also see [4, 32, 25, 34] for other applications of weighted dispersive estimates

to nonlinear PDEs.

In [31], Schlag extended Murata’s result for d = 1 to the L1 → L∞ setting. He proved

that if zero is regular, then

‖w−1eitHPac(H)f‖L∞(R) . |t|−
3
2 ‖wf‖1, |t| > 2,

with w(x) = 〈x〉 provided ‖〈x〉4V ‖1 <∞.

In this paper, we study the two dimensional case. Our main result is the following

Theorem 1.1. Let V (x) . 〈x〉−2β for some β > 3
2 . If zero is a regular point of the spectrum

of H = −∆ + V , then we have

‖w−1eitHPacf‖L∞(R2) .
1

|t| log2(|t|)
‖wf‖L1(R2), |t| > 2,

where w(x) = log2(2 + |x|).

We note that the requirement for the weight function and the potential is much weaker

than was assumed in [24]. We think similar bounds hold in the case of matrix Schrödinger

operators, which we plan to address in a subsequent paper.

There are not many results on L1 → L∞ estimates in the two dimensional case. In [29],

Schlag proved that

‖eitHPac‖L1(R2)→L∞(R2) . |t|−1
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under the decay assumption |V | . 〈x〉−3− and the assumption that zero is a regular point of

the spectrum. For the case when zero is not regular, see [7]. Yajima, [35], established that

the wave operators are bounded on Lp(R2) for 1 < p <∞ if zero is regular. The hypotheses

on the potential V were relaxed slightly in [19]. High frequency dispersive estimates, similar

to those obtained in [29] were obtained by Moulin, [23], under an integrability condition on

the potential.

We also note that standard spectral theoretic results for H apply. Under our assumptions

we have that the spectrum of H can be expressed as the absolutely continuous spectrum,

the interval [0,∞), and finitely many eigenvalues of finite multiplicity on (−∞, 0]. See [27]

for spectral theory and [33] for Birman-Schwinger type bounds.

As usual, Theorem 1.1 follows from (see, e.g., [13, 29, 7])

(1) sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ/L)[R+

V (λ2)−R−V (λ2)](x, y)dλ
∣∣∣∣ . w(x)w(y)

t log2(t)
, t > 2.

Here χ is an even smooth function supported in [−λ1, λ1] and χ(x) = 1 for |x| < λ1/2, and

λ1 is a sufficiently small number which is fixed throughout the paper.

In this paper we prove that

Theorem 1.2. Under the assumptions of Theorem 1.1, we have for t > 2

(2) sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ/L)[R+

V (λ2)−R−V (λ2)](x, y)dλ
∣∣∣∣ .

√
w(x)w(y)
t log2(t)

+
〈x〉

3
2 〈y〉

3
2

t1+α
,

where 0 < α < min(1
4 , β −

3
2).

Our proof of Theorem 1.2 will be mostly self-contained. Since we can allow polynomial

growth in x and y for many terms that arise, the proof is somehow less technical than the

proof in [29].

To obtain Theorem 1.1, we use the inequality

min
(
1,
a

b

)
.

log2(a)
log2(b)

, a, b > 2,

and interpolate (2) with the result of Schlag in [29], which states that under the conditions

of Theorem 1.1, one has

sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ/L)[R+

V (λ2)−R−V (λ2)](x, y)dλ
∣∣∣∣ . 1

t
.
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2. The Free Resolvent

In this section we discuss the properties of the free resolvent, R±0 (λ2) = [−∆−(λ2±i0)]−1,

in R2. To simplify the formulas, we use the notation

f = Õ(g)

to denote
dj

dλj
f = O

( dj
dλj

g
)
, j = 0, 1, 2, 3, ...

If the derivative bounds hold only for the first k derivatives we write f = Õk(g).

Recall that

R±0 (λ2)(x, y) = ± i
4
H±0 (λ|x− y|) = ± i

4
J0(z)− 1

4
Y0(z).(3)

Thus, we have

(4) R+
0 (λ2)(x, y)−R−0 (λ2)(x, y) =

i

2
J0(λ|x− y|).

From the series expansions for the Bessel functions, see [1], we have, as z → 0,

J0(z) = 1− 1
4
z2 +

1
64
z4 + Õ6(z6),(5)

Y0(z) =
2
π

(log(z/2) + γ)J0(z) +
2
π

(
1
4
z2 + Õ4(z4)

)
=

2
π

log(z/2) +
2γ
π

+ Õ(z2 log(z)).(6)

Further, for |z| > 1, we have the representation (see, e.g., [1])

H±0 (z) = e±izω±(z), ω±(z) = Õ
(
(1 + |z|)−

1
2
)
.(7)

This implies that for |z| > 1

C(z) = eizω+(z) + e−izω−(z), ω±(z) = Õ
(
(1 + |z|)−

1
2
)
,(8)

for any C ∈ {J0, Y0} respectively with different ω±.

In particular, for λ|x− y| . 1, we have

(9) R±0 (λ2)(x, y) = ± i
4
− γ

2π
− 1

2π
log(λ|x− y|/2) + Õ

(
λ2|x− y|2 log(λ|x− y|)

)
.

For λ|x− y| & 1, we have

(10) R±0 (λ2)(x, y) = eiλ|x−y|ω+(λ|x− y|) + e−iλ|x−y|ω−(λ|x− y|).
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3. Resolvent Expansion Around the Zero Energy

Let U(x) = 1 if V (x) ≥ 0 and U(x) = −1 if V (x) < 0, and let v = |V |1/2. We have

V = Uv2. We use the symmetric resolvent identity, valid for =λ > 0:

(11) R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2),

where M±(λ) = U+vR±0 (λ2)v. The key issue in the resolvent expansions is the invertibility

of the operator M±(λ) for small λ under various spectral assumptions at zero. Below,

using the properties of the free resolvent listed above, we provide an expansion for the free

resolvent around λ = 0, and then using it obtain analogous expansions of the operator

M±(λ). Similar lemmas were proved in [18] and [29], however we need to obtain slightly

different error bounds. The following operator and the function arise naturally in the

expansion of M±(λ) (see (6))

G0f(x) = − 1
2π

∫
R2

log |x− y|f(y) dy,(12)

g±(λ) := ‖V ‖1
(
± i

4
− 1

2π
log(λ/2)− γ

2π

)
.(13)

Lemma 3.1. We have the following expansion for the kernel of the free resolvent

R±0 (λ2)(x, y) =
1
‖V ‖1

g±(λ) +G0(x, y) + E±0 (λ)(x, y).

Here G0(x, y) is the kernel of the operator G0 in (12), g±(λ) is as in (13), and E±0 satisfies

the bounds

|E±0 | . λ
1
2 |x− y|

1
2 , |∂λE±0 | . λ

− 1
2 |x− y|

1
2 , |∂2

λE
±
0 | . λ

− 1
2 |x− y|

3
2 .

Proof. To obtain the expansions recall (9), which states that for λ|x− y| . 1, we have

R±0 (λ2)(x, y) = ± i
4
− γ

2π
− 1

2π
log(λ|x− y|/2) + Õ

(
λ2|x− y|2 log(λ|x− y|)

)
=
g±(λ)
‖V ‖1

+G0(x, y) + Õ
(
λ2|x− y|2 log(λ|x− y|)

)
.

For λ|x− y| & 1, using (10) we have

R±0 (λ2)(x, y) = eiλ|x−y|ω+(λ|x− y|) + e−iλ|x−y|ω−(λ|x− y|)

=
g±(λ)
‖V ‖1

+G0(x, y) + Õ
(

log(λ|x− y|)
)

+ Õ
( eiλ|x−y|

(1 + λ|x− y|)1/2

)
.

Let χ be a smooth cutoff for [−1, 1], and χ̃ = 1− χ. Using the formulas above we have

E±0 (λ)(x, y)χ(λ|x− y|) = χ(λ|x− y|)Õ
(
λ|x− y|)2 log(λ|x− y|)

)
,
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E±0 (λ)(x, y)χ̃(λ|x− y|) = χ̃(λ|x− y|)
[
Õ
(

log(λ|x− y|
)

+ Õ
( eiλ|x−y|

(1 + λ|x− y|)1/2

)]
.

Combining these bounds we have

|E±0 (λ)(x, y)| .
[
(λ|x− y|)2−χ(λ|x− y|) + (λ|x− y|)0+χ̃(λ|x− y|)

]
. (λ|x− y|)

1
2 .

For λ-derivatives, note that

|∂λE±0 (λ)(x, y)| . (λ|x− y|)2−

λ
χ(λ|x− y|) +

|x− y|1/2

λ1/2
χ̃(λ|x− y|) . λ−

1
2 |x− y|

1
2 ,

and

|∂2
λE
±
0 (λ)(x, y)| . (λ|x− y|)2−

λ2
χ(λ|x− y|) +

|x− y|3/2

λ1/2
χ̃(λ|x− y|) . λ−

1
2 |x− y|

3
2 .

�

The following corollary follows from the bounds for ∂λE±0 and ∂2
λE
±
0 .

Corollary 3.2. For 0 < α < 1 and b > a > 0 we have

|∂λE±0 (b)− ∂λE±0 (a)| . a−
1
2 |b− a|α|x− y|

1
2

+α.

Proof. The mean value theorem together with the bound on ∂2
λE
±
0 from Lemma 3.1 imply

that

|∂λE±0 (b)− ∂λE±0 (a)| . a−1/2|b− a||x− y|
3
2 .

Interpolating this with the bound on ∂λE
±
0 from Lemma 3.1 yields the claim. �

Lemma 3.3. Let 0 < α < 1. For λ > 0 define M±(λ) := U + vR±0 (λ2)v. Let P =

v〈·, v〉‖V ‖−1
1 denote the orthogonal projection onto v. Then

M±(λ) = g±(λ)P + T + E±1 (λ).

Here T = U + vG0v where G0 is an integral operator defined in (12). Further, the error

term satisfies the bound

∥∥ sup
0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<b<λ1

λ
1
2 (b− λ)−α|∂λE±1 (b)− ∂λE±1 (λ)|

∥∥
HS
. 1,

provided that v(x) . 〈x〉−
3
2
−α−.
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Proof. Note that

E±1 (λ) = M±(λ)− [g±(λ)P + T ] = vR±0 (λ2)v − g±(λ)P − vG0v = vE±0 (λ)v.

Therefore the statement follows from Lemma 3.1 and Corollary 3.2, and the fact that for

k ≥ 0, v(x)|x− y|kv(y) is Hilbert-Schmidt on L2(R2) provided that v(x) . 〈x〉−k−1−. �

Recall the following definition from [29] and [7].

Definition 3.4. We say an operator T : L2(R2)→ L2(R2) with kernel T (·, ·) is absolutely

bounded if the operator with kernel |T (·, ·)| is bounded from L2(R2) to L2(R2).

It is worth noting that finite rank operators and Hilbert-Schmidt operators are absolutely

bounded. Also recall the following definition from [18], also see [29] and [7].

Definition 3.5. Let Q := 1 − P . We say zero is a regular point of the spectrum of

H = −∆ + V provided QTQ = Q(U + vG0v)Q is invertible on QL2(R2).

In [29], it was proved that if zero is regular, then the operator D0 := (QTQ)−1 is abso-

lutely bounded on QL2.

Below, we discuss the invertibility of M±(λ) = U + vR±0 (λ2)v, for small λ. This lemma

was proved in [18] and in [29]. We include the proof for completeness since we state slightly

different error bounds.

Lemma 3.6. Let 0 < α < 1. Suppose that zero is a regular point of the spectrum of

H = −∆ + V . Then for sufficiently small λ1 > 0, the operators M±(λ) are invertible for

all 0 < λ < λ1 as bounded operators on L2(R2). Further, one has

M±(λ)−1 = h±(λ)−1S +QD0Q+ E±(λ),(14)

Here h±(λ) = g±(λ) + c (with c ∈ R), and

(15) S =

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
is a finite-rank operator with real-valued kernel. Further, the error term satisfies the bounds

∥∥ sup
0<λ<λ1

λ−
1
2 |E±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<b.λ<λ1

λ
1
2

+α(b− λ)−α|∂λE±(b)− ∂λE±(a)|
∥∥
HS
. 1,

provided that v(x) . 〈x〉−
3
2
−α−.
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Proof. We will give the proof for M+ and drop the superscript “+” from formulas. Using

Lemma 3.3, we writeM(λ) with respect to the decomposition L2(R2) = PL2(R2)⊕QL2(R2).

M(λ) =

[
g(λ)P + PTP PTQ

QTP QTQ

]
+ E1(λ).

Denote the matrix component of the above equation by A(λ) = {aij(λ)}2i,j=1.

Since QTQ is invertible by the assumption that zero is regular, by the Fehsbach formula

invertibility of A(λ) hinges upon the existence of d = (a11 − a12a
−1
22 a21)−1. Denoting D0 =

(QTQ)−1 : QL2 → QL2, we have

a11 − a12a
−1
22 a21 = g(λ)P + PTP − PTQD0QTP = h(λ)P

with h(λ) = g(λ) + Tr(PTP − PTQD0QTP ) = g(λ) + c, where c ∈ R as the kernels of T ,

QD0Q and v are real-valued. The invertibility of this operator on PL2 for small λ follows

from (13). Thus, by the Fehsbach formula,

A(λ)−1 =

[
d −da12a

−1
22

−a−1
22 a21d a−1

22 a21da12a
−1
22 + a−1

22

]

= h−1(λ)

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
+QD0Q =: h−1(λ)S +QD0Q.(16)

Note that S has rank at most two. This and the absolute boundedness of QD0Q imply that

A−1 is absolutely bounded.

Finally, we write

M(λ) = A(λ) + E1(λ) = [1 + E1(λ)A−1(λ)]A(λ).

Therefore, by a Neumann series expansion, we have

(17) M−1(λ) = A−1(λ)
[
1 + E1(λ)A−1(λ)

]−1 = h(λ)−1S +QD0Q+ E(λ),

The error bounds follow in light of the bounds for E1(λ) in Lemma 3.3 and the fact that,

as an absolutely bound operator on L2, |A−1(λ)| . 1, |∂λA−1(λ)| . λ−1, and (for 0 < λ <

b < λ1)

|∂λA−1(λ)− ∂λA−1(b)| . (b− λ)αλ−1−α.

In the Lipschitz estimate, the factor λ−
1
2
−α arises from the case when the derivative hits

A−1(λ). �
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Remark. Under the conditions of Theorem 1.1, the resolvent identity

(18) R±V (λ2) = R±0 (λ2)−R±0 (λ2)vM±(λ)−1vR±0 (λ2)

= R±0 (λ2)−R±0 (λ2)
vSv

h±(λ)
R±0 (λ2)−R±0 (λ2)vQD0QvR

±
0 (λ2)−R±0 (λ2)vE±(λ)vR±0 (λ2)

holds as an operator identity between the spaces L2, 1
2

+(R2) and L2,− 1
2
−(R2), as in the

limiting absorption principle, [2].

We complete this section by noting that for fixed x, y the kernel R±V (λ2)(x, y) of the

resolvent remains bounded as λ → 0. This is because of a cancellation between the first

and second summands of the second line in (18). A consequence of this cancellation will be

crucial in the next section, see Proposition 4.3 and Proposition 4.4.

4. Proof of Theorem 1.2 for Low Energies

In this section we prove Theorem 1.2 for low energies. Let χ be a smooth cut-off for

[0, λ1] as in the introduction, where λ1 is sufficiently small so that the expansions in the

previous section are valid. We have

Theorem 4.1. Fix 0 < α < 1/4. Let v(x) . 〈x〉−
3
2
−α−. For any t > 2, we have

(19)
∣∣∣ ∫ ∞

0
eitλ

2
λχ(λ)[R+

V (λ2)−R−V (λ2)](x, y)dλ
∣∣∣ . √w(x)w(y)

t log2(t)
+
〈x〉

3
2 〈y〉

3
2

t1+α
.

We start with a simple lemma:

Lemma 4.2. For t > 2, we have∣∣∣ ∫ ∞
0

eitλ
2
λ E(λ)dλ− iE(0)

2t

∣∣∣ . 1
t

∫ t−1/2

0
|E ′(λ)|dλ+

∣∣∣E ′(t−1/2)
t3/2

∣∣∣+
1
t2

∫ ∞
t−1/2

∣∣∣(E ′(λ)
λ

)′∣∣∣dλ.
Proof. To prove this lemma we integrate by parts once using the identity eitλ

2
λ =

∂λe
itλ2

/(2it), and then divide the integral into pieces on the sets [0, t−1/2] and [t−1/2,∞).

Finally integrate by parts once more in the latter piece:

∫ ∞
0

eitλ
2
λE(λ)dλ =

iE(0)
2t

+
i

2t

∫ t−1/2

0
eitλ

2E ′(λ)dλ+
i

2t

∫ ∞
t−1/2

eitλ
2
λ
E ′(λ)
λ

dλ

=
iE(0)

2t
+

i

2t

∫ t−1/2

0
eitλ

2E ′(λ)dλ− 1
4t2
E ′(λ)
λ

∣∣∣
λ=t−1/2

− 1
4t2

∫ ∞
t−1/2

eitλ
2
(E ′(λ)

λ

)′
dλ.

�
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We start with the contribution of the free resolvent to (19). Note that it is easy to obtain

this statement for the free evolution using its convolution kernel. We choose to present the

proof below to introduce some of the methods we will employ throughout the paper.

Proposition 4.3. We have∫ ∞
0

eitλ
2
λχ(λ)[R+

0 (λ2)−R−0 (λ2)](x, y)dλ = − 1
4t

+O
(〈x〉 32 〈y〉 32

t
5
4

)
.

Proof. Using Lemma 3.1, we have

R+
0 −R

−
0 =

i

2
+ E+

0 (λ)− E−0 (λ).

Therefore we can rewrite the λ integral above as

i

2

∫ ∞
0

eitλ
2
λχ(λ)dλ+

∫ ∞
0

eitλ
2
λχ(λ)(E+

0 (λ)− E−0 (λ))dλ =: A+B.

Note that by integrating by parts twice as in the proof of Lemma 4.2 we obtain

(20) A = − 1
4t
− i

8t2

∫ ∞
0

eitλ
2 d

dλ

(χ′(λ)
λ

)
dλ
)

= − 1
4t

+O(t−2).

Using the bounds in Lemma 3.1 for E(λ) = χ(λ)(E+
0 (λ) − E−0 (λ)), we see that E(0) = 0,

and

|∂λE(λ)| . λ−
1
2 |x− y|

1
2 . λ−

1
2

√
〈x〉〈y〉,∣∣∣∂λ(∂λE(λ)

λ

)∣∣∣ . χ(λ)[λ−
5
2 |x− y|

1
2 + λ−

3
2 |x− y|

3
2 ] . λ−

5
2 〈x〉

3
2 〈y〉

3
2 .

Applying Lemma 4.2 with these bounds we obtain

|B| . 1
t

∫ t−1/2

0
|E ′(λ)|dλ+

∣∣∣E ′(t−1/2)
t3/2

∣∣∣+
1
t2

∫ ∞
t−1/2

∣∣∣(E ′(λ)
λ

)′∣∣∣dλ
.

√
〈x〉〈y〉
t

∫ t−1/2

0
λ−

1
2dλ+

√
〈x〉〈y〉
t

5
4

+
〈x〉

3
2 〈y〉

3
2

t2

∫ ∞
t−1/2

λ−
5
2dλ .

〈x〉
3
2 〈y〉

3
2

t
5
4

.

�

We now consider the contribution of the second term in (18) to (19):

(21)
∫

R4

∫ ∞
0

eitλ
2
λχ(λ)[R− −R+]v(x1)S(x1, y1)v(y1)dλdx1dy1,

where

(22) R± =
R±0 (λ2)(x, x1)R±0 (λ2)(y1, y)

h±(λ)
.
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Proposition 4.4. Let 0 < α < 1/4. If v(x) . 〈x〉−
3
2
−α−, then we have

(21) =
1
4t

+O
(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
.

Proof. Recall from Lemma 3.1 that

R±0 (λ2)(x, x1) =
1
‖V ‖1

g±(λ) +G0(x, x1) + E±0 (λ)(x, x1).

Also recall that h±(λ) = g±(λ) + c with c ∈ R. Therefore

R± =
1
‖V ‖21

[
g±(λ) + c+ G̃0(x, x1) + G̃0(y, y1) +

G̃0(x, x1)G̃0(y, y1)
g±(λ) + c

]
+ E±2 (λ),

where

(23) E±2 (λ) :=
1
‖V ‖1

(
1 +

G̃0(x, x1)
g±(λ) + c

)
E±0 (λ)(y, y1) +

1
‖V ‖1

(
1 +

G̃0(y, y1)
g±(λ) + c

)
E±0 (λ)(x, x1)

+
E±0 (λ)(x, x1)E±0 (λ)(y, y1)

g±(λ) + c
,

and G̃0 = ‖V ‖1G0 − c. Using this and (13), we have

R− −R+ = − i

2‖V ‖1
+ c3

G̃0(x, x1)G̃0(y, y1)
(log(λ) + c1)2 + c2

2

+ E−2 (λ)− E+
2 (λ),

where c1, c2, c3 ∈ R.

Accordingly we rewrite the λ–integral in (21) as a sum of the following

− i

2‖V ‖1

∫ ∞
0

eitλ
2
λχ(λ)dλ,(24) ∫ ∞

0
eitλ

2
λχ(λ)

G̃0(x, x1)G̃0(y, y1)
(log(λ) + c1)2 + c2

2

dλ,(25) ∫ ∞
0

eitλ
2
λχ(λ)[E−2 (λ)− E+

2 (λ)]dλ.(26)

Note that by (20) we have

(27) (24) =
1

4t‖V ‖1
+O(t−2).

The leading term above will cancel the boundary term that arose in Proposition 4.3.

The decay rate 1
t log2(t)

appears because of the following lemma, which seems to be optimal.

Define

k(x, x1) := 1 + log−(|x− x1|) + log+(|x1|),

where log−(x) = | log(x)|χ(0,1)(x) and log+(x) = log(x)χ(1,∞)(x).
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Lemma 4.5. For t > 2, we have the bound

|(25)| . 1
t log2(t)

k(x, x1)k(y, y1)
√
w(x)w(y).

Lemma 4.6. Let 0 < α < 1/4. For t > 2, we have the bound

|(26)| . t−1−αk(x, x1)k(y, y1)
(
〈x〉〈y〉〈x1〉〈y1〉

) 1
2

+α+
.

We will prove Lemma 4.5 and Lemma 4.6 after we finish the proof of the proposition.

Using the bounds we obtained in (27), Lemma 4.5, Lemma 4.6 in (21), we obtain

(21) =
1

4t‖V ‖1

∫
R4

v(x1)S(x1, y1)v(y1)dx1dy1

+O
(√w(x)w(y)

t log2(t)

∫
R4

k(x, x1)v(x1)|S(x1, y1)|v(y1)k(y, y1)dx1dy1

)
+O

((〈x〉〈y〉) 1
2

+α+

t1+α

∫
R4

k(x, x1)〈x1〉
1
2

+α+v(x1)|S(x1, y1)|v(y1)k(y, y1)
1
2

+α+dx1dy1

)
.

Note that the integrals in the error terms are bounded in x, y, since

‖v(y1)〈y1〉
1
2

+α+k(y, y1)‖L2
y1
. 1.

Also note that we can replace S with P in the first integral since the other parts of the

operator S contains Q on at least one side and that Qv = 0. Therefore,

(21) =
1

4t‖V ‖1

∫
R4

v(x1)P (x1, y1)v(y1)dx1dy1 +O
(√w(x)w(y)

t log2(t)

)
+O

((〈x〉〈y〉) 3
2

+

t
5
4

)
=

1
4t

+O
(√w(x)w(y)

t log2(t)

)
+O

((〈x〉〈y〉) 3
2

+

t
5
4

)
.

�

Proof of Lemma 4.5. First note that

(28) |G̃0(x, x1)| . 1 + | log |x− x1|| . k(x, x1)
√
w(x).

Second, we bound the λ-integral by using Lemma 4.2 with E(λ) = χ(λ)
(log(λ)+c1)2+c22

. Note that

|∂λE(λ)| . χ(λ)
λ| log(λ)|3

,
∣∣∣∂λ(∂λE(λ)

λ

)∣∣∣ . χ(λ)
λ3| log(λ)|3

.

Applying Lemma 4.2 with these bounds we obtain

∣∣∣ ∫ ∞
0

eitλ
2
λ E(λ) dλ

∣∣∣ . 1
t

∫ t−1/2

0
|E ′(λ)|dλ+

∣∣∣E ′(t−1/2)
t3/2

∣∣∣+
1
t2

∫ ∞
t−1/2

∣∣∣(E ′(λ)
λ

)′∣∣∣dλ
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.
1
t

∫ t−1/2

0

χ(λ)
λ| log(λ)|3

dλ+
1

t log3(t)
+

1
t2

∫ ∞
t−1/2

χ(λ)
λ3| log(λ)|3

dλ.

It is easy to calculate that

1
t

∫ t−1/2

0

1
λ| log(λ)|3

dλ ∼ 1
t log2(t)

.

It remains to bound the integral on [t−1/2,∞):

1
t2

∫ ∞
t−1/2

χ(λ)
λ3| log(λ)|3

dλ .
1
t2

+
1
t2

∫ 1/10

t−1/2

1
λ3| log(λ)|3

dλ

.
1
t2

+
1
t2

∫ 1/10

t−1/4

1
λ3
dλ+

1
t2

∫ t−1/4

t−1/2

1
λ3| log(t)|3

dλ .
1
t3/2

+
1

t| log(t)|3
.

The first inequality follows since the integral on [ 1
10 ,∞) converges.

Combining the bounds we obtained above finishes the proof of the lemma. �

Before we prove Lemma 4.6, we discuss the following variant of Lemma 4.2:

Lemma 4.7. Assume that E(0) = 0. For t > 2, we have

(29)
∣∣∣ ∫ ∞

0
eitλ

2
λ E(λ)dλ

∣∣∣ . 1
t

∫ ∞
0

|E ′(
√
s)|√

s(1 + st)
ds+

1
t

∫ ∞
π
t

∣∣∣E ′(√s+ π
t )− E ′(

√
s)

√
s

∣∣∣ds
.

1
t

∫ ∞
0

|E ′(λ)|
(1 + λ2t)

dλ+
1
t

∫ ∞
t−1/2

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ.

Proof. As before we integrate by parts once using the identity eitλ
2
λ = ∂λe

itλ2
/(2it), and

then let s = λ2 to obtain∫ ∞
0

eitλ
2
λE(λ)dλ =

i

2t

∫ ∞
0

eitλ
2E ′(λ)dλ =

i

4t

∫ ∞
0

eits
E ′(
√
s)√
s

ds =
∫ 2π

t

0
+
∫ ∞

2π
t

.

The contribution of the first integral is bounded by the first integral on the right hand side

of (29). We rewrite the second integral as∫ ∞
2π
t

eits
E ′(
√
s)√
s

ds = −
∫ ∞

2π
t

eit(s−
π
t

)E ′(
√
s)√
s

ds = −
∫ ∞
π
t

eits
E ′(
√
s+ π

t )√
s+ π

t

ds.

Therefore it suffices to consider (the integral on [π/t, 2π/t] is bounded by the first integral

on the right hand side of (29))∫ ∞
π
t

eits
(E ′(√s)√

s
−
E ′(
√
s+ π

t )√
s+ π

t

)
ds.

The claim follows from
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s
−
E ′(
√
s+ π

t )√
s+ π

t

∣∣∣ . |E ′(√s)− E ′(√s+ π
t )|√

s+ π
t

+ |E ′(
√
s)|
∣∣∣ 1√
s
− 1√

s+ π
t

∣∣∣
.
|E ′(
√
s)− E ′(

√
s+ π

t )|
√
s

+
|E ′(
√
s)|

ts
3
2

.

�

Proof of Lemma 4.6. We will only consider the following part of (26):

(30)
∫ ∞

0
eitλ

2
λχ(λ)

(
1 +

G̃0(x, x1)
g(λ) + c

)
E0(λ)(y, y1)dλ =:

∫ ∞
0

eitλ
2
λ E(λ) dλ.

The other parts are either of this form or much smaller. We also omit the ± signs since we

can not rely on a cancellation between ’+’ and ’-’ terms.

Using Lemma 3.1, Corollary 3.2, and (28), we estimate (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . k(x, x1)
√
w(x)χ(λ)λ−

1
2 〈y − y1〉

1
2 . k(x, x1)

√
w(x)〈y〉〈y1〉λ−

1
2 ,

∣∣∂λE(b)− ∂λE(λ)
∣∣ . χ(λ)k(x, x1)

√
w(x)λ−

1
2
−α(b− λ)α〈y − y1〉

1
2

+α

. χ(λ)k(x, x1)
√
w(x)(〈y〉〈y1〉)

1
2

+αλ−
1
2
−α(b− λ)α.

Noting that E(0) = 0 we can use Lemma 4.7 to obtain

|(30)| . 1
t

∫ ∞
0

|E ′(λ)|
(1 + λ2t)

dλ+
1
t

∫ ∞
t−1/2

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ.

Using the bounds above, we estimate the first integral by

k(x, x1)
√
w(x)〈y〉〈y1〉
t

∫ ∞
0

1√
λ(1 + λ2t)

dλ .
k(x, x1)

√
w(x)〈y〉〈y1〉
t5/4

.

To estimate the second integral, we apply the Lipschitz bound with

b− λ = λ
(√

1 + πt−1λ−2 − 1
)
∼ 1
tλ
,

and get

k(x, x1)
√
w(x)(〈y〉〈y1〉)

1
2

+α

t

∫ λ1

t−1/2

λ−
1
2
−α(tλ)−αdλ .

k(x, x1)
√
w(x)(〈y〉〈y1〉)

1
2

+α

t1+α
,

since α ∈ (0, 1/4).

Taking into account the contribution of the term with the roles of x and y switched, we

obtain the assertion of the lemma. �
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Next we consider the contribution of the third term in (18) to (19):

(31)
∫

R4

∫ ∞
0

eitλ
2
λχ(λ)[R−2 −R

+
2 ]v(x1)[QD0Q](x1, y1)v(y1)dλdx1dy1,

where

(32) R±2 = R±0 (λ2)(x, x1)R±0 (λ2)(y1, y).

Recall from Lemma 3.1 that

R±0 (λ2)(x, x1) = c[a log(λ|x− x1|) + b± i] + E±0 (λ)(x, x1),

where a, b, c ∈ R. Therefore

R±2 = c2
[
(a log(λ|x− x1|) + b)(a log(λ|y − y1|) + b)− 1

]
± ic2

[
a log(λ|x− x1|) + a log(λ|y − y1|) + 2b

]
+ E±3 (λ),

where

(33) E±3 (λ) := c[a log(λ|x− x1|) + b± i]E±0 (λ)(y, y1)

+ c[a log(λ|y − y1|) + b± i]E±0 (λ)(x, x1) + E±0 (λ)(x, x1)E±0 (λ)(y, y1).

Using this, we have

R−2 −R
+
2 = −2c2(a log(λ|x− x1|) + a log(λ|y − y1|) + 2b) + E−3 (λ)− E+

3 (λ).

Using this in (31), and noting that the contribution of the first summand vanishes since

Qv = 0, we obtain

(34) (31) =
∫

R4

∫ ∞
0

eitλ
2
λχ(λ)[E−3 (λ)− E+

3 (λ)]v(x1)[QD0Q](x1, y1)v(y1)dλdx1dy1.

Proposition 4.8. Let 0 < α < 1/4. If v(x) . 〈x〉−
3
2
−α−, then we have

(31) = O
(〈x〉 12+α+〈y〉

1
2

+α+

t1+α

)
.

Proof. Let E(λ) = χ(λ)E3(λ) (we dropped the ’±’ signs). Using

| log |x− x1|| . k(x, x1)
√
w(x),

and the bounds in Lemma 3.1 and Corollary 3.2 we estimate (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . χ(λ)λ−
1
2
−(〈y〉〈x〉〈y1〉〈x1〉)

1
2

+k(x, x1)k(y, y1),∣∣∂λE(b)− ∂λE(λ)
∣∣ . χ(λ)k(x, x1)k(y, y1)(〈x〉〈x1〉〈y〉〈y1〉)

1
2

+α+λ−
1
2
−α−(b− λ)α.
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Applying Lemma 4.7 together with these bounds as in the proof of the previous lemma, we

bound the λ-integral by

k(x, x1)k(y, y1)(〈x〉〈x1〉〈y〉〈y1〉)
1
2

+α+ 1
t1+α

.

Therefore,

(31) . t−1−α
∫

R4

k(x, x1)k(y, y1)(〈y〉〈y1〉〈x〉〈x1〉)
1
2

+α+v(x1)|QD0Q(x1, y1)|v(y1)dx1dy1

.
〈x〉

1
2

+α+〈y〉
1
2

+α+

t1+α
,

since ‖v(x1)k(x, x1)〈x1〉
1
2

+α+‖L2
x1
. 1. �

We now turn to the contribution of the error term E±(λ) from Lemma 3.6 in (18).

Dropping the ’±’ signs, we need to consider

(35)
∫

R4

∫ ∞
0

eitλ
2
λ E(λ)v(x1)v(y1) dλ dx1 dy1,

where

E(λ) := χ(λ)R0(λ2)(x, x1)E(λ)(x1, y1)R0(λ2)(y, y1).

Proposition 4.9. Let 0 < α < 1/4. If v(x) . 〈x〉−
3
2
−α−, then we have

(35) = O
(〈x〉 12+α+〈y〉

1
2

+α+

t1+α

)
.

Proof. Let

T0 := sup
0<λ<λ1

λ−
1
2 |E±(λ)|+ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

+ sup
0<λ<b.λ<λ1

λ
1
2

+α

(b− λ)α
|∂λE±(b)− ∂λE±(λ)|.

By Lemma 3.6, we see that T0 is Hilbert-Schmidt on L2(R2), and hence we have the

following bounds for the kernels

|E±(λ)| . λ
1
2T0, |∂λE±(λ)| . λ−

1
2T0,

|∂λE±(b)− ∂λE±(λ)| . λ−
1
2
−α(b− λ)αT0, if 0 < λ < b . λ < λ1.

Moreover, using Lemma 3.1 and Corollary 3.2, we have (for 0 < λ < b . λ < λ1)

|R0(λ2)(x, x1)| . (1 + | log λ|)k(x, x1)
√
w(x) . λ0−k(x, x1)〈x〉0+,

|∂λR0(λ2)(x, x1)| . 1
λ

+ λ−
1
2

√
〈x〉〈x1〉,
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|∂λR0(λ2)(x, x1)− ∂λR0(b2)(x, x1)| . (b− λ)α
[ 1
λ1+α

+
|x− x1|

1
2

+α

λ
1
2

]
.

Therefore we have the bounds (for 0 < λ < b . λ < λ1)

|∂λE(λ)| . λ−
1
2
−(〈y〉〈x〉〈y1〉〈x1〉)

1
2k(x, x1)k(y, y1)T0(x1, y1),

|∂λE(b)− ∂λE(λ)| . λ−
1
2
−α−(b− λ)α(〈y〉〈x〉〈y1〉〈x1〉)

1
2

+α+k(x, x1)k(y, y1)T0(x1, y1).

Applying Lemma 4.7 as above yields the claim of the proposition. �

Note that Proposition 4.3, Proposition 4.4, Proposition 4.8, and Proposition 4.9 yield

Theorem 1.1.

5. Proof of Theorem 1.2 For Energies Away From Zero

In this section we prove Theorem 1.2 for energies separated from zero:

Theorem 5.1. Under the assumptions of Theorem 1.1, we have for t > 2

(36) sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ̃(λ)χ(λ/L)[R+

V (λ2)−R−V (λ2)](x, y)dλ
∣∣∣∣ . 〈x〉 32 〈y〉 32

t
3
2

where χ̃ = 1− χ.

Proof. We start with the resolvent expansion

R±V (λ2) =
2M+2∑
m=0

R±0 (λ2)(−V R±0 (λ2))m(37)

+R±0 (λ2)(V R±0 (λ2))MV R±V (λ2)V (R±0 (λ2)V )MR±0 (λ2).(38)

We first note that the contribution of the term m = 0 can be handled as in Proposition 4.3

and it can be bounded by 〈x〉
3
2 〈y〉

3
2

t2
. For the case m > 0 we won’t make use of any cancellation

between ‘±’ terms. Thus, we will only consider R−0 , and drop the ‘±’ signs. Using (3), (5),

(6), and (7) we write

R0(λ2)(x, y) = e−iλ|x−y|ρ+(λ|x− y|) + ρ−(λ|x− y|),

where ρ+ and ρ− are supported on the sets [1/4,∞) and [0, 1/2], respectively. Moreover,

we have the bounds

(39) ρ−(y) = Õ(1 + | log y|), ρ+(y) = Õ
(
(1 + |y|)−1/2

)
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We first control the contribution of the finite born series, (37), for m > 0. Note that

the contribution of the mth term of (37) to the integral in (36) can be written as a sum of

integrals of the form

(40)∫
R2m

∫ ∞
0

eitλ
2
λχ̃(λ)χ(λ/L)e−iλ

P
j∈J dj

∏
j∈J

ρ+(λdj)
∏
`∈J∗

ρ−(λd`)
m∏
n=1

V (xn) dλ dx1 . . . dxm,

where dj = |xj−1 − xj | and J ∪ J∗ is a partition of {1, ...,m,m+ 1}. Let

E(λ) := χ̃(λ)χ(λ/L)e−iλ
P
j∈J dj

∏
j∈J

ρ+(λdj)
∏
`∈J∗

ρ−(λd`).

To estimate the derivatives of E , we note that

∣∣∂kλ[ρ+(λdj)
]∣∣ . dkj

(1 + λdj)k+1/2
, k = 0, 1, 2, ...,

∣∣∂kλ[ρ−(λdj)
]∣∣ . 1

λk
, k = 1, 2, ...

Using the monotonicity of log− function, we also obtain

χ̃(λ)
∣∣ρ−(λdj)

∣∣ . χ̃(λ)(1 + | log(λdj)|)χ{0<λdj≤1/2} . χ̃(λ)(1 + log−(λdj)) . 1 + log−(dj).

It is also easy to see that ∣∣∣ dk
dλk

χ(λ/L)
∣∣∣ . λ−k.

Finally, noting that (χ̃)′ is supported on the set {λ ≈ 1}, we can estimate

(41)
∣∣∂λE∣∣ . χ̃(λ)

( 1
λ

+
∑
k∈J

(
dk +

dk
1 + λdk

))∏
j∈J

1
(1 + λdj)1/2

∏
`∈J∗

(1 + log−(d`))

. χ̃(λ)
( 1
λ

+
∑
k∈J

dk
(1 + λdk)1/2

) ∏
`∈J∗

(1+log−(d`)) . χ̃(λ)
(
λ−1+

∑
k∈J

d
1
2
k λ
− 1

2

) ∏
`∈J∗

(1+log−(d`))

. χ̃(λ)λ−
1
2

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)).

We also have

(42)
∣∣∂2
λE
∣∣ . χ̃(λ)

( 1
λ2

+
∑
k∈J

(
d2
k +

d2
k

(1 + λdk)2

))∏
j∈J

1
(1 + λdj)1/2

∏
`∈J∗

(1 + log−(d`))

. χ̃(λ)
(
λ−2 +

∑
k∈J

d
3
2
k λ
− 1

2

) ∏
`∈J∗

(1 + log−(d`)) . χ̃(λ)λ−
1
2

m+1∏
k=0

〈xk〉
3
2

m+1∏
`=1

(1 + log−(d`)).
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Using Lemma 4.7 (and taking the support condition of χ̃ into account), we can bound the

λ integral in (40) by

(43)
1
t2

∫ ∞
0

|E ′(λ)|
λ2

dλ+
1
t

∫ ∞
0

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ,

Using (41), we can bound the first integral in (43) by

(44)
m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`))
∫ ∞

0
χ̃(λ)λ−5/2dλ .

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)).

To estimate the second integral in (43) first note that

(45) λ
√

1 + πt−1λ−2 − λ ≈ 1
tλ
.

Next using (45), (41) and (42), we have (for any 0 ≤ α ≤ 1)

(46)
∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)

∣∣
. χ̃(2λ)λ−

1
2

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)) min
(

1,
1
tλ

m+1∏
k=0

〈xk〉
)

. t−αχ̃(2λ)λ−
1
2
−α

m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`)).

Using this bound for α ∈ (1/2, 1], we bound the second integral in (43) by

(47) t−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))
∫ ∞

0
χ̃(2λ)λ−

1
2
−α .

. t−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`)).

Combining (44) and (47), we obtain

|(43)| . t−1−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))

Using this (with 1
2 < α < 2β − 5

2) in (40), we obtain

|(40)| . t−1−α
∫

R2m

m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))
m∏
n=1

|V (xn)| dx1 . . . dxm

.
〈x0〉

1
2

+α〈xm+1〉
1
2

+α

t
3
2

.
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To control the remainder of the born series, (38), we employ the limiting absorption

principle, see [2],

‖∂kλR±V (λ2)‖L2,σ(R2)→L2,−σ(R2) <∞,(48)

for k = 0, 1, 2 with σ > k + 1
2 . Similar bounds hold for the derivatives of the free resolvent.

In addition, for the free resolvent one has

‖R±0 (λ2)‖L2,σ(R2)→L2,−σ(R2) . λ
−1+,(49)

which is valid for σ > 1
2 . Using the representation (39), we note the following bounds on

the free resolvent which are valid on λ > λ1 > 0,

|∂kλR±0 (λ2)(x, y)| . |x− y|k
{
| log(λ|x− y|)| 0 < λ|x− y| < 1

2

(λ|x− y|)−
1
2 λ|x− y| & 1

. λ−
1
2 |x− y|k−

1
2 .

Thus, for σ > 1
2 + k,

‖∂kλR±0 (λ2)(x, y)〈y〉−σ‖L2
y
. λ−

1
2

[ ∫
R2

|x− y|2k−1

〈y〉2σ
dy
] 1

2
. λ−

1
2 〈x〉max(0,k−1/2).(50)

Once again, we estimate the R+
V and R−V terms separately and omit the ‘±’ signs.

We write the contribution of (38) to (36) as∫ ∞
0

eitλ
2
λ E(λ)(x, y) dλ,(51)

where

E(λ)(x, y) = χ̃(λ)χ(λ/L)
〈
V R±V (λ2)V (R±0 (λ2)V )MR±0 (λ2)(·, x), (R±0 (λ2)V )MR±0 (λ2)(·, y)

〉
.

Using (48), (49), and (50) (provided that M ≥ 2) we see that∣∣∂kλE(λ)(x, y)
∣∣ . χ̃(λ)χ(λ/L)〈λ〉−2−〈x〉

3
2 〈y〉

3
2 , k = 0, 1, 2.(52)

This requires that |V (x)| . 〈x〉−3−. One can see that the requirement on the decay rate of

the potential arises when, for instance, both λ derivatives act on one resolvent, this twice

differentiated resolvent operator maps L2, 5
2

+ → L2,− 5
2
− by (48), or is in L2,− 5

2
− by (50).

The potential then needs to map L2,− 5
2
− → L2, 1

2
+ for the next application of the limiting

absorption principle. This is satisfied if |V (x)| . 〈x〉−3−.

The required bound now follows by integrating by parts twice:

|(51)| . |t|−2

∫ ∞
0

∣∣∣∣∂λ(∂λ E(λ)(x, y)
λ

)∣∣∣∣ dλ . |t|−2〈x〉
3
2 〈y〉

3
2 .

�



WEIGHTED DISPERSIVE ESTIMATE FOR THE SCHRÖDINGER EQUATION 21
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[37] Yajima, K. The Lp Boundedness of wave operators for Schrödinger operators with threshold singularities

I. The odd dimensional case. J. Math. Sci. Univ. Tokyo 13 (2006), 43–94.

Department of Mathematics, University of Illinois, Urbana, IL 61801, U.S.A.

E-mail address: berdogan@math.uiuc.edu

Department of Mathematics and Computer Science, Eastern Illinois University,

Charleston, IL 61920, U.S.A.

E-mail address: wrgreen2@eiu.edu


