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Abstract. We consider the non-selfadjoint operator

H =

[
−∆ + µ− V1 −V2

V2 ∆− µ+ V1

]
where µ > 0 and V1, V2 are real-valued decaying potentials. Such operators arise when

linearizing a focusing NLS equation around a standing wave. Under natural spectral

assumptions we obtain L1(R2)× L1(R2)→ L∞(R2)× L∞(R2) dispersive decay estimates

for the evolution eitHPac. We also obtain the following weighted estimate

‖w−1eitHPacf‖L∞(R2)×L∞(R2) .
1

|t| log2(|t|)
‖wf‖L1(R2)×L1(R2), |t| > 2,

with w(x) = log2(2 + |x|).

1. Introduction

The free Schrödinger evolution on Rd,

(1) e−it∆f(x) = Cd
1

td/2

∫
Rd
e−i|x−y|

2/4tf(y)dy,

satisfies the dispersive estimate

‖e−it∆f‖∞ .
1

|t|d/2
‖f‖1.

In recent years many authors (see, e.g., [30, 39, 23, 41, 24, 49, 20, 9, 15, 25, 5], and the survey

article [43]) worked on the problem of extending this bound to the perturbed Schrödinger

operator H = −∆ + V , where V is a real-valued potential with sufficient decay at infinity

(some smoothness is required for d > 3). Since the perturbed operator may have negative

point spectrum one needs to consider eitHPac(H), where Pac(H) is the orthogonal projection

onto the absolutely continuous subspace of L2(Rd). Another common assumption is that

zero is a regular point of the spectrum of H.

We note that the L1 → L∞ estimates were preceded by somehow weaker estimates on

weighted L2 spaces, see, e.g., [37, 27, 35].

Date: November 16, 2012.

1
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Although the L1 → L∞ estimates are very well studied in the three dimensional case,

there are not many results in dimension two. In [41], Schlag proved that

‖eitHPac‖L1(R2)→L∞(R2) . |t|−1(2)

under the decay assumption |V | . 〈x〉−3− and the assumption that zero is a regular point

of the spectrum. For the case when zero is not regular, see [16]. Yajima, [48], established

that the wave operators are bounded on Lp(R2) for 1 < p < ∞ if zero is regular. The

hypotheses on the potential V were relaxed slightly in [29].

Note that the decay rate in (1) is not integrable at infinity for d = 1, 2. However, in

dimensions d = 1 and d = 2, zero is not a regular point of the spectrum of the Laplacian

(the constant function is a resonance). Therefore, for the perturbed operator −∆ + V , one

may expect to have a faster dispersive decay at infinity if zero is regular. Indeed, in [35,

Theorem 7.6], Murata proved that if zero is a regular point of the spectrum, then for |t| > 2

‖w−1
1 eitHPac(H)f‖L2(R1) . |t|−

3
2 ‖w1f‖L2(R1),

‖w−1
2 eitHPac(H)f‖L2(R2) . |t|−1(log |t|)−2‖w2f‖L2(R2).

Here w1 and w2 are weight functions growing at a polynomial rate at infinity. It is also

assumed that the potential decays at a polynomial rate at infinity (for d = 2, it suffices to

assume that w2(x) = 〈x〉−3− and |V (x)| . 〈x〉−6− where 〈x〉 := (1 + |x|2)
1
2 ). This type of

estimates are very useful in the study of nonlinear asymptotic stability of (multi) solitons

in lower dimensions since the dispersive decay rate in time is integrable at infinity (see, e.g.,

[42, 31]). Also see [45, 8, 36, 47] for other applications of weighted dispersive estimates to

nonlinear PDEs.

In [43], Schlag extended Murata’s result for d = 1 to the L1 → L∞ setting (also see [22]

for an improved result). In [17], the authors obtained an analogous estimate for d = 2: If

zero is a regular point of the spectrum of H, then

‖w−1eitHPac(H)f‖L∞(R2) .
1

|t| log2(|t|)
‖wf‖L1(R2), |t| > 2,(3)

with w(x) = log2(2 + |x|) provided |V (x)| . 〈x〉−3−.

In this paper we extend Schlag’s result (2) and our result (3) for the 2d scalar Schrödinger

operator to the 2d non self-adjoint matrix Schrödinger operator

H = H0 + V =

[
−∆ + µ 0

0 ∆− µ

]
+

[
−V1 −V2

V2 V1

]
, µ > 0.(4)

Such operators appear naturally as linearizations of a nonlinear Schrödinger equation around

a standing wave. Dispersive estimates in the context of such linearizations were obtained

in [11, 40, 44, 19, 13, 32, 25].
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Note that, by Weyl’s criterion and the decay assumption on V1 and V2 below, the essential

spectrum of H is (−∞,−µ] ∪ [µ,∞). Recall the Pauli spin matrix

σ3 =

[
1 0

0 −1

]
.

As in [19], we make the following assumptions:

A1) −σ3V is a positive matrix,

A2) L− = −∆ + µ− V1 + V2 ≥ 0,

A3) |V1(x)|+ |V2(x)| . 〈x〉−β for some β > 3,

A4) There are no embedded eigenvalues in (−∞,−µ) ∪ (µ,∞).

A5) The threshold points ±µ are regular points of the spectrum of H, see Definition 4.3

below.

As it was noted in [19], the first three assumptions are known to hold in the case of the

linearized nonlinear Schrödinger equation (NLS) when the linearization is performed about

a positive ground state standing wave. Let, for some µ > 0, ψ(t, x) = eitµφ(x) be a standing

wave solution of the NLS

i∂tψ + ∆ψ + |ψ|2γψ = 0,(5)

for some γ > 0. Here φ is a ground state:

µφ−∆φ = φ2γ+1, φ > 0.

It was proven, see for example [46, 6], that the ground state solutions exist and further are

positive, smooth, radial, exponentially decaying functions, see [19] for further discussion.

Linearizing about this ground state yields the matrix Schrödinger equation with poten-

tials V1 = (γ + 1)φ2γ and V2 = γφ2γ . Note that V1 > 0 and V1 > |V2|, which is the same as

Assumption A1). Assumption A2) holds because of the exponential decay of φ. Also note

that L− = −∆ + µ − φ2γ ≥ 0, since L−φ = 0 and φ > 0. The assumption A4) seems to

hold for this example in the three-dimensional case as evidenced in the numerical studies

[14, 33].

The assumption A5) is also standard, since the behavior of the resolvent near the thresh-

olds, ±µ, determine the decay rate (see [43, 16] for the scalar case). We do not consider the

case when the thresholds ±µ are not regular in this paper.

Our main result is the following

Theorem 1.1. Under the assumptions A1) – A5), we have

(6) ‖eitHPacf‖L∞(R2)×L∞(R2) .
1

|t|
‖f‖L1(R2)×L1(R2),
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and

(7) ‖w−1eitHPacf‖L∞(R2)×L∞(R2) .
1

|t| log2(|t|)
‖wf‖L1(R2)×L1(R2), |t| > 2,

where w(x) = log2(2 + |x|).

In an attempt for brevity of this paper, we will try to use the lemmas from the scalar

results [43, 17] as much as possible. The most important step in the proof of Theorem 1.1

is the analysis of the resolvent around the thresholds ±µ. Once we obtain these expansions,

it will be possible to relate and/or reduce the proof to the scalar case for most of the terms.

In addition to being of mathematical interest, we wish to note that such estimates above

are of use in the study of non-linear PDEs, particularly the NLS. Much work studying the

NLS linearizes the equation about groundstate or standing wave solutions. We note, in

particular, [36, 21, 47, 11, 31, 34, 12, 13, 44, 4] and the survey paper [42].

2. Spectral Theory of Matrix Schrödinger Operators

Consider the matrix Schrödinger operator, given in (4), on L2(Rn)×L2(Rn). Here µ > 0

and V1, V2 are real-valued decaying potentials. It follows from Weyl’s criterion that the

essential spectrum of H is (−∞,−µ] ∪ [µ,∞), see e.g. [26, 38].

For the spectral theory of the matrix Schrödinger operator, we refer the reader to [19].

Since most of the proofs presented in [19] are independent of dimension, we cite the results

without proof. Further spectral theory for the three dimensional case can be found in [3, 10].

Lemma 2.1. [19, Lemma 3] Let β > 0 be arbitrary in A2), then the essential spectrum of

H equals (−∞,−µ] ∪ [µ,∞). Moreover spec(H) = −spec(H) = spec(H) = spec(H∗), and

spec(H) ⊂ R∪ iR. The discrete spectrum of H consists of eigenvalues {zj}Nj=1, 0 ≤ N ≤ ∞,

of finite multiplicity. For each zj 6= 0, the algebraic and geometric multiplicity coincide

and Ran(H − zj) is closed. The zero eigenvalue has finite algebraic multiplicity, i.e., the

generalized eigenspace ∪∞k=1ker(Hk) has finite dimension. In fact, there is a finite m ≥ 1

so that ker(Hk) = ker(Hk+1) for all k ≥ m.

As in the scalar case, see [23, 16] etc., the proofs will hinge on the limiting absorption

principle of Agmon [2]. We now state such a result from [19] for (H − z)−1 for |z| > µ.

Define the space

Xσ := L2,σ(R2)× L2,σ(R2), where L2,σ(Rn) = {f : 〈x〉σf ∈ L2(Rn)}.

It is clear that X∗σ = X−σ. The limiting absorption principle of Agmon is formulated below.
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Proposition 2.2. Let β > 1, σ > 1
2 and fix an arbitrary λ0 > µ. Then

sup
|λ|≥λ0,ε≥0

|λ|
1
2 ‖(H− (λ± iε))−1‖ <∞(8)

where the norm is in Xσ → X−σ.

Proof. See Lemma 4, Proposition 5 and Corollary 6 of [19]. �

Using the explicit form of the free resolvent R0(λ) = (H0 − λ)−1, λ 6∈ (−∞, µ] ∪ [µ,∞)

(see the next section), one can define the limiting operators (Xσ → X−σ)

R±0 (λ) := lim
ε→0+

R0(λ± iε), λ ∈ (−∞− µ) ∪ (µ,∞).

By Proposition 2.2, for fixed λ0 > µ,

(9) sup
|λ|≥λ0

|λ|
1
2 ‖R±0 (λ)‖Xσ→X−σ <∞.

One also have the derivative bounds

sup
|λ|>λ0

‖∂kλR±0 (λ)‖Xσ→X−σ <∞,(10)

for k = 0, 1, 2 with σ > k + 1
2 .

By resolvent identity, one can also define the operators

R±V (λ) := lim
ε→0+

RV (λ± iε) = lim
ε→0+

(H− (λ± iε))−1

for λ ∈ (−∞− µ) ∪ (µ,∞) and they satisfy (9) and (10), see [19] for details.

We also need the following spectral representation of the solution operator, see [19,

Lemma 12].

Lemma 2.3. Under the assumptions A1)-A5), we have the representation

eitH = eitHPac +
∑
j

eitHPλj , where

eitHPac =
1

2πi

∫
|λ|>µ

eitλ[R+
V (λ)−R−V (λ)] dλ,(11)

and the sum is over the discrete spectrum {λj}j and Pλj is the Riesz projection corresponding

to the eigenvalue λj.

This representation is to be understood in the weak sense. That is for ψ, φ in W 2,2 ×
W 2,2 ∩X1+ we have

〈eitHφ, ψ〉 =
1

2πi

∫
|λ|>µ

eitλ〈[R+
V (λ)−R−V (λ)]φ, ψ〉 dλ+

∑
j

〈eitHPλjφ, ψ〉.(12)

In light of this representation, the first claim of Theorem 1.1 follows from the following

theorem. Let χ be a smooth cutoff for the interval [−1, 1].
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Theorem 2.4. Under the assumptions A1) – A5), we have, for any t ∈ R,

(13) sup
x,y∈R2,L>1

∣∣∣ ∫
|λ|>µ

eitλχ(λ/L)[R+
V (λ)−R−V (λ)](x, y) dλ

∣∣∣ . 1

|t|
.

The second claim of Theorem 1.1 follows from the following theorem and Theorem 2.4

by a simple interpolation (see [17])

Theorem 2.5. Under the assumptions A1) – A5), we have, for |t| > 2,

(14) sup
L>1

∣∣∣ ∫
|λ|>µ

eitλχ(λ/L)[R+
V (λ)−R−V (λ)](x, y) dλ

∣∣∣ . √w(x)w(y)

|t| log2(|t|)
+
〈x〉3/2〈y〉3/2

|t|1+α
,

where w(x) = log2(2 + |x|) and 0 < α < β−3
2 .

3. Properties of the Free Resolvent

For z 6∈ (−∞,−µ] ∪ [µ,∞), the free resolvent is an integral operator

R0(z) = (H0 − z)−1 =

[
R0(z − µ) 0

0 −R0(−z − µ)

]
,(15)

where R0 denoting the scalar free resolvent operators, R0(z) = (−∆− z)−1, z ∈ C\[0,∞).

We first recall some properties of R0(z).

To simplify the formulas, we use the notation

f = Õ(g)

to denote
dj

dλj
f = O

( dj
dλj

g
)
, j = 0, 1, 2, 3, ...

If the derivative bounds hold only for the first k derivatives we write f = Õk(g).

Recall that

R0(z)(x, y) =
i

4
H+

0 (z1/2|x− y|),(16)

where =(z1/2) > 0 and H±0 are modified Hankel functions

H±0 (z) = J0(z)± iY0(z).

From the series expansions for the Bessel functions, see [1], we have, as z → 0,

J0(z) = 1− 1

4
z2 +

1

64
z4 + Õ6(z6),(17)

Y0(z) =
2

π
(log(z/2) + γ)J0(z) +

2

π

(
1

4
z2 + Õ4(z4)

)
=

2

π
log(z/2) +

2γ

π
+ Õ(z2 log(z)).(18)
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Further, for |z| > 1, we have the representation (see, e.g., [1])

H+
0 (z) = eizω(z), ω(z) = Õ

(
(1 + |z|)−

1
2
)
.(19)

In the proofs of Theorem 2.4 and Theorem 2.5, without loss of generality, we will perform

all the analysis on [µ,∞). Writing z = µ+ λ2, λ > 0, we have the limiting operators

(20) R±0 (µ+ λ2)(x, y) =

[
R±0 (λ2)(x, y) 0

0 − i
4H

+
0 (i
√

2µ+ λ2|x− y|)

]
,

where

(21) R±0 (λ2)(x, y) = ± i
4
H±0 (λ|x− y|) = ± i

4
J0(λ|x− y|)− 1

4
Y0(λ|x− y|).

Thus, we have

(22) R+
0 (µ+ λ2)(x, y)−R−0 (µ+ λ2)(x, y) =

i

2

[
J0(λ|x− y|) 0

0 0

]
.

We also have the bound, with R2(λ2)(x, y) := − i
4H

+
0 (i
√

2µ+ λ2|x− y|) and for λ ≥ 0,

(23) |R2(λ2)(x, y)| . 1 + log− |x− y|, and |∂kλR2(λ2)(x, y)| . 1, k = 1, 2, ...

To establish these bounds consider the cases
√

2µ+ λ2|x−y| < 1
2 and

√
2µ+ λ2|x−y| > 1

2

separately. For the first case we use (17) and (18) noting that |x−y| < µ−1/2 . 1, and that

|∂kλ
√

2µ+ λ2| . 1. For the latter case, using (19), the bound follows from the resulting

exponential decay.

Below, using the properties of R0 listed above, we provide an expansion for the matrix

free resolvent, R0, around λ = 0 (i.e. z = µ). In the next section, we will obtain analogous

expansions for the perturbed resolvent. Similar lemmas were proved in [28, 41, 17] in

the scalar case. The following operators and the function arise naturally in the resolvent

expansion (see (18))

G0f(x) = − 1

2π

∫
R2

log |x− y|f(y) dy,(24)

g±(λ) :=
(
± i

4
− 1

2π
log(λ/2)− γ

2π

)
(25)

G0(x, y) =

[
G0(x, y) 0

0 − i
4H

+
0 (i
√

2µ|x− y|)

]
.(26)

Note that

G0 =

[
−∆ 0

0 ∆− 2µ

]−1

= (H0 − µI)−1.(27)
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Further, for notational convenience we define the matrices

M11 =

[
1 0

0 0

]
, M22 =

[
0 0

0 1

]
.

We will use the notation K(x, y)M11 or KM11 to denote the operator with the convolution

kernel [
K(x, y) 0

0 0

]
,

similar formula holds if K is a matrix kernel. We also use the following notation, for a

matrix operator M if we write

|M | . f, or M = O(f)

with f a scalar-valued function, we mean that all entries of the matrix M satisfy the bound.

Lemma 3.1. We have the following expansion for the kernel of the free resolvent

R±0 (µ+ λ2)(x, y) = g±(λ)M11 + G0(x, y) + E±0 (λ)(x, y).

Here G0(x, y) is the kernel of the operator in (26), g±(λ) is as in (25), and the component

functions of E±0 satisfy the bounds

|E±0 | . 〈λ〉
1
2λ

1
2 〈x− y〉

1
2 , |∂λE±0 | . 〈λ〉

1
2λ−

1
2 〈x− y〉

1
2 , |∂2

λE
±
0 | . 〈λ〉

1
2λ−

1
2 〈x− y〉

3
2 .

Proof. The expansion of the scalar free resolvent was derived in [17, Lemma 3.1]. For

the free resolvent evaluated at the imaginary argument, the proof easily follows from the

properties of the Hankel function listed above. �

Corollary 3.2. For 0 < α < 1 and 0 < z1 < z2 < λ1 we have

|∂λE±0 (z2)− ∂λE±0 (z1)| . z−
1
2

1 |z2 − z1|α〈x− y〉
1
2

+α

4. Resolvent Expansion Around the Threshold µ

It is convenient to write the potential matrix as V = −σ3vv := v1v2 where v1 = −σ3v,

v2 = v, and

v =
1

2

[ √
V1 + V2 +

√
V1 − V2

√
V1 + V2 −

√
V1 − V2√

V1 + V2 −
√
V1 − V2

√
V1 + V2 +

√
V1 − V2

]
=:

[
a b

b a

]
.

By assumption A3), we have

(28) |a(x)|, |b(x)| . 〈x〉−β/2, for some β > 3.

We employ the symmetric resolvent identity

R±V (µ+ λ2) = R±0 (µ+ λ2)−R±0 (µ+ λ2)v1(M±(λ))−1v2R±0 (µ+ λ2),(29)
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where

M±(λ) = I + v2R±0 (µ+ λ2)v1.(30)

The key issue in the resolvent expansion around the threshold µ is the invertibility of the

operator M±(λ) for small λ. Using Lemma 3.1 in (29), we can write M±(λ) as

(31) M±(λ) = g±(λ)v2M11v1 + T + v2E
±
0 (λ)v1,

where T is the transfer operator on L2 × L2 with the kernel

T (x, y) = I + v2(x)G0(x, y)v1(y).(32)

Consider the contribution of the term with g±(λ) in (31). Recalling the formulas for v1 and

v2, we obtain

g±(λ)v2M11v1 = −g±(λ)

[
a 0

b 0

][
a b

0 0

]
= −‖a2 + b2‖L1(R2)g

±(λ)P =: g̃±(λ)P,

where g̃±(λ) := −‖a2 + b2‖L1(R2)g
±(λ), and P is the orthogonal projection onto the span

of the vector (a, b)T in L2 × L2. More explicitly

P

[
f

g

]
=

1

‖a2 + b2‖L1(R2)

[
a

b

]∫
R2

(
a(y)f(y) + b(y)g(y)

)
dy.(33)

This gives us the following expansion:

Lemma 4.1. Let 0 < α < 1. For λ > 0 with M±(λ), P and T as above. Then

M±(λ) = g̃±(λ)P + T + E±1 (λ).

Further, the error term, E±1 = v2E
±
0 v1, satisfies the bound∥∥ sup

0<λ<λ1

λ−
1
2 |E±1 (λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±1 (λ)|

∥∥
HS

+
∥∥ sup

0<z1<z2<λ1

z
1
2
1 (z2 − z1)−α|∂λE±1 (z2)− ∂λE±1 (z1)|

∥∥
HS
. 1,

provided that a(x), b(x) . 〈x〉−
3
2
−α−. Here ‖ · ‖HS is the Hilbert Schmidt operator norm on

L2 × L2.

Proof. The expansion is proven above. The bounds for E±1 = v2E
±
0 v1 follow from the

bounds for E±0 in Lemma 3.1 and in Corollary 3.2 since∥∥〈x− y〉 12+α〈x〉−
3
2
−α−〈y〉−

3
2
−α−∥∥

L2
xL

2
y
<∞.

�

We make the following definitions.
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Definition 4.2. We say the operator T : L2×L2 → L2×L2 with kernel T (·, ·) is absolutely

bounded if the operator with kernel |T (·, ·)| is bounded from L2 × L2 → L2 × L2.

Note that Hilbert-Schmidt operators and finite rank operators are absolutely bounded.

Definition 4.3. Let Q = I −P be the projection orthogonal to the span of (a, b)T . We say

µ is a regular point of the spectrum H provided that QTQ is invertible on Q(L2 ×L2). We

denote (QTQ)−1 by QD0Q.

Note that by the resolvent identity

QD0Q = Q−QD0Qv2G0v1Q.

Since Q is a projection, it is absolutely bounded. By assumption A3), (26), (24), and (19),

we have |v2G0v1(x, y)| . (1 + | log |x − y||)〈x〉−3/2−〈y〉−3/2−. This implies that v2G0v1 is a

Hilbert-Schmidt operator. Therefore, QD0Q is a sum of an absolutely bounded operator

and an Hilbert-Schmidt operator, which is absolutely bounded.

We also note the following orthogonality property of Q:

(34) Qv2M11 = M11v1Q = 0.

In the scalar case, see e.g. [28, 16], the invertibility of QTQ is related to the absence of

distributional L∞ solutions of Hψ = 0. It is possible to prove a similar relationship for the

matrix case. Define S1 to be the Riesz projection onto the kernel of QTQ as an operator

on Q(L2 × L2).

Lemma 4.4. If |a(x)| + |b(x)| . 〈x〉−1− and if φ = (φ1, φ2) ∈ S1(L2 × L2), then φ = v1ψ

where ψ ∈ L∞ × L∞ and (H− µI)ψ = 0 in the sense of distributions.

Proof. Since φ ∈ S1(L2 × L2), we have Qφ = φ. Also using Q = I − P , we obtain

0 = QTQφ = (I − P )Tφ = (I + v2G0v1)φ− P (I + v2G0v1)φ.

Noting that (a, b)T = v2(1, 0)T , and that P project onto the span of (a, b)T , we have

PTφ = c0v2(1, 0)T with c0 a constant. Therefore,

φ = −v2G0v1φ+ v2(c0, 0)T = v2ψ,

where ψ = −G0v1φ+ (c0, 0)T . By assumption |a(x)|+ |b(x)| . 〈x〉−1− and φ ∈ L2×L2, and

recalling (27), we have

(H0 − µI)G0(v1φ) = v1φ

in the sense of distributions. It thus follows that

(H0 − µI)ψ = (H0 − µI)[−G0v1φ+ (c0, 0)T ] = −v1φ = −v1v2ψ = −V ψ.
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Thus (H− µI)ψ = 0.

Now we prove that ψ ∈ L∞ × L∞. The first bound in (23) and the fact that the entries

of φ are in L2 and the entries of v2 are in L∞ ∩ L2 imply that the second entry of ψ is

bounded. We note that the first entry of ψ is

− 1

2π

∫
R2

log |x− y|(a(y), b(y))φ(y)dy.

Since Pφ = 0, we can rewrite this as

− 1

2π

∫
R2

(log |x− y| − log |x|)(a(y), b(y))φ(y)dy.

The boundedness of this integral follows immediately from the bound

| log |x− y| − log |x|| =
∣∣∣ log

( |x− y|
|x|

)∣∣∣ . 1 + log〈y〉+ log− |x− y|.

We refer the reader to Lemma 5.1 of [16] for more details.

�

It is also possible to prove a converse statement relating certain L∞ × L∞ solutions of

(H − µI)ψ = 0 to the non-invertibility of QTQ as in Lemma 5.1 and Lemma 5.2 of [16]

(also see [28]). We don’t include these statements and proofs since they can be obtained

from the scalar case as above.

The regularity assumption A5) allows us to invert the operators M±(λ) for small λ as

follows:

Lemma 4.5. Let 0 < α < 1. Suppose that µ is a regular point of the spectrum of H. Then

for sufficiently small λ1 > 0, the operators M±(λ) are invertible for all 0 < λ < λ1 as

bounded operators on L2 × L2. Further, one has

M±(λ)−1 = h±(λ)−1S +QD0Q+ E±(λ),(35)

Here h±(λ) = g̃±(λ) + c = −‖a2 + b2‖L1g±(λ) + c (with c ∈ R), and

(36) S = P − PTQD0Q−QD0QTP +QD0QTPTQD0Q

is a finite-rank operator with real-valued kernel. Further, the error term satisfies the bounds

∥∥ sup
0<λ<λ1

λ−
1
2 |E±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<λ1

λ
1
2 |∂λE±(λ)|

∥∥
HS

+
∥∥ sup

0<λ<η.λ<λ1
λ

1
2

+α(η − λ)−α|∂λE±(η)− ∂λE±(λ)|
∥∥
HS
. 1,

provided that a(x), b(x) . 〈x〉−
3
2
−α−.
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Proof. We give a proof for the operator M+(λ), the expansion forM−(λ) is similar. We drop

the subscript ‘+’ from the formulas. Using Lemma 4.1 with respect to the decomposition

of L2 × L2 = P (L2 × L2)⊕Q(L2 × L2),

M(λ) =

[
g̃(λ)P + PTP PTQ

QTP QTQ

]
+ E1(λ).

Denote the matrix component of the above equation by A(λ) = {aij(λ)}2i,j=1.

Since QTQ is invertible by assumption, by the Fehsbach formula invertibility of A(λ)

hinges upon the existence of d = (a11 − a12a
−1
22 a21)−1. Denoting D0 = (QTQ)−1 : Q(L2 ×

L2)→ Q(L2 × L2), we have

a11 − a12a
−1
22 a21 = g̃(λ)P + PTP − PTQD0QTP = h(λ)P

with h(λ) = g̃(λ) + Tr(PTP − PTQD0QTP ) = g̃(λ) + c, where c ∈ R as the kernels of

T , QD0Q and v1, v2 are real-valued. The invertibility of this operator on PL2 for small λ

follows from (25). Thus, by the Fehsbach formula,

A(λ)−1 =

[
d −da12a

−1
22

−a−1
22 a21d a−1

22 a21da12a
−1
22 + a−1

22

]

= h−1(λ)

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
+QD0Q =: h−1(λ)S +QD0Q.(37)

Note that S has finite rank. This and the absolute boundedness of QD0Q imply that A−1

is absolutely bounded. To avoid confusion, we will write S as a sum of four components

rather than in a matrix form.

Finally, we write

M(λ) = A(λ) + E1(λ) = [1 + E1(λ)A−1(λ)]A(λ).

Therefore, by a Neumann series expansion, we have

(38) M−1(λ) = A−1(λ)
[
1 + E1(λ)A−1(λ)

]−1
= h(λ)−1S +QD0Q+ E(λ),

The error bounds follow in light of the bounds for E1(λ) in Lemma 4.1 and the fact that,

as an absolutely bound operator on L2, |A−1(λ)| . 1, |∂λA−1(λ)| . λ−1, and (for 0 < λ <

η < λ1)

|∂λA−1(λ)− ∂λA−1(η)| . (η − λ)αλ−1−α.

In the Lipschitz estimate, the factor λ−
1
2
−α arises from the case when the derivative hits

A−1(λ).

�
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We finish this section by noting that, using Lemma 4.5 in (29), one gets

(39) R±V (µ+λ2) = R±0 (µ+λ2)−R±0 (µ+λ2)v1[h±(λ)−1S+QD0Q+E±(λ)]v2R±0 (µ+λ2).

5. Proof of Theorem 2.5 for energies close to µ

Let χ be a smooth cut-off for [0, λ1], where λ1 is sufficiently small so that the expansions

in the previous section are valid. We have

Theorem 5.1. Fix 0 < α < 1/4. Let |a(x)|+ |b(x)| . 〈x〉−
3
2
−α−. For any t > 2, we have

(40)
∣∣∣ ∫ ∞

0
eitλ

2
λχ(λ)[R+

V (µ+ λ2)−R−V (µ+ λ2)](x, y) dλ
∣∣∣ . √w(x)w(y)

t log2(t)
+
〈x〉

3
2 〈y〉

3
2

t1+α
.

In the proof of this theorem we need the following Lemmas, which are standard and their

proofs can be found in [17].

Lemma 5.2. For t > 2, we have∣∣∣ ∫ ∞
0

eitλ
2
λ E(λ)dλ− iE(0)

2t

∣∣∣ . 1

t

∫ t−1/2

0
|E ′(λ)|dλ+

∣∣∣E ′(t−1/2)

t3/2

∣∣∣+
1

t2

∫ ∞
t−1/2

∣∣∣(E ′(λ)

λ

)′∣∣∣dλ.
Lemma 5.3. Assume that E(0) = 0. For t > 2, we have

(41)
∣∣∣ ∫ ∞

0
eitλ

2
λ E(λ)dλ

∣∣∣ . 1

t

∫ ∞
0

|E ′(λ)|
(1 + λ2t)

dλ+
1

t

∫ ∞
t−1/2

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ.

We start with the contribution of the free resolvent in (39) to (40). Recall (22):

R+
0 (µ+ λ2)(x, y)−R−0 (µ+ λ2)(x, y) =

i

2
J0(λ|x− y|)M11.

Therefore, the following proposition follows from the corresponding bound for the scalar free

resolvent, Proposition 4.3 in [17]. The proof uses Lemma 5.2 with E(λ) = i
2J0(λ|x− y|).

Proposition 5.4. We have∫ ∞
0

eitλ
2
λχ(λ)[R+

0 (µ+ λ2)−R−0 (µ+ λ2)](x, y) dλ = − 1

4t
M11 +O

(〈x〉 32 〈y〉 32
t
5
4

)
.

Now consider the contribution of the term involving (h±)−1S in (39) to (40). Using

Lemma 3.1 we have

(42)
R+

0 v1Sv2R+
0

h+
− R

−
0 v1Sv2R−0
h−

=
((g+)2

h+
− (g−)2

h−
)
M11v1Sv2M11

+
( 1

h+
− 1

h−
)
G0v1Sv2G0 +

(g+

h+
− g−

h−
)
(M11v1Sv2G0 + G0v1Sv2M11) + E+

2 − E
−
2 ,

where

E±2 =
E±0 v1Sv2

(
g±M11 + G0

)
h±

+

(
g±M11 + G0

)
v1Sv2E

±
0

h±
+
E±0 v1Sv2E

±
0

h±
.
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Using the orthogonality property (34) and the definition (36) of S, we obtain

M11v1Sv2M11 = M11v1Pv2M11 = −‖a2 + b2‖L1(R2)M11.

Also recall that h±(λ) = −‖a2 + b2‖L1g±(λ) + c, c ∈ R, and (from (25)) that g+(λ) =

− 1
2π log λ+ z with g−(λ) = g+(λ) and z − z = i

2 . Therefore we can write

(43) (42) =
i

2
M11 +

ia1

(log(λ) + b1)2 + c2
1

M11 +
ia2

(log(λ) + b2)2 + c2
2

G0v1Sv2G0

+
ia3

(log(λ) + b3)2 + c2
3

(M11v1Sv2G0 + G0v1Sv2M11) + E+
2 (λ)− E−2 (λ),

where ai, bi, ci are real. Using this the following proposition will follow from the bounds

obtained in [17].

Proposition 5.5. Let 0 < α < 1/4. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−α−, then we have∫ ∞

0
eitλ

2
λχ(λ)

[R+
0 (µ+ λ2)v1Sv2R+

0 (µ+ λ2)

h+(λ)
− R

−
0 (µ+ λ2)v1Sv2R−0 (µ+ λ2)

h−(λ)

]
(x, y) dλ

= − 1

4t
M11 +O

(√w(x)w(y)

t log2(t)

)
+O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
.

Proof. First consider the contribution of the first term in (43):

i

2
M11

∫ ∞
0

eitλ
2
λχ(λ) dλ = − 1

4t
M11 +O(t−2),

where the equality follows from Lemma 5.2.

The contribution of the second summand in (43) can be handled using the bound∫ ∞
0

eitλ
2
λ

χ(λ)

(log(λ) + c1)2 + c2
2

dλ = O(t−1(log t)−2), t > 2,(44)

which is essentially Lemma 4.5 in [17] and it is proved by using Lemma 5.2.

The contribution of the third (similarly the fourth) summand in (43) can also be handled

using (44) along with the bound

(45)
∣∣G0v1Sv2G0(x, y)

∣∣
≤
∥∥|S|∥∥

L2→L2

∥∥G0(x, x1)v1(x1)
∥∥
L2
x1

∥∥G0(y, y1)v2(y1)
∥∥
L2
y1

.
√
w(x)w(y).

The last inequality follows from the absolute boundedness of S, the bound

|G0(x, x1)| . 1 + | log |x− x1|| .
√
w(x) + k(x, x1),(46)

where k(x, x1) = 1 + log− |x− x1|+ log+ |x1|, and∥∥(√w(x) + k(x, x1)
)
〈x1〉−3/2

∥∥
L2
x1

.
√
w(x).
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We now consider the error term, E±2 (λ). Note that

∣∣∣g±(λ)

h±(λ)

∣∣∣ =
∣∣∣c1 −

c2

h±(λ)

∣∣∣ . 1,
∣∣∣∂kλ g±(λ)

h±(λ)

∣∣∣ . 1

λk
, k = 1, 2, 3, ...

Using this, the absolute boundedness of S, the decay bounds |a(x)| + |b(x)| . 〈x〉−
3
2
−α−,

the bound (46), and the bounds in Lemma 3.1 and Corollary 3.2 as in the proof of (45), we

obtain (for 0 < λ < η . λ < λ1)

|∂λ(χ(λ)E±2 (λ))(x, y)| . χ(λ)(〈x〉〈y〉)
1
2λ−

1
2 ,∣∣(∂λ(χ(η)E±2 (η))− ∂λ(χ(λ)E±2 (λ))

)
(x, y)

∣∣ . χ(λ)(〈x〉〈y〉)
1
2

+αλ−
1
2
−α(η − λ)α.

Therefore the contribution of the error term is controlled by using Lemma 5.3 as in

Lemma 4.6 of [17]. �

Now we consider the contribution of the term QD0Q in (39) to (40).

Proposition 5.6. Let 0 < α < 1/4. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−α−, then we have

∫ ∞
0

eitλ
2
λχ(λ)

[
R+

0 v1QD0Qv2R+
0 −R

−
0 v1QD0Qv2R−0

]
(x, y) dλ = O

(〈x〉 12+α+〈y〉
1
2

+α+

t1+α

)
.

Proof. Using Lemma 3.1 and (34) we have

(47) R+
0 v1QD0Qv2R+

0 −R
−
0 v1QD0Qv2R−0 = G0v1QD0Qv2(E+

0 − E
−
0 )

+ (E+
0 − E

−
0 )v1QD0Qv2G0 + E+

0 v1QD0Qv2E
+
0 − E

−
0 v1QD0Qv2E

−
0 =: E3.

Since QD0Q is absolutely bounded, E3 satisfies the same bounds that we obtained for the

error term E2 above. �

Finally the contribution of E±(λ) in (39) to (40) can be handled exactly as in Proposi-

tion 4.9 of [17]:

Proposition 5.7. Let 0 < α < 1/4. If |a(x)|+ |b(x)| . 〈x〉−
3
2
−α−, then we have

∫ ∞
0

eitλ
2
λχ(λ)

[
R+

0 (λ2)v1E
+(λ)v2R+

0 (λ2)−R−0 (λ2)v1E
−(λ)v2R−0 (λ2)

]
(x, y) dλ

= O
(〈x〉 12+α+〈y〉

1
2

+α+

t1+α

)
.

This finishes the proof of Theorem 5.1.
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6. Proof of Theorem 2.5 for energies separated from the thresholds

In this section we complete the proof of Theorem 2.5 by proving

Theorem 6.1. Under the assumptions of Theorem 2.5, we have for t > 2

(48) sup
L≥1

∣∣∣∣ ∫ ∞
0

eitλ
2
λχ̃(λ)χ(λ/L)[R+

V (µ+ λ2)−R−V (µ+ λ2)](x, y)dλ

∣∣∣∣ . 〈x〉 32 〈y〉 32
t
3
2

where χ̃ = 1− χ.

We employ the resolvent expansion

(49) R±V =

2M+2∑
m=0

R±0 (−VR±0 )m +R±0 (VR±0 )MVR±V V (R±0 V )MR±0 .

We first note that the contribution of the term m = 0 can be bounded by 〈x〉
3
2 〈y〉

3
2

t2
by

integrating by parts twice (there are no boundary terms because of the cutoff). We approach

the energies separated from zero differently from the small energies. In particular, we won’t

use Lemma 3.1, but instead employ a component-wise approach. Recall that

R±0 (µ+ λ2)(x, y) =

[
R±0 (λ2)(x, y) 0

0 − i
4H

+
0 (i
√

2µ+ λ2|x− y|)

]
For the case m > 0 we won’t make use of any cancelation between ‘±’ terms. Thus, we

will only consider R−0 , and drop the ‘±’ signs. Using (16), (17), (18), and (19) we write

R0(λ2)(x, y) = e−iλ|x−y|ρ+(λ|x− y|) + ρ−(λ|x− y|),(50)

where ρ+ and ρ− are supported on the sets [1/4,∞) and [0, 1/2], respectively. Moreover,

we have the bounds

(51) ρ−(y) = Õ(1 + | log y|), ρ+(y) = Õ
(
(1 + |y|)−1/2

)
This controls the top left component of the matrix operator. The lower right term can be

similarly controlled as

H+
0 (i
√

2µ+ λ2)(x, y) = e−
√

2µ+λ2|x−y|ρ+(
√

2µ+ λ2|x− y|) + ρ−(
√

2µ+ λ2|x− y|).

As such we can write

R±0 (µ+ λ2)(x, y) = e−iλ|x−y|

[
ρ+(λ|x− y|) 0

0 e(iλ−
√

2µ+λ2)|x−y|ρ+(
√

2µ+ λ2|x− y|)

]

+

[
ρ−(λ|x− y|) 0

0 ρ−(
√

2µ+ λ2|x− y|)

]
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It is easy to see that

e(iλ−
√

2µ+λ2)|x−y|ρ+(
√

2µ+ λ2|x− y|) = Õ
(
ρ+(λ|x− y|)

)
,

ρ−(
√

2µ+ λ2|x− y|) = Õ
(
ρ−(λ|x− y|)

)
.

Therefore, we can use the right hand side of (50) for each component of R0. The argument

for the high energy now proceeds as in Section 5 of [17]. We provide a sketch of the details

for the convenience of the reader.

We first control the contribution of the finite born series in (49) for m > 0. Note that

the contribution of the mth term of (49) to the integral in (48) can be written as a finite

sum of integrals of the form

(52)

∫
R2m

∫ ∞
0

eitλ
2
λE(λ)

m∏
n=1

W (xn) dλ dx1 . . . dxm,

where dj = |xj−1 − xj |, J ∪ J∗ is a partition of {1, ...,m,m+ 1}, and

E(λ) := χ̃(λ)χ(λ/L)e−iλ
∑
j∈J dj

∏
j∈J

ρ+(λdj)
∏
`∈J∗

ρ−(λd`).

Here, with a slight abuse of notation, W (x) denotes either ±V1(x) or ±V2(x) (since we

only use the decay assumption and do not rely on cancelations, this shouldn’t create any

confusion).

To estimate the derivatives of E , we note that∣∣∂kλ[ρ+(λdj)
]∣∣ . dkj

(1 + λdj)k+1/2
, k = 0, 1, 2, ...,

∣∣∂kλ[ρ−(λdj)
]∣∣ . 1

λk
, k = 1, 2, ...

Using the monotonicity of log− function, we also obtain

χ̃(λ)
∣∣ρ−(λdj)

∣∣ . χ̃(λ)(1 + | log(λdj)|)χ{0<λdj≤1/2} . χ̃(λ)(1 + log−(λdj)) . 1 + log−(dj).

It is also easy to see that ∣∣∣ dk
dλk

χ(λ/L)
∣∣∣ . λ−k.

Finally, noting that (χ̃)′ is supported on the set {λ ≈ 1}, we can estimate

(53)
∣∣∂λE∣∣ . χ̃(λ)

( 1

λ
+
∑
k∈J

(
dk +

dk
1 + λdk

))∏
j∈J

1

(1 + λdj)1/2

∏
`∈J∗

(1 + log−(d`))

. χ̃(λ)
( 1

λ
+
∑
k∈J

dk
(1 + λdk)1/2

) ∏
`∈J∗

(1 + log−(d`))

. χ̃(λ)
(
λ−1 +

∑
k∈J

d
1
2
k λ
− 1

2

) ∏
`∈J∗

(1 + log−(d`)) . χ̃(λ)λ−
1
2

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)).
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We also have

(54)
∣∣∂2
λE
∣∣ . χ̃(λ)

( 1

λ2
+
∑
k∈J

(
d2
k +

d2
k

(1 + λdk)2

))∏
j∈J

1

(1 + λdj)1/2

∏
`∈J∗

(1 + log−(d`))

. χ̃(λ)
(
λ−2 +

∑
k∈J

d
3
2
k λ
− 1

2

) ∏
`∈J∗

(1 + log−(d`)) . χ̃(λ)λ−
1
2

m+1∏
k=0

〈xk〉
3
2

m+1∏
`=1

(1 + log−(d`)).

Using Lemma 5.3 (and taking the support condition of χ̃ into account), we can bound the

λ integral in (52) by

(55)
1

t2

∫ ∞
0

|E ′(λ)|
λ2

dλ+
1

t

∫ ∞
0

∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)
∣∣dλ,

Using (53), we can bound the first integral in (55) by

(56)

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`))

∫ ∞
0

χ̃(λ)λ−5/2dλ .
m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)).

To estimate the second integral in (55) first note that

(57) λ
√

1 + πt−1λ−2 − λ ≈ 1

tλ
.

Next using (57), (53) and (54), we have (for any 0 ≤ α ≤ 1)

(58)
∣∣E ′(λ√1 + πt−1λ−2)− E ′(λ)

∣∣
. χ̃(2λ)λ−

1
2

m+1∏
k=0

〈xk〉
1
2

m+1∏
`=1

(1 + log−(d`)) min
(

1,
1

tλ

m+1∏
k=0

〈xk〉
)

. t−αχ̃(2λ)λ−
1
2
−α

m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`)).

Using this bound for α ∈ (1/2, 1], we bound the second integral in (55) by

(59) t−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))

∫ ∞
0

χ̃(2λ)λ−
1
2
−α .

. t−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`)).

Combining (56) and (59), we obtain

|(55)| . t−1−α
m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))

Using this (with 1
2 < α < 2β − 5

2) in (52), we obtain
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|(52)| . t−1−α
∫
R2m

m+1∏
k=0

〈xk〉
1
2

+α
m+1∏
`=1

(1 + log−(d`))

m∏
n=1

|V (xn)| dx1 . . . dxm

.
〈x0〉

1
2

+α〈xm+1〉
1
2

+α

t
3
2

.

To control the contribution of the remainder term in (49), we will employ the limiting

absorption principle, (9) and (10), both for R0 and RV .

Using the representation (51), and the discussion following it, we note the following

bounds hold on λ > λ1 > 0,

|∂kλR±0 (µ+ λ2)(x, y)| . 〈x− y〉k
{
| log(λ|x− y|)| 0 < λ|x− y| < 1

2

(λ|x− y|)−
1
2 λ|x− y| & 1

. λ−
1
2 |x− y|−

1
2 〈x− y〉k.

Thus, for σ > 1
2 + k,

‖∂kλR±0 (µ+ λ2)(x, ·)‖X−σ . λ−
1
2

[ ∫
R2

〈x− y〉2k|x− y|−1

〈y〉2σ
dy
] 1

2
. λ−

1
2 〈x〉max(0,k−1/2).(60)

Once again, we estimate the ’±’ terms separately and omit the ‘±’ signs.

We write the contribution of the remainder term in (49) to (48) as∫ ∞
0

eitλ
2
λ E(λ)(x, y) dλ,(61)

where

(62) E(λ)(x, y) = χ̃(λ)χ(λ/L)×〈
VR±V (µ+ λ2)V (R±0 (µ+ λ2)V )MR±0 (µ+ λ2)(·, x), (R±0 (µ+ λ2)V )MR±0 (µ+ λ2)(·, y)

〉
.

Using (10), (9), and (60) (provided that M ≥ 2) we see that∣∣∂kλE(λ)(x, y)
∣∣ . χ̃(λ)χ(λ/L)〈λ〉−2−〈x〉

3
2 〈y〉

3
2 , k = 0, 1, 2.(63)

This requires that |V (x)| . 〈x〉−3−. One can see that the requirement on the decay rate

of the potential arises when, for instance, both λ derivatives act on one resolvent, this

twice differentiated resolvent operator maps X 5
2

+ → X− 5
2
− by (10), or is in X− 5

2
− by (60).

The potential then needs to map X− 5
2
− → X 1

2
+ for the next application of the limiting

absorption principle. This is satisfied if |V (x)| . 〈x〉−3−.

The required bound now follows by integrating by parts twice:

|(61)| . |t|−2

∫ ∞
0

∣∣∣∣∂λ(∂λ E(λ)(x, y)

λ

)∣∣∣∣ dλ . |t|−2〈x〉
3
2 〈y〉

3
2 .
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7. Proof of Theorem 2.4 for energies close to µ

In this section we will prove the following

Theorem 7.1. Under the conditions of Theorem 2.4, we have

(64) sup
x,y∈R2

∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)[R+

V (µ+ λ2)−R−V (µ+ λ2)](x, y) dλ
∣∣∣ . 1

t
, t > 0

As in Section 5, we will use lemmas from the proof for the scalar case given in [41].

Using (39), we write

(65) R+
V −R

−
V =

R+
0 −R

−
0 −R

+
0 v1[(h+)−1S +QD0Q+ E+]v2R+

0 +R−0 v1[(h−)−1S +QD0Q+ E−]v2R−0 .

First note that the contribution of the free resolvent terms in (65) to (64) immediately

boils down to the scalar case because of (22).

Note that using (20), with R2(λ2) = i
4H

+
0 (i
√

2µ+ λ2|x − y|), we have R±0 (µ + λ2) =

R±0 (λ2)M11 +R2(λ2)M22. Consider the contribution of ‘+’ terms in (65) with QD0Q:

[R+
0 M11 +R2M22]v1QD0Qv2[R+

0 M11 +R2M22] = R+
0 M11v1QD0Qv2M11R

+
0

+R+
0 M11v1QD0Qv2M22R2 +R2M22v1QD0Qv2M11R

+
0 +R2M22v1QD0Qv2M22R2.

The bound for the first term is in [41, Lemma 16], since M11v1QD0Qv2M11 have the same

cancellation (compare (34) above with (44) in [41]), and mapping properties as vQD0Qv

in [41], provided that |a(x)| + |b(x)| . 〈x〉−3/2−. The last term is killed by the ‘+’ and ‘-’

cancellation. For the second and third terms, we note that the ‘+’ and ‘-’ cancellation says

we need only consider

(R+
0 −R

−
0 )M11v1QD0Qv2M22R2 +R2M22v1QD0Qv2M11(R+

0 −R
−
0 ).

The following propositions finishes the proof of Theorem 7.1 for the contribution of QD0Q

terms in (65).

Proposition 7.2. If |a(x)|+ |b(x)| . 〈x〉−1−, then we have

sup
x,y

∣∣∣ ∫ ∞
0

eitλ
2
λχ(λ)

(
(R+

0 −R
−
0 )M11v1QD0Qv2M22R2

)
(x, y)dλ

∣∣∣ . 1

t
.

The same bound holds for the contribution of R2M22v1QD0Qv2M11(R+
0 −R

−
0 ).

The following variation of stationary phase will be useful in the proof. See Lemma 2 in

[41].
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Lemma 7.3. Let φ′(0) = 0 and 1 ≤ φ′′ ≤ C. Then,∣∣∣∣ ∫ ∞
−∞

eitφ(λ)E(λ) dλ

∣∣∣∣ . ∫
|λ|<|t|−

1
2

|E(λ)| dλ+ |t|−1

∫
|λ|>|t|−

1
2

(
|E(λ)|
|λ2|

+
|E ′(λ)|
|λ|

)
dλ.

Proof of Proposition 7.2. Recall that from (23) we have

|R2(λ2)(y1, y)|, |∂λR2(λ2)(y1, y)| . 1 + log− |y1 − y|.

Also recall that

(66) R+
0 (λ2)(x, x1)−R−0 (λ2)(x, x1) =

i

2
J0(λ|x− x1|)

= ρ(λ|x− x1|) + eiλ|x−x1|χ̃(λ|x− x1|)ω+(λ|x− x1|) + e−iλ|x−x1|χ̃(λ|x− x1|)ω−(λ|x− x1|),

ρ(z) = χ(z)[1 + Õ1(z2)], ω±(z) = Õ
(
(1 + |z|)−

1
2
)
.

The contribution of ρ is:∫ ∞
0

eitλ
2
λχ(λ)ρ(λ|x− x1|)

(
M11v1QD0Qv2M22

)
(x1, y1)R2(λ2)(y1, y)dx1dy1dλ.

After an integration by parts, we can bound the λ integral above by

O[t−1(1 + log− |y1 − y|)] +
1

t

∫ ∞
0

∣∣∣ d
dλ

(
χ(λ)ρ(λ|x− x1|)R2(λ2)(y1, y)

)∣∣∣dλ
= O[t−1(1 + log− |y1 − y|)].

The last equality follows from the bounds on R2 and ∂λR2, and by noting that

|∂λρ(λ|x− x1|)| . |x− x1|χ[0,|x−x1|−1](λ).

This bound suffices for the contribution of ρ since QD0Q is absolutely bounded and

‖v2(y1)(1 + log− |y − y1|)‖L2
y1
. 1.

For the remaining terms in (66), we only consider the case of ω− and t > 0 (the bound

for ω+ follows from an integration by parts since the phase has no critical point). The

corresponding λ integral is∫ ∞
0

eitλ
2−iλ|x−x1|λχ(λ)χ̃(λ|x− x1|)ω−(λ|x− x1|)R2(λ2)(y1, y)dλ.

It suffices to prove that this integral is O[t−1(1 + log− |y1 − y|)].
The phase, φ = λ2 − λ|x− x1|/t, has a critical point at λ0 = |x− x1|/2t. Let

E(λ) = λχ(λ)ω−(λ|x− x1|)χ̃(λ|x− x1|)R2(λ2)(y1, y).

By Lemma 7.3 we estimate the λ integral by∫
|λ−λ0|<t−1/2

|E(λ)| dλ+ t−1

∫
|λ−λ0|>t−1/2

( |E(λ)|
|λ− λ0|2

+
|E ′(λ)|
|λ− λ0|

)
dλ.(67)
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The first integral in (67) is bounded by

(1 + log− |y1 − y|)
∫
|λ−λ0|<t−1/2

λχ(λ)

(1 + λ|x− x1|)1/2
dλ,

which is O[t−1(1 + log− |y1 − y|)] if λ0 . t−1/2 (by ignoring the denominator). In the case

λ0 � t−1/2 we have λ ∼ λ0, and thus we can bound the integral by

t−1/2 (1 + log− |y1 − y|)λ0

(1 + λ0|x− x1|)1/2
. t−1/2 (1 + log− |y1 − y|)λ1/2

0

|x− x1|1/2
. t−1(1 + log− |y1 − y|).

Now note that

|E ′(λ)| . (1 + log− |y1 − y|)
χ̃(λ|x− x1|)

(1 + λ|x− x1|)1/2
.

Using this, we bound the second integral in (67) by

t−1(1 + log− |y1 − y|)
∫
|λ−λ0|>t−1/2

χ̃(λ|x− x1|)
(1 + λ|x− x1|)1/2

( λ

|λ− λ0|2
+

1

|λ− λ0|

)
dλ.

We have two cases: λ0 � t−
1
2 and λ0 & t−

1
2 . In the former case, we have |λ − λ0| ≈ λ.

Thus we can bound the integral above by

t−1(1 + log− |y1 − y|)
∫

χ̃(λ|x− x1|)
(1 + λ|x− x1|)1/2

dλ

λ

= t−1(1 + log− |y1 − y|)
∫

χ̃(λ)

(1 + λ)1/2

dλ

λ
. t−1(1 + log− |y1 − y|).

In the latter case we bound the integral by

t−1(1 + log− |y1 − y|)
∫
|λ−λ0|>t−1/2

χ̃(λ|x− x1|)
|x− x1|1/2

( λ
1/2
0

|λ− λ0|2
+

1

|λ− λ0|3/2
+

1

λ3/2

)
dλ

. t−1(1 + log− |y1 − y|)
( (λ0t)

1/2

|x− x1|1/2
+

t1/4

|x− x1|1/2
+ 1
)
. t−1(1 + log− |y1 − y|).

In the last inequality we used the definition of λ0 and the assumption that λ0 & t−1/2.

�

We now consider the contribution of ‘+’ terms with S in (65) to (64):

[R+
0 M11 +R2M22]

v1Sv2

h+
[R+

0 M11 +R2M22] =
R+

0 M11v1Sv2M11R
+
0

h+

+
R+

0

h+
M11v1Sv2M22R2 +R2M22v1Sv2M11

R+
0

h+
+

1

h+
R2M22v1QD0Qv2M22R2.

The bound for the first term (for the difference of ’+’ and ’-’) is in [41, Lemma 17], it requires

that |a(x)|+ |b(x)| . 〈x〉−3/2−. The following propositions take care of the remaining terms.
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Proposition 7.4. If |a(x)|+ |b(x)| . 〈x〉−1−, then we have∫ ∞
0

eitλ
2
λχ(λ)

( 1

h+(λ)
− 1

h−(λ)

)
(R2M22v1Sv2M22R2)(x, y)dλ = O

(1

t

)
.

Proposition 7.5. If |a(x)|+ |b(x)| . 〈x〉−1−, then we have∫ ∞
0

eitλ
2
λχ(λ)

( R+
0

h+(λ)
− R−0
h−(λ)

)(
M11v1Sv2M22R2

)
(x, y)dλ = O

(1

t

)
.

Proof of Proposition 7.4. It suffices to prove that the λ integral is O[t−1(1+log− |y1−y|)(1+

log− |x1 − x|)] as in the proof of Proposition 7.2.

Noting that

1

h+(λ)
− 1

h−(λ)
=

c

(log λ+ c1)2 + c2
2

,

and the bounds (23) on R2 and its derivative, it suffices to prove that∫ ∞
0

eitλ
2 λχ(λ)

(log λ+ c1)2 + c2
2

dλ = O(1/t).

This follows by a single integration by parts. �

Proof of Proposition 7.5. Using (21) we have

R+
0 (λ2)(x, x1)

h+(λ)
− R−0 (λ2)(x, x1)

h−(λ)

= iJ0(λ|x− x1|)
( 1

h+(λ)
+

1

h−(λ)

)
− Y0(λ|x− x1|)

( 1

h+(λ)
− 1

h−(λ)

)
= C

2iJ0(λ|x− x1|))(log λ+ c1) + 2ic2Y0(λ|x− x1|)
(log λ+ c1)2 + c2

2

.

Noting the bounds

log λ+ c1

(log λ+ c1)2 + c2
2

= O(1), and ∂λ

( log λ+ c1

(log λ+ c1)2 + c2
2

)
= O(1/λ),

we see that the proof for the contribution of the term containing J0 follows from the proof

of Proposition 7.2, since this term satisfies the same bounds that J0 does.

Essentially the same argument works for the contribution of the Y0 term. Indeed, note

that Y0 behaves like J0 for λ|x − x1| & 1, and for λ|x − x1| � 1, we have the following

harmless dependence on |x− x1|:
χ(λ)χ(λ|x− x1|)Y0(λ|x− x1|)

(log λ+ c1)2 + c2
2

= (1 + log− |x− x1|)Õ
(
χ(λ)χ(λ|x− x1|)

)
.

This estimate follows from the bound

| log(λ|x− x1|)| . | log λ|+ log− |x− x1|, provided λ|x− x1| . 1.

�
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The bound for the contribution of the error term, E±, in (65) to (64) follows from [41,

Lemma 18] since E± satisfies the bounds that the lemma requires and also R0 satisfies the

same bounds that R0 satisfies.

8. Proof of Theorem 2.4 for energies separated from the thresholds

We note [41, Lemma 3], which we modify slightly to match the notation we have employed

throughout this paper. We define

‖W‖K := sup
x∈R2

∫
R2

(1 + log− |x− y|)2|W (y)| dy.

Lemma 8.1. Let {1, 2, . . . ,m} = J ∪ J∗ be a partition. Then

(68) sup
L≥1

sup
x0,xm∈R2

∫
R2(m−1)

∣∣∣∣ ∫ ∞
0

λei(tλ
2±λ

∑
j∈J |xj+1−xj |)χ̃(λ)χ(λ/L)

∏
j∈J

ρ+(λ|xj+1 − xj |)

∏
`∈J∗

ρ−(λ|x`−1 − x`|) dλ
∣∣∣∣m−1∏
k=1

|W (xk)|dx1 . . . dxm−1 . |t|−1‖W‖m−1
K

In the proof of Theorem 2.5 for energies separated from the threshold, we encountered

this integral in (52). By the discussion in that proof the finite terms of the Born series

in (49) can be written as a finite sum of terms in this form where W is ±V1 or ±V2. We

note that by the decay assumptions on V1 and V2, we always have ‖W‖K < ∞. Therefore

Lemma 8.1 suffices to handle the contribution of the finite terms of the Born series, (49).

It remains to consider the contribution of the tail of the series (49), see (61) and (62).

Note that for λ|x − x1| > 1, the scalar free resolvent R0(λ2)(x, x1) has the oscillatory

term e±iλ|x−x1|. If a λ derivative hits one of the free resolvents at the edges the oscillatory

term produces |x− x1| which can not be bounded uniformly in x. This was not an issue in

the weighted case since we are able to allow some growth in x and y.

For the non-weighted case this problem is overcome in [41, Proposition 4] by changing

the phase in the λ-integral by writing

R±0 (λ2)(·, x) = e±iλ|x|G±,x(λ)(·).

Note that oscillatory part changes the phase in the integral and G±,x(λ) and its derivatives

does not grow in x since differentiating G±,x(λ) in λ produces |x−x1|−|x| = O(|x1|) (which

can be killed by the decay assumption on the potential). In [41, Proposition 4], this implies

the required bound by an application of stationary phase and by using limiting absorption

principle.
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Since R±0 satisfies the limiting absorption principle with the same weights, it suffices to

see that we can define and bound the functions G±,x(λ) analogously. Let

R±0 (µ+ λ2)(·, x) = e±iλ|x|G±,x(λ)(·),

where

G±,x(λ)(x1) = G±,x(λ)(x1)M11 + e∓iλ|x|R2(λ2)(x1, x)M22.

It suffices to consider the second summand. Using the definition of R2 we have

e∓iλ|x|R2(λ2)(x1, x) = e±iλ(|x|−|x−x1|)ρ(
√

2µ+ λ2|x− x1|)e(±iλ−
√

2µ+λ2)|x−x1|,

where ρ(u) = Õ(log(u)) for u ∈ [0, 1/2] and ρ(u) = Õ(u−1/2) for u > 1/2. We note that

(see the proof of [41, Proposition 4]), modulo the second exponential factor, this is identical

to G±,x(λ)(x1). Therefore the required bounds follow by noting that

∂kλe
(±iλ−

√
2µ+λ2)|x−x1| = O(1), k = 0, 1, 2, ...

Acknowledgment.

The first author was partially supported by National Science Foundation grant DMS-

1201872. The second author acknowledges the support of an AMS Simons Travel Grant.

References

[1] Abramowitz, M. and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and

mathematical tables. National Bureau of Standards Applied Mathematics Series, 55. For sale by the

Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964

[2] Agmon, S. Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup.

Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218.

[3] R. Asad, G. Simpson. Embedded eigenvalues and the nonlinear Schrödinger equation. Journal of Mathe-

matical Physics, 52:033511, 2011.

[4] Beceanu, M. A critical center-stable manifold for Schrödinger’s equation in three dimensions. Comm.

Pure Appl. Math. 65 (2012), no. 4, 431–507.

[5] Beceanu, M., and Goldberg, M. Schrödinger dispersive estimates for a scaling-critical class of potentials.

Comm. Math. Phys. 314 (2012), no. 2, 471–481.

[6] Berestycki, H., and Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch.

Rational Mech. Anal. 82 (1983), no. 4, 313–345.
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