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Abstract. In this paper we consider Schrödinger operators

H = −∆ + i(A · ∇+∇ ·A) + V = −∆ + L

in Rn, n ≥ 3. Under almost optimal conditions on A and V both in terms
of decay and regularity we prove smoothing and Strichartz estimates, as
well as a limiting absorption principle. For large gradient perturbations
the latter is not an immediate corollary of the free case as T (λ) :=
L(−∆−(λ2+i0))−1 is not small in operator norm on weighted L2 spaces
as λ→∞. We instead deduce the existence of inverses (I +T (λ))−1 by
showing that the spectral radius of T (λ) decreases to zero. In particular,
there is an integer m such that lim supλ→∞ ‖T (λ)m‖ < 1

2
. This is based

on an angular decomposition of the free resolvent for which we establish
the limiting absorption bound

(0.1) ‖DαRd,δ(λ2)f‖B∗ ≤ Cnλ−1+|α|‖f‖B
where 0 ≤ |α| ≤ 2, B is the Agmon-Hörmander space, and Rd,δ(λ2)
is the free resolvent operator at energy λ2 whose kernel is restricted
in angle to a cone of size δ and by d away from the diagonal x = y.
The main point is that Cn only depends on the dimension, but not on
the various cut-offs. The proof of (0.1) avoids the Fourier transform
and instead uses Hörmander’s variable coefficient Plancherel theorem
for oscillatory integrals.

1. Introduction

In this paper we prove Strichartz and smoothing bounds for the magnetic
Schrödinger operator on L2(Rn)

(1.1) H = −∆ + i(A · ∇+∇ ·A) + V = −∆ + L

under almost optimal assumptions on the large perturbations A and V .
As usual we will assume that zero energy is neither an eigenvalue nor a
resonance. This means that the perturbed resolvent (H − z)−1 remains
bounded on the weighted spaces L2,1+ → L2,1− as z → 0, =z > 0. This
condition is equivalent (assuming sufficient decay on A, V ) to the absence
of nonzero solutions f of Hf = 0 with f ∈ L2,n−4

2
−. When n ≥ 5 any such
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solution belongs to L2(Rn) itself, so it suffices to check that zero energy is
not an eigenvalue.

Theorem 1.1. Let A and V be real-valued such that for all x ∈ Rn, n ≥ 3,
and some fixed but arbitrary ε > 0 and all sufficiently small 0 < ε′ < ε,

|A(x)|+ 〈x〉|V (x)| . 〈x〉−1−ε(1.2)

〈x〉1+ε′A(x) ∈ Ẇ
1
2
,2n(Rn)(1.3)

A ∈ C0(Rn)(1.4)

Furthermore, assume that zero energy is neither an eigenvalue nor a reso-
nance of H. Then, with Pc being the projection onto the continuous spec-
trum,

(1.5) ‖eitHPcf‖Lqt (Lpx) . ‖f‖L2(Rn)

provided 2
q + n

p = n
2 and 2 ≤ p < 2n

n−2 . Moreover, the Kato smoothing
estimates ∫ ∞

0

∥∥〈x〉−σ|∇| 12 eitHPcf∥∥2

2
dt ≤ C‖f‖22∫ ∞

0

∥∥〈x〉−2σ〈∇〉
1
2 eitHPcf

∥∥2

2
dt ≤ C‖f‖22

(1.6)

hold with σ > 1
2 .

The secondary condition (1.3) deals with the regularity of A but does
not impose any extra decay beyond what is assumed in (1.2). Note that
〈x〉1+ε′A(x) must decay like 〈x〉−(ε−ε′) which already belongs to Ẇ

1
2
,2n(Rn).

A stronger, but more easily verifiable hypothesis would be to require A
to be Lipschitz continuous with |∇A(x)| . 〈x〉−2−ε. However stated, this
condition permits the commutation of A with |∇|

1
2 , which is essential to

our factorization of L into pairs of pseudo-differential operators each having
order 1

2 . The continuity assumption (1.4) is required for our treatment of
large energies. To relax it, one needs to carry out some of our large energy
analysis on spaces other than the L2 based spaces B,B∗ which we use here.
See [11] for such work on Stein-Tomas type spaces.

Since L1 → L∞ dispersive bounds are currently unknown for any A 6= 0,
we cannot follow the usual interpolation method. Instead, we adopt an ar-
gument introduced in [18], where the validity of Strichartz inequalities is
instead derived from Kato’s theory of smooth perturbations. This paper is
related to our three-dimensional paper [6], where a result similar to Theo-
rem 1.1 was proved but under much stronger conditions on A, V , both in
terms of decay as well as regularity. In [20] and [8] Strichartz and smoothing
estimates were obtained for small A and V . For more background and many
references on magnetic operators see Erdös’s survey [7].

The approach of this work is perturbative around the free case despite
the fact that we make no smallness assumption. The main novel ingredient
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in this paper is a limiting absorption estimate for large energies on almost
optimal weighted spaces. To see the difficulty with large energies, recall
that in [2] and [11] it is proved that for H as in (1.1) under suitable decay
conditions on A and V and with σ > 1

2 ,

(1.7) sup
λ∈[δ,δ−1]

‖〈x〉−σ〈∇〉(H − (λ2 + i0))−1〈∇〉〈x〉−σ‖2→2 ≤ C(δ) <∞

provided there are no imbedded eigenvalues in the continuous spectrum
(which is known due to recent work by Koch and Tataru [15]). It is well–
known that this limiting absorption principle is of fundamental importance
for proving dispersive estimates, at least for the case of large potentials.
However, one needs to consider all real λ instead of restricting to a compact
interval in the positive halfline. To extend (1.7) toward zero energies is
similar to the case A = 0. This step requires the assumption on zero energy.

Note that (1.7) as stated cannot be extended to a semi-infinite interval
since it would fail even for the free resolvent. Indeed, with σ > 1

2

(1.8) ‖〈x〉−σ〈∇〉α(H0 − (λ2 + i0))−1〈∇〉α〈x〉−σ‖2→2 ∼ λ2α−1

for any α ∈ [0, 1] and all λ > 1. This shows that no more than one derivative
in total can be gained here while still preserving a uniform upper bound.
Furthermore, in the borderline case α = 1

2 there is no decay of the operator
norm in the limit λ→∞. This is the main difficulty we face when A and λ
are large.

We will adopt the shorthand notation

R0(z) := (H0 − z)−1

for the resolvent of the Laplacian. The resolvent of a general operator H will
be indicated by RH(z), or else RL(z) in the case where H is specifically of
the form H0 +L. Formally, the relationship between RL and R0 is captured
in the identity

RL(z) = (I +R0(z)L)−1R0(z).

In this paper we extend (1.8) to H = H0 + L for the class of first-order
perturbations described in Theorem 1.1. A unified statement of the mapping
properties of the resolvent of H over the entire spectrum λ > 0 is as follows.

Theorem 1.2. Suppose H is a magnetic Schrödinger operator whose po-
tentials satisfy the conditions 〈x〉1+ε(|A| + |V |) ∈ L∞(Rn) with A being
continuous. Then for σ > 1

2 and α ∈ [0, 1
2 ],

(1.9) sup
λ>1

λ1−2α‖〈x〉−σ〈∇〉α(H − (λ2 + i0))−1〈∇〉α〈x〉−σ‖2→2 . 1.

If one further assumes that A, V satisfy the full conditions of Theorem 1.1,
and zero is not an eigenvalue or resonance of H, then this bound can be
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extended to λ ∈ [0,∞] in either of two ways:

sup
λ≥0
〈λ〉1−2α‖〈x〉−σ|∇|α(H − (λ2 + i0))−1|∇|α〈x〉−σ‖2→2 . 1

sup
λ≥0
〈λ〉1−2α‖〈x〉−2σ〈∇〉α(H − (λ2 + i0))−1〈∇〉α〈x〉−2σ‖2→2 . 1

(1.10)

As a consequence, the spectrum of H is purely absolutely continuous over
the entire interval [0,∞), and both the operators 〈x〉−σ|∇|

1
2 and 〈x〉−2σ〈∇〉

1
2

are H-smooth on this interval.

Remark 1.3. In fact, (1.9) is valid for any α ∈ [0, 1], and with a somewhat
wider class of potentials than is described here. This is made evident in
the statement and proof of Corollary 4.4. Furthermore, it is only necessary
to verify the first assertion in (1.10). The second line follows immediately
because the operator 〈x〉−2σ〈∇〉

1
2 |∇|−

1
2 〈x〉σ and its transpose are bounded

on L2, see Lemma 5.1.

Remark 1.4. A result of type (1.9), in the case α = 0, is proved in [17] using
the method of Mourre commutators and micro-local analysis. In that work
the potentials require only very slight polynomial decay, however they are
also assumed to be infinitely differentiable, with the derivatives satisfying a
symbol-like decay condition.

This paper is organized as follows: In Section 2 we present the reduction
of the Strichartz estimates to the Kato smoothing property [13]. More pre-
cisely, we are reduced to proving that Z0 := 〈x〉−σ|∇|

1
2 is smoothing relative

to H for σ > 1
2 (it is a classical result that Z0 is smoothing relative to

H0). In Section 3 we establish our main technical ingredient, i.e., the lim-
iting absorption principle for the angularly truncated free resolvent kernel.
It is essential here that the bound does not deteriorate as the size of the
truncation decreases to zero.

In Section 4 we use this bound to prove a limiting absorption principle
for the perturbed resolvent via the “power method”, i.e., by showing that
(LR0)m has small norm for large energies and large m. The idea is to
write this power as a sum of products involving conically restricted free
resolvents and to obtain a gain for both the “directed” (where all the factors
have almost aligned cones) and the “undirected” summands. In the former
case this takes the form of a Volterra-type gain, whereas in the latter one
exploits a gain coming from angular separation (for this one needs Schwartz
potentials and general A that are approximated by Schwartz functions; it is
here that A ∈ C(Rn) is needed).

Finally, Section 5 presents the low energy case. Although this is similar
to the case of A = 0 in that we use Fredholm’s alternative and a Neumann
series, it does have some challenges of its own mainly in form of commutator
estimates. Finally, in the appendix we collect some tools from harmonic
analysis.
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2. The basic setup

The Strichartz estimates stated in Theorem 1.1 will be proved using
Proposition 2.1 below, which was proved in [18], see Theorem 4.1 in that
paper. It is based on Kato’s notion of smoothing operators, see [13]. We
recall that for a self-adjoint operator H, an operator Γ is called H-smooth
in Kato’s sense if for any f ∈ D(H0)

(2.1) ‖ΓeitHf‖L2
tL

2
x
≤ CΓ(H)‖f‖L2

x

or equivalently, for any f ∈ L2
x

(2.2) sup
ε>0
‖ΓRH(λ± iε)f‖L2

λL
2
x
≤ CΓ(H)‖f‖L2

x
.

We shall call CΓ(H) the smoothing bound of Γ relative to H. Let Ω ⊂ R
and let PΩ be a spectral projection of H associated with a set Ω. We say
that Γ is H-smooth on Ω if ΓPΩ is H-smooth. We denote the corresponding
smoothing bound by CΓ(H,Ω). It is not difficult to show (see e.g. [16]) that,
equivalently, Γ is H-smooth on Ω if

(2.3) sup
β>0
‖χΩ(λ)ΓRH(λ± iβ)f‖L2

λL
2
x
≤ CΓ(H,Ω)‖f‖L2

x
.

The estimate (1.5) of Theorem 1.1 is obtained by means of the following
result. The remainder of the paper is devoted to verifying the conditions
needed in Proposition 2.1. Furthermore, this verification will establish the
smoothing estimate (1.6).

Proposition 2.1. Let H0 = −∆ and H = H0 + L with L =
∑J

j=1 Y
∗
j Zj.

We assume that each Yj is H0-smooth with a smoothing bound CB(H0) and
that for some Ω ⊂ R the operators Zj are H-smooth on Ω with the smoothing
bound CA(H,Ω). Assume also that the unitary semigroup eitH0 satisfies the
estimate

(2.4) ‖eitH0ψ0‖LqtLrx ≤ CH0‖ψ0‖L2
x

for some q ∈ (2,∞] and r ∈ [1,∞]. Then the semigroup eitH associated with
H = H0 +L, restricted to the spectral set Ω, also verifies the estimate (2.4),
i.e.,

(2.5) ‖eitHPΩψ0‖LqtLrx ≤ JCH0CB(H0)CA(H,Ω)‖ψ0‖L2
x

We refer the reader to [18] for the proof.
To apply this proposition we write, with a decreasing weight w(x) = 〈x〉−τ

chosen from the range τ ∈ (1
2 ,

1
2 + ε′),

(2.6) i(A · ∇+∇ ·A) =
2∑
j=1

Y ∗j Zj , V = Y ∗3 Z3
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where

(2.7)
Y ∗1 := iAw−1 · ∇|∇|−

1
2 , Z1 := |∇|

1
2w

Y2 := Z1, Z2 := Y1, Y3 = |V |
1
2 sign V, Z3 = |V |

1
2

Note that the cross-term produced by Y ∗1 Z1 is point-wise multiplication
by the purely imaginary function i(Aw−1 · (∇w)). It is canceled by the
corresponding cross-term in Y ∗2 Z2.

We now reduce the smoothing properties of Yj and Zj , 1 ≤ j ≤ 3, relative
to H0 and H, respectively, to the smoothing properties of

(2.8) Z0 := 〈x〉−σ|∇|
1
2 ,

where σ is chosen so that 1
2 < σ < τ . It is standard that Z0 is smoothing

relative to H0. Theorem 1.2, once proven, demonstrates that Z0 is also
smoothing relative to H. We first state a technical lemma which explains
the role of our regularity assumption (1.3).

Lemma 2.2. Let A, ε′ be as in Theorem 1.1. Then the operator

|∇|
1
2A〈x〉1+ε′ |∇|−

1
2

is bounded on L2.

Proof. This is a straightforward application of the fractional Leibniz rule in
Lemma 6.3.

‖ |∇|
1
2 Ãf‖2 . ‖Ã‖∞‖ |∇|

1
2 f‖2 + ‖ |∇|

1
2 Ã‖2n‖f‖ 2n

n−1

. (‖Ã‖∞ + ‖ |∇|
1
2 Ã‖2n)‖ |∇|

1
2 f‖2 . ‖|∇|

1
2 f‖2

which is equivalent to |∇|
1
2 Ã|∇|−

1
2 : L2 → L2. �

Returning to our discussion of the decomposition of L, observe that

Z1 =
(
|∇|

1
2w|∇|−

1
2 〈x〉σ

)
〈x〉−σ|∇|

1
2 =: S1Z0

Z2 = i
(
∇|∇|−

1
2Aw−1|∇|−

1
2 〈x〉σ

)
〈x〉−σ|∇|

1
2 =: S2Z0

Z3 =
(
|V |

1
2 |∇|−

1
2 〈x〉σ

)
〈x〉−σ|∇|

1
2 =: S3Z0

with S1 being L2 bounded by Lemma 6.2 in the appendix. Similarly, S3 can
be expanded as

S3 = i
(
|V |

1
2w−1|∇|−

1
2
)
S1

and the operator in parentheses is bounded on L2 by fractional integration.
For S2, we need to invoke the local regularity of A:

S2 = ∇|∇|−
1
2Aw−1〈x〉(1+ε′)−τ |∇|−

1
2
(
|∇|

1
2 〈x〉τ−(1+ε′)|∇|−

1
2 〈x〉σ

)
,

and the operator in parentheses is again L2 bounded by Lemma 6.2, whereas,
by (1.3) we can rewrite the remaining expression on the right-hand side as

∇|∇|−
1
2A〈x〉1+ε′ |∇|−

1
2 =

n∑
j=1

∂j |∇|−1|∇|
1
2A〈x〉1+ε′ |∇|−

1
2 .
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The sum here is L2 bounded; indeed, obviously the Riesz transforms ∂j |∇|−1

are L2 bounded and now apply Lemma 2.2. In conclusion it will suffice to
prove that Z0 is H-smooth.

Let us first consider intermediate energies λ2, i.e., λ ∈ [λ0, λ1] = J0 with
λ0 small and λ1 large. Then it was shown in [11], see also [2], that the
resolvent of H satisfies the following bound

sup
λ∈J0

‖〈x〉−σ〈∇〉RL(λ2 + i0)f‖2 ≤ C(λ0, λ1) ‖〈x〉σ〈∇〉−1f‖2

(in fact, a stronger bound was proved in [11]). More precisely, this bound
follows provided there are no eigenvalues of H in the interval J0. The latter
property (absence of imbedded eigenvalues) is shown in [15] to hold for the
entire family of potentials under consideration. It is not difficult to replace
the derivative 〈∇〉 with |∇|, since the operator |∇|〈∇〉−1 is bounded on a
wide range of weighted L2 spaces, see Lemma 5.1. Thus,

sup
λ∈J0

‖Z0RL(λ2 + i0)Z∗0‖2→2 ≤ C(λ0, λ1)

Finally, by Kato’s smoothing theory, see [16] Theorem XIII.30, we conclude
that Z0 is H-smooth on Ω = J0 as desired. In the following two sections we
treat the case of large energies, which takes up the most work. The small
energy case is then treated in Section 5. Finally, in the appendix we collect
some bounds from harmonic analysis. Although they can all be found in
the literature in some form, the specific version required here appears to be
somewhat different.

3. The Directed Resolvent Estimate

This section, which can be read independently of the other sections,
presents a limiting absorption estimate for the truncated free resolvent ker-
nel. The crucial point is that the constants in our estimate do not depend on
the truncation. Our main tool is Hörmander’s variable coefficient Plancherel
theorem from the appendix.

The kernel of the free resolvent R+
0 (λ2) in Rn is given by1

R+
0 (λ2)(x, y) = Cn

λ
n−2

2

|x− y|
n−2

2

H+
n−2

2

(λ|x− y|)

where H+
ν is a Hankel function. There is the scaling relation

(3.1) R+
0 (λ2)(x, y) = λn−2R+

0 (1)(λx, λy) ∀ λ > 0

and the representation, see the asymptotics of H+
ν in [1],

(3.2) R+
0 (1)(x, y) =

ei|x−y|

|x− y|
n−1

2

a(|x− y|) +
b(|x− y|)
|x− y|n−2

1Constants Cn are allowed to change from line to line.



8 M. BURAK ERDOĞAN, MICHAEL GOLDBERG, WILHELM SCHLAG

provided n ≥ 3 where

(3.3) |a(k)(r)| . r−k ∀ k ≥ 0, a(r) = 0 ∀ 0 < r < 1

and b(r) = 0 for all r > 2, with

|b(k)(r)| . 1 ∀ k ≥ 0, n odd(3.4)

|b(k)(r)| . 1 ∀ 0 ≤ k < n− 2
|b(k)(r)| . rn−k−2| log r| ∀ k ≥ n− 2

}
n ≥ 4 even(3.5)

for all r > 0. As in Chapter XIV of [9] define

‖f‖B :=
∞∑
j=0

2
j
2 ‖f‖L2(Dj), ‖f‖B∗ := sup

j≥0
2−

j
2 ‖f‖L2(Dj)

where Dj = {x : |x| ∼ 2j} for j ≥ 1 and D0 = {|x| ≤ 1}.

Lemma 3.1. For any λ ≥ 1,

‖f(λ−1·)‖B . λ
n+1

2 ‖f‖B, ‖g(λ·)‖B∗ . λ−
n−1

2 ‖g‖B∗

provided the right-hand sides are finite.

Proof. By duality, it suffices to prove the first estimate. Assume without
loss of generality that λ = 2N for some N ≥ 0. Then

‖f(λ−1·)‖B .
∞∑
j=N

2
j
2 2

nN
2 ‖f‖L2(Dj−N ) + 2

N
2 2

nN
2 ‖f‖L2(D0) . 2

N(n+1)
2 ‖f‖B

as claimed. �

This lemma and the scaling relation (3.1) immediately imply the following
statement. In what follows, R0 stands for either of R±0 .

Corollary 3.2. If R0(1) : B → B∗, then

‖R0(λ2)‖B→B∗ . λ−1‖R0(1)‖B→B∗

for all λ ≥ 1.

Proof. First, from (3.1)

(R+
0 (λ2)f)(x) = λ−2[R+

0 (1)f(·λ−1)](λx)

Hence, by the previous lemma,

‖R+
0 (λ2)f‖B∗ . λ−2λ−

n−1
2 ‖R+

0 (1)f(·λ−1)‖B∗ . λ−1‖R+
0 (1)f‖B∗

as claimed. �

For any δ ∈ (0, 1), let Φδ be a smooth cut-off function to a δ-neighborhood
of the north pole in Sn−1. Also, for any d ∈ (0,∞), ηd(x) = η(|x|/d) denotes
a smooth cut-off to the set |x| > d. In what follows, we shall use the notation

Rd,δ(λ2)(x, y) = [R0(λ2)ηdΦδ](x, y) = R0(λ2)(x, y)ηd(|x− y|)Φδ

( x− y
|x− y|

)
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Note that this operator obeys the same scaling as R0, see (3.1). More
precisely,

Rd,δ(λ2)(x, y) = λn−2Rdλ,δ(1)(λx, λy)
Thus, Corollary 3.2 applies to Rd,δ(λ2) in the form

(3.6) ‖Rd,δ(λ2)‖B→B∗ . λ−1‖Rdλ,δ(1)‖B→B∗
for all λ ≥ 1 or, more generally,

(3.7) ‖DαRd,δ(λ2)‖B→B∗ . λ−1+|α|‖DαRdλ,δ(1)‖B→B∗
for all multi-indices α and λ ≥ 1.

The main goal of this section is to prove a limiting absorption bound for
Rd,δ and its derivatives of order at most two uniformly in the parameters
d, δ ∈ (0, 1), see Proposition 3.5 below. This will be based on the oscillatory
integral estimate in Lemma 3.4. We first state a simple technical fact which
will be used repeatedly.

Lemma 3.3. Let K(x, y) be the kernel of the L2 bounded operator T :
L2(Rn)→ L2(Rm) with

(Tf)(x) =
∫
Rn

K(x, y)f(y) dy

Let L1 : Rn → R
n and L2 : Rm → R

m be invertible linear transformations
and define

(T̃ f)(x) =
∫
Rn

K(L1x, L2y)f(y) dy

Then √
|detL1||detL2| ‖T̃‖2→2 = ‖T‖2→2

The following lemma is the main technical tool of this section.

Lemma 3.4. Let χ denote a smooth cut-off function to the region 1 < |x| <
2. With a(r) as in (3.3), define
(3.8)

(Tδ,p,R1,R2f)(x) =
∫
χ
( x
R1

) ei|x−y|
|x− y|p

a(|x− y|)Φδ

( x− y
|x− y|

)
χ
( y
R2

)
f(y) dy

Then, for any n ≥ 3, and n−1
2 ≤ p ≤ n+3

2 ,

(3.9) ‖Tδ,p,R1,R2f‖2 ≤ Cn δp−
n−1

2

√
R1R2 ‖f‖2

for all R1, R2 ≥ 1, δ ∈ (0, 1). The constant Cn only depends on n ≥ 3.

Proof. We first consider the cases where R2 > 4R1 or R1 > 4R2. By duality
it suffices to treat the first case. We then distinguish two further cases,
depending on whether δR2 > R1 or not.

Case 1: δR2 > R1

On the support of the integrand in (3.8), we have

|y′| . δR2, yn ∼ R2, |x| . R1
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where y = (y′, yn). By the change of variables y = (δR2v
′, R2vn) and x =

R1u and Lemma 3.3,

‖Tδ,p,R1,R2‖2→2

=
∥∥∥eiR2

∣∣R1
R2
u−(δv′,vn)

∣∣ χ(u)χ(δv′, vn)(aΦδ)(u, v)∣∣R1
R2
u− (δv′, vn)

∣∣p ∥∥∥
L2
v→L2

u

R
n
2
1 R

n
2
−p

2 δ
n−1

2

(3.10)

where

(aΦδ)(u, v) = a(|R1u− (R2δv
′, R2vn)|)Φδ

( R1u− (R2δv
′, R2vn)

|R1u− (R2δv′, R2vn)|

)
.

We will apply Proposition 6.1 to the operator in (3.10). First note that the
derivatives of

χ(u)χ(δv′, vn)(aΦδ)(u, v)∣∣R1
R2
u− (δv′, vn)

∣∣p
in u′ are bounded using the property that R1

δR2
. 1, the symbol-like decay of

a, the bounds |DαΦδ| . δ−|α| and the bound

(3.11)
∣∣vn − R1

R2
un
∣∣ ∼ 1.

Second, the phase Ψ(u, v) =
∣∣R1
R2
u − (δv′, vn)

∣∣ satisfies the hypothesis of
Proposition 6.1. Indeed,

∇u′Ψ(u′, un, v′, vn) =
R1

R2

(R1
R2
u′ − δv′, 0)

|R1
R2
u− (δv′, vn)

∣∣ =
R1

R2

(R1
R2
u′ − δv′, 0)

|(R1
R2
u′ − δv′, R1

R2
un − vn)

∣∣
so that

∇u′Ψ(u′, un, v′, vn)−∇u′Ψ(u′, un, w′, wn)

=
R1

R2

(R1
R2
u′ − δv′, 0)

|(R1
R2
u′ − δv′, R1

R2
un − vn)

∣∣ − R1

R2

(R1
R2
u′ − δw′, 0)

|(R1
R2
u′ − δw′, R1

R2
un − wn)

∣∣
Now observe the following: if x, y ∈ Rk, satisfy |x|, |y| � 1, then∣∣∣ x√

1 + |x|2
− y√

1 + |y|2
∣∣∣ =

|x− y|√
1 + |x|2

+ |y|O
( 1√

1 + |x|2
− 1√

1 + |y|2
)

∼ |x− y|

Thus, in view of (3.11),

|∇u′Ψ(u′, un, v′, vn)−∇u′Ψ(u′, un, w′, wn)| ∼ R1

R2
δ|v′ − w′|

as desired. Moreover, the higher derivatives satisfy∣∣∣Dβ
u′

[
∇u′Ψ(u′, un, v′, vn)−∇u′Ψ(u′, un, w′, wn)

]∣∣∣ . R1

R2
δ|v′ − w′|
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for any β. In fact, we gain factors of R1
R2

for the higher derivatives, but this
is of no use to us. Thus, we apply Proposition 6.1 with λ = R2, µ = R1

R2
δ,

n1 = n− 1 to obtain

‖Tδ,p,R1,R2‖2→2 . R
n
2
1 R

n
2
−p

2 δ
n−1

2 (δR1)−
n−1

2 .
√
R1R2R

n−1
2
−p

2

which implies the stated bound since R−1
2 ≤ δ/R1 ≤ δ.

Case 2: δR2 ≤ R1

Let η be a smooth bump function supported in a neighborhood of the
origin such that it defines a partition of unity of Rn−1 via∑

k′∈Zn−1

η(x′ − k′) = 1 ∀ x′ ∈ Rn−1

so that also ∑
k′∈Zn−1

η
(x′ − δR2k

′

δR2

)
= 1

This latter partition of unity induces a partition of the x and y supports
in (3.8) into cylinders of dimensions δR2×. . .×δR2×R1, and δR2×. . .×δR2×
R2, respectively. If x belongs to a fixed cylinder, then Φδ(x, y) 6= 0 implies
that y belongs to a finite number of adjacent cylinders, and this number
is uniformly controlled. By almost orthogonality, it suffices to prove the
desired bound for the kernel localized to such cylinders. After a translation
we can assume that the cylinders are

|x′| . R2δ, |xn| . R1, |y′| . R2δ, yn ∼ R2

Let
(x′, xn) = (R2δu

′, R1un), (y′, yn) = (R2δv
′, R2vn)

By Lemma 3.3,

‖Tδ,p,R1,R2‖2→2

. δn−1R
1
2
1 R

n− 1
2
−p

2

∥∥∥eiR2|(δu′,R1
R2
un)−(δv′,vn)| χ(u)χ(v)(aΦδ)(u, v)∣∣(δu′, R1

R2
un
)
− (δv′, vn)

∣∣p∥∥∥L2
v→L2

u

where

(aΦδ)(u, v) = a(|(R2δu
′, R1un)− (R2δv

′, R2vn)|)×

× Φδ

( (R2δu
′, R1un)− (R2δv

′, R2vn)
|(R2δu′, R1un)− (R2δv′, R2vn)|

)(3.12)

On the support of the integrand, |u|, |v| . 1, and vn ∼ 1. Here the kernel
is bounded in absolute value by (4

3)pχ(u)χ(v) since aΦδ is bounded, vn ∼ 1,
and R1

R2
< 1

4 . Schur’s test gives the immediate bound

‖Tδ,p,R1,R2‖2→2 . R
1
2
1 R

n− 1
2
−p

2 δn−1
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If R2δ
2 ≤ 1, this estimate is sufficient because Rn−1−p

2 δn−1 ≤ δp−
n−1

2 . The
last inequality is verified in two ways: if n−1

2 ≤ p ≤ n− 1, one can write

Rn−1−p
2 δn−1 ≤ δ−2(n−1−p)δn−1 ≤ δ2p−(n−1) ≤ δp−

n−1
2

On the other hand, if p > n− 1, then

Rn−1−p
2 δn−1 ≤ δn−1 ≤ δp−

n−1
2

since p ≤ n+3
2 ≤ 3n−1

2 when n ≥ 3.
When R2δ

2 ≥ 1, an improved operator estimate can be obtained via
Proposition 6.1. Observe that the u′-derivatives of (3.12) are uniformly
bounded. Furthermore, the same analysis as in the previous case applies to
the phase

Ψ(u, v) = |(δu′, R1

R2
un)− (δv′, vn)|

with µ = δ2, λ = R2, since we still have |u| . 1, |v| . 1, as well as vn ∼ 1.
Proposition 6.1 now provides the desired estimate

‖Tδ,p,R1,R2‖2→2 . δ
n−1R

1
2
1 R

n− 1
2
−p

2 (R2δ
2)−

n−1
2

= R
n−1

2
−p

2

√
R1R2 . δ

p−n−1
2

√
R1R2

where we have used the condition p ≥ n−1
2 twice in the last line.

Finally, we need to consider the case R1 ∼ R2 ∼ R where R ≥ 1. Let
‖f‖2 ≤ 1. Then

‖Tδ,p,R1,R2f‖2

≤
∑

1≤2j≤R

∥∥∥∫ eiR|x−y|
χj(x, y)(aΦδ)(Rx,Ry)

|x− y|p
f(Ry) dy

∥∥∥
L2
x

R
3n
2
−p(3.13)

where χj(x, y) is a smooth cut-off function on the set {(x, y) : |x|, |y| <
1, |x − y| ∼ 2−j}. Performing a Whitney decomposition of the integrand
away from the diagonal x = y, we can estimate (3.13) by

Rn−p
∑

1≤2j≤R

max
Q

(j)
1 ∼Q

(j)
2

∥∥∥χ
Q

(j)
1

(x)
eiR|x−y|

|x− y|p
χ
Q

(j)
2

(y)(aΦδ)(Rx,Ry)
∥∥∥
L2
y→L2

x

(3.14)

Thus, Q(j)
1 , Q

(j)
2 are cubes of side length 2−j and Q

(j)
1 ∼ Q

(j)
2 denotes that

they are ”related”, i.e., dist(Q(j)
1 , Q

(j)
2 ) ∼ 2−j . Now fix j and cubes Q =

Q
(j)
1 , Q′ = Q

(j)
2 . We break Q and Q′ into cylinders of size 2−jδ× . . .×2−jδ×

2−j . Because of the directional cut-off Φδ, each Q cylinder interacts with
at most finitely many Q′ cylinders. For one such pair of cylinders, we can
assume (after translation) that

x = (2−jδu′, 2−jun), y = (2−jδv′, 2−jvn)
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where |u|, |v| . 1, vn − un ∼ 1. By Lemma 3.3∥∥∥χQ(x)
eiR|x−y|

|x− y|p
χQ′(y)(aΦδ)(Rx,Ry)

∥∥∥
L2
y→L2

x

. 2j(p−n)δn−1
∥∥∥eiR2−j |(δu′,un)−(δv′,vn)| χ(u)χ(v)(aΦδ)(u, v)

|(δu′, un)− (δv′, vn)|p
∥∥∥
L2
v→L2

u

. 2j(p−n)δn−1 min
(
1, (Rδ22−j)−

n−1
2
)

(3.15)

where

(aΦδ)(u, v) = a(R2−j |(δu′, un)− (δv′, vn)|)Φδ

( (δu′, un)− (δv′, vn)
|(δu′, un)− (δv′, vn)|

)
(3.15) follows from Schur’s test and Proposition 6.1. For the latter note
that the u′ derivatives of (aΦδ)(u, v) are uniformly bounded on the support
of the integrand. Furthermore, the phase is Ψ(u, v) = |(δu′, un) − (δv′, vn)|
and we have |u|, |v| . 1, vn − un ∼ 1. Thus, as in the previous cases, the
proposition applies with µ = δ2, λ = R2−j .

Combining (3.13), (3.14), and (3.15), yields

(3.16) ‖Tδ,p,R1,R2‖2→2 .
∑

1≤2j≤R

Rn−p2j(p−n)δn−1 min
(
1, (Rδ22−j)−

n−1
2
)

Note that p < n unless n = 3 = p. In that case the right-hand side of (3.16)
is . δ2 logR . Rδ2. For the remainder of the proof, therefore, we may
assume p < n. First consider the case Rδ2 ≤ 1 where we have

(3.16) . Rn−pδn−1 = Rδp−
n−1

2 Rn−1−pδ3n−1
2
−p . Rδp−

n−1
2

To prove the final inequality distinguish the cases p ≥ n− 1 and p < n− 1
and note that p ≤ n+3

2 ≤ 3n−1
2 . Henceforth Rδ2 > 1 and we distinguish

between Rδ2 ≤ 2j ≤ R and 1 ≤ 2j ≤ Rδ2. The contribution to the sum
in (3.16) by the former is

Rn−pδn−1(Rδ2)p−n = δ2p−(n+1) = R(Rδ2)−1δ2(p−(n−1)/2) . Rδp−
n−1

2

since p ≥ n−1
2 . The contribution by 1 ≤ 2j ≤ Rδ2 to (3.16) is

(3.17) R
n+1

2
−p

∑
1≤2j≤δ2R

2−j(
n+1

2
−p)

If n−1
2 ≤ p < n+1

2 , then

(3.17) . R
n+1

2
−p . Rδp−

n−1
2

since Rδ ≥ Rδ2 ≥ 1. If p = n+1
2 , then

(3.17) . log(Rδ2) . Rδ2 . Rδ

since again Rδ2 ≥ 1. Finally, if p > n+1
2 , then

(3.17) . δ2p−n−1 . Rδp−
n−1

2

which concludes the proof. �
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Proposition 3.5. Let n ≥ 3. Then for any d ∈ (0,∞), δ ∈ (0, 1), and
λ ≥ 1 there is the bound

(3.18) ‖DαRd,δ(λ2)f‖B∗ ≤ Cnλ−1+|α|‖f‖B
for any 0 ≤ |α| ≤ 2. The constant Cn depends only on the dimension n ≥ 3.

Proof. In view of (3.6) and (3.7) it suffices to prove these estimates for λ = 1.
We need to prove that for any 0 ≤ |α| ≤ 2

(3.19) ‖χ(·/R1)DαRd,δ(1)χ(·/R2)f‖2 ≤ Cn
√
R1R2 ‖f‖2

where R1, R2 ≥ 1 are arbitrary. We write

(3.20) Rd,δ(1) = R+
0 (1)ηdΦδ = T0 + T1

where the kernels of T0, T1 are

T0(x, y) =
b(|x− y|)
|x− y|n−2

ηd(|x− y|)Φδ(x, y)

T1(x, y) =
ei|x−y|

|x− y|
n−1

2

ηd(|x− y|)a(|x− y|)Φδ(x, y),
(3.21)

respectively, see (3.2). The modified function ηd(r)a(r) satisfies all decay
estimates in (3.3) with constants independent of the choice of d.

We begin by showing that T̂0f = m0f̂ where |m0(ξ)| . 〈ξ〉−2. This will
imply (3.19) for T0. By definition

m0(ξ) =
∫ ∞

0

∫
Sn−1

rb(r)ηd(r)e−irω·ξΦδ(ω)σ(dω) dr

Since b(r) = 0 if r > 2, |m0(ξ)| . 1. Hence we may assume that |ξ| ≥ 1. If
|ξn| ≥ |ξ|/10, then |ω · ξ| & |ξ| and

|m0(ξ)| .
∫
Sn−1

Φδ(ω)〈ω · ξ〉−2 σ(dω) . δn−1|ξ|−2

where we have used that∣∣∣ ∫ ∞
0

e−irρrb(r)ηd(r)χ(r) dr
∣∣∣ . 〈ρ〉−2

This follows from (3.4) and (3.5) after two integrations by parts. Now sup-
pose that |ξn| ≤ |ξ|/10. Set ξ = |ξ|ξ̂ and change integration variables as
follows:∫

Sn−1

∫ ∞
0

rb(r)ηd(r)χ(r)e−ir|ξ|ω·ξ̂ drΦδ(ω)σ(dω)

=
∫
Rn−1

∫ ∞
0

rb(r)ηd(r)χ(r)e−ir|ξ|u1 dr Φ̃δ(u1, . . . , un−1) du1du2 . . . dun−1

= δn−2

∫ ∞
0

∫
R

rb(r)ηd(r)χ(r)e−ir|ξ|u1Ψδ(u1) du1dr,
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where (u1, . . . , un−1) is a parametrization of the support of Φδ, aligning u1

with ξ̂. The function Ψδ is a smooth cut-off supported on an interval of
length ∼ δ resulting from the integration of Φ̃δ. Thus,

|m0(ξ)| . δn−2

∫ 1

0
r|Ψ̂δ(r|ξ|)| dr . δn−2|ξ|−2‖uΨ̂δ(u)‖L1

u
. δn−3|ξ|−2.

In conclusion, |m0(ξ)| . 〈ξ〉−2 as claimed.
Next, consider T1. By the Leibniz rule,

Dα
xT1(x, y) =

∑
β≤α

cα,β D
α−β
x

[ ei|x−y|

|x− y|
n−1

2

ηd(|x− y|)a(|x− y|)
]
Dβ
xΦδ(x, y)

=
∑
β≤α

δ−|β| cα,β
ei|x−y|

|x− y|
n−1

2
+|β|

aα,β,d(|x− y|)Φδ,β(x, y)(3.22)

where Φδ,β = δ|β|DβΦδ is a modified angular cut-off and aα,β,d satisfies the
same bounds as a, see (3.3), with constants that do not depend on d. The
estimate (3.19) for T1 follows from Lemma 3.4 with p = n−1

2 + |β|. �

For any λ ≥ 1 define

X∗λ := {f ∈ B∗ : 〈∇〉f ∈ B∗}
‖f‖X∗λ := ‖f‖B∗ + λ−1‖〈∇〉f‖B∗

The dual norm is

‖f‖Xλ := inf
f=f1+f2

(
‖f1‖B + λ‖〈∇〉−1f2‖B

)
Corollary 3.6. Let Rd,δ be as above. Then for all λ ≥ 1

(3.23) ‖Rd,δ(λ2)f‖X∗λ ≤ Cnλ
−1‖f‖Xλ

uniformly in d ∈ (0,∞), δ ∈ [0, 1].

Proof. This follows from Proposition 3.5 provided the estimate

‖〈∇〉f‖B∗ . ‖f‖B∗ + ‖∇f‖B∗

holds. This in turn will follow if we can show that ‖(mf̂)∨‖B∗ . ‖f‖B∗ for
any symbol m with bounded derivatives. However, this is guaranteed by
Corollary 14.1.5 in [9]. �

4. The high energies limiting absorption principle

The main result of this section is a limiting absorption principle for the
perturbed resolvent

(4.1) R+
L (λ2) = (I +R+

0 (λ2)L)−1R+
0 (λ2)
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where L = i(∇ · A + A · ∇) + V , see Proposition 4.3 below. As before,
we shall mostly drop the superscript + on the resolvent. We shall assume
throughout this section that A, V ∈ Y where

Y :=
{
f ∈ L∞ :

∞∑
j=0

2j‖f‖L∞(Dj) <∞
}

This is the space of functions that take B∗ → B by multiplication.

Lemma 4.1. For any λ ≥ 1

(4.2) ‖Lf‖Xλ ≤ Cn(λ‖A‖Y + ‖V ‖Y )‖f‖X∗λ
Proof. Multiplication by V is bounded B∗ → B. Also,

‖〈∇〉−1∇Af‖B . ‖Af‖B ≤ ‖A‖Y ‖f‖B∗
where the first inequality follows from Corollary 14.1.5 in [9]. Hence ∇ ·A :
X∗λ → Xλ with norm . λ. By duality the same holds for A · ∇. �

From this and Corollary 3.6 it follows that

‖(I +R0(λ2)L)−1f‖X∗λ ≤ 2‖f‖X∗λ
for all λ ≥ 1 provided A is small in Y .

The main goal of this section is to show that even when A is not small
the Neumann series

(4.3) (I +R0(λ2)L)−1 =
∞∑
`=0

(−1)`(R0(λ2)L)`

converges for large λ. This cannot be deduced from the size of R0(λ2)L
alone, but is instead a consequence of the following crucial lemma.

Lemma 4.2. Assume that A, V ∈ Y , with A also being continuous. Given
any constant c > 0, there exist sufficiently large m = m(c, A, V ) and λ1 =
λ1(c, A, V ) such that

(4.4) sup
λ>λ1

‖(R0(λ2)L)m‖X∗λ→X∗λ ≤ c

More generally, given any r > 0, there exist sufficiently large m = m(r,A, V )
and λ1(r,A, V ) such that

sup
λ>λ1

‖(R0(λ2)L)m‖X∗λ→X∗λ ≤ (2r)m

By choosing c = 1
2 , the series in (4.3) becomes absolutely convergent. In

view of (4.1), we thus conclude the following limiting absorption principle
for large energies:

Proposition 4.3. Under the conditions of the previous lemma, there exists
λ1 = λ1(A, V ) so that for all λ ≥ λ1 one has RL(λ2) : Xλ → X∗λ with norm
estimate

‖RL(λ2)f‖X∗λ ≤ Cn λ
−1‖f‖Xλ

for all λ ≥ λ1.
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As a corollary, we obtain the desired L2 bounds on Z0RL(λ2)Z∗0 as re-
quired in Section 2.

Corollary 4.4. With λ1 as above, there are the bounds

sup
λ≥λ1

∥∥〈x〉−σ〈∇〉 1
2RL(λ2 + i0)〈∇〉

1
2 〈x〉−σ

∥∥
2→2
≤ Cn

sup
λ≥λ1

∥∥〈x〉−σ|∇| 12RL(λ2 + i0)|∇|
1
2 〈x〉−σ

∥∥
2→2
≤ Cn

for any σ > 1
2 . In particular, Z0RL(λ2)Z∗0 is uniformly bounded in L2 for

λ ≥ λ1.

Proof. Let Z = 〈x〉−σ〈∇〉
1
2 . In view of Proposition 4.3, in order for ZRL(λ2)Z∗

to be uniformly bounded in L2, we need to prove that Z : X∗λ → L2 with
norm .

√
λ, and, equivalently that Z∗ : L2 → Xλ with the same norm.

These estimates follow rather directly from the definition of the space X∗λ.
If ‖f‖X∗λ = 1, then f ∈ B∗ and 〈x〉−σf ∈ L2, each with bounded norm.

At the same time, ‖〈x〉−σ〈∇〉f‖2 . λ. By the commutator bound in the ap-
pendix, it is possible to interchange the weight and the derivative. Therefore
by Parseval’s identity,

‖〈∇〉
1
2 〈x〉−σf‖22 . ‖〈∇〉〈x〉−σf‖2‖〈x〉−σf‖2 . λ‖f‖2X∗λ

Once again the weight and fractional derivative can be interchanged to
prove the bound for ZRL(λ2)Z∗. The bound for Z0RL(λ2)Z∗0 follows im-
mediately because 〈x〉−σ|∇|

1
2 〈∇〉−

1
2 〈x〉σ is a bounded operator on L2, see

Lemma 5.1. �

The remainder of this section is devoted to the proof of Lemma 4.2. Due
to the estimate

‖R0(λ2)V f‖X∗λ . λ
−1‖V ‖Y ‖f‖X∗λ .

we can henceforth assume that L = i(∇ · A + A · ∇), with V ≡ 0. A
partition of unity {Φi} over Sn−1 induces a directional decomposition of the
free resolvent, namely

(4.5) R0(λ2) =
∑
i

Ri(λ2) +Rd(λ2)

where Ri(λ2) := Rd,δ(λ2) with Φi playing the role of Φδ from the previous
section. Moreover, Rd(λ2)(x) = (1− ηd(|x|))R0(λ2)(|x|) is the “short range
piece”. Heuristically speaking, Rd(λ2) behaves like R0((λ+i dλ)2) and should
therefore be bounded on L2 with operator norm . d

λ . The following lemma
makes this precise.

Lemma 4.5. With R+
d (λ2) defined as above, the mapping estimate

(4.6) ‖DαRd(λ2)f‖2 ≤ Cn λ−2+|α|〈dλ〉‖f‖2
holds uniformly for every choice of d ∈ (0,∞), 0 ≤ |α| ≤ 2, and λ ≥ 1.
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Proof. By the scaling relation (3.1), for any α,

‖DαR0(λ2)χ[|x|<d]‖2→2 = λ−2+|α|‖DαR0(1)χ[|x|<λd]‖2→2

where χ[|x|<ρ] = χ(|x|/ρ) is a smooth cut-off to the set |x| < ρ with ρ > 0
arbitrary. The notation is somewhat ambiguous here; we are seeking an
estimate for the convolution operator with kernel DαR0(1)χ[|x|<λd]. The
lemma is proved by showing that the Fourier transform of R0(1)χ[|x|<ρ] is
bounded point-wise by 〈ρ〉〈ξ〉−2.

Consider first the case ρ ≤ 1. The decomposition (3.2) implies that∫
Rn
|R0(1)(x)χ(|x|/ρ)| dx . ρ2. Furthermore, since (∆ + 1)R0(1) is a point

mass at the origin, the distribution ∆[R0(1)χ[|x|<ρ]] consists of a point mass
plus a function of bounded L1 norm. The desired Fourier transform esti-
mates follow immediately.

When ρ > 1, it is more convenient to estimate

ρn
∣∣∣ ∫ [P.V. 1

|η|2 − 1
+ iσSn−1(dη)

]
χ̂((ξ − η)ρ) dη

∣∣∣
A standard calculation shows this to be less than ρ〈ρ(|ξ|2− 1)〉−1 < ρ〈ξ〉−2.

�

We shall use Lemma 4.5 in the following somewhat less precise form:

Lemma 4.6. For any 0 < d < 1

‖Rd(λ2)f‖X∗λ ≤ Cn λ
−1d‖f‖Xλ

uniformly in λ ≥ d−1.

Proof. In view of the definition of the spaces Xλ, X∗λ this follows from
Lemma 4.5 via the imbedding B → L2 → B∗ and the identity λ−1〈dλ〉 ∼ d
for λ > d−1. �

Decomposing each free resolvent in the m-fold product (R0(λ2)L)m as in
(4.5) yields the identity

(4.7) (R0(λ2)L)m =
∑
i1...im

m∏
k=1

(
Rik(λ2)L

)
.

The indices ik may take numerical values corresponding to the partition of
unity {Φi}, or else the letter d to indicate a short-range resolvent. There
are two main types of products represented here, namely:

• Directed Products, where the support of functions Φik and Φik+1
are

separated by less than 10δ for each k. A product is also considered
to be directed if it has this property once all instances of ik = d are
removed. The term (Rd(λ2)L)m is a vacuous example of a directed
product.
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• All other terms not meeting the above criteria are Undirected Prod-
ucts. An undirected product must contain two adjacent numerical
indices (i.e., after discarding all instances where ik = d) for which
the corresponding functions Φi have disjoint support with distance
at least 10δ between them.

Lemma 4.7. For any δ > 0, there exists a partition of unity {Φi} with
approximately δ1−n elements, having diam supp (Φi) < δ for each i and ad-
mitting no more than δ1−n(Cn)m directed products of length m in (4.7).

Proof. The first claim is a standard fact from differential geometry. For the
second claim note that there are . δ1−n choices for the first element in a
directed product, but only Cn choices at each subsequent step. �

If δ < 1
20m , then a directed product is truly “directed” in the sense that all

the participating functions Φik have support well within a single hemisphere.
The convolution operators Rik(λ2) are therefore biased consistently to one
side. In the one-dimensional setting this is reminiscent of a product of
Volterra operators, where a norm improvement of m! is typical.

Lemma 4.8. Suppose L = i(∇ · A + A · ∇), with A(x) ∈ Y . Given any
r > 0, there exists a distance d = d(r) > 0 such that each directed product
in (4.7) satisfies the estimate

(4.8)
∥∥∥∥ m∏
k=1

(
Rik(λ2)L

)
f

∥∥∥∥
X∗λ

≤ Cn,A,r rm‖f‖X∗λ

uniformly over all λ > d−1 and all choices of m and δ satisfying δ ≤ 1
20m .

Consequently, given any c > 0, there exists a number m = m(c, A) and
a partition of unity governed by δ = 1

20m so that the sum over all directed
products achieves the bound∑

i1...im
directed

∥∥∥∥ m∏
k=1

(
Rik(λ2)L

)∥∥∥∥
X∗λ→X

∗
λ

≤ c
2

uniformly in λ > d−1.

Proof. In this proof, we will keep track of the superscripts ± on the resol-
vents. Also, we will write ‖A‖Y = CA. There is no loss of generality if we
assume that r < CnCA, where Cn is the product of the constants in (3.23)
and (4.2).

After a rotation, we may assume that every function Φik which appears
in the product has support within a half-radian neighborhood of the north
pole, where xn > 2

3 . If f ∈ Xλ is supported on the half plane {xn > a}, then
the support of R+

ik
(λ2)f must be translated upward to {xn > a+ 2

3d}. The
short-range resolvent R+

d (λ2) does not have a preferred direction; however
if f ∈ Xλ is supported on {xn > a} then suppR+

d (λ2)f ⊂ {xn > a− 2d}.



20 M. BURAK ERDOĞAN, MICHAEL GOLDBERG, WILHELM SCHLAG

The purpose of keeping track of supports is that if f ∈ X∗λ is supported
away from the origin, in the set {|x| > a}, then the estimate in Lemma 4.1
can be improved to

(4.9) ‖Lf‖Xλ . λ‖Aχ[|x|>a]‖Y ‖f‖X∗λ ,

since we are assuming that V ≡ 0. For a > 0, the half-plane {xn > a} is
sufficiently far from the origin for this improved estimate to hold. Note that
the compactly supported functions are dense in Y . Given any A ∈ Y and
any r > 0, we can choose R <∞ so that

‖Aχ[xn>R]‖Y <
r2

C2
nCA

Let χ be a smooth function supported on the interval [−1,∞) such that
χ(xn) + χ(−xn) = 1. We will initially estimate the operator norm of(∏

k(R
+
ik

(λ2)L)
)
χ(xn). Multiplication by χ(xn) is bounded operator of ap-

proximately unit norm in all spaces X∗λ and Xλ.
The support of χ(xn)f lies in the half-space {xn > −1}. Suppose every

one of the indices ik is numerical. Then each application of an operator
R+
ik

(λ2)L translates the support upward by 2
3d. For the first 3R

2d steps the
operator norm of R+

ik
(λ2)L is bounded by (3.23) and (4.2). Thereafter it

is possible to use the stronger bound of (4.9) in place of (4.2) because the
support will have moved into the half-space {xn > R}. The combined
estimate is

(4.10)

∥∥∥∥ m∏
k=1

(R+
ik

(λ2)L)χ(xn)f
∥∥∥∥
X∗λ

≤ (CnCA)m
( r2

(CnCA)2

)m− 3R
2d ‖f‖X∗λ

= (CnCA)−m(r−1CnCA)
3R
d r2m‖f‖X∗λ

This is valid for small m by our assumption that r < CnCA.
If each directed resolvent R+

Φi
(λ2) is seen as taking one step forward,

then the short-range resolvent R+
d (λ2) may take as many as three steps

back. Suppose a directed product includes exactly one index ik = d. This
will have the most pronounced effect if it occurs near the beginning of the
product, delaying the upward progression of supports by a total of 4 steps.
In this case one combines (4.9), (3.23), and Lemma 4.6 to obtain∥∥∥∥ m∏

k=1

(R+
ik

(λ2)L)χ(xn)f
∥∥∥∥
X∗λ

≤ (CnCA)md
( r2

(CnCA)2

)m−( 3R
2d

+4)
‖f‖X∗λ

Notice that this estimate agrees with the one in (4.10) up to a factor of
d(r−1CnCA)8. By setting d = d(r) =

(
r

CnCA

)8, the bound in (4.10) is
strictly larger. Similar arguments yield the same result for any directed
product with one or more instances of the short-range resolvent R+

d (λ2).
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To remove the spatial cutoff, write

m∏
k=1

R+
ik

(λ2)L =
(m/2∏
k=1

(R+
ik

(λ2)L)
)

(χ(xn) + χ(−xn))
( m∏
k=m

2
+1

(R+
ik

(λ2)L)
)

Consider the χ(xn) term. By (4.10), the first half of the product carries

an operator norm bound of (CnCA)−
m
2 (r−1CnCA)

3R
d(r) rm. The second half

contributes at most (CnCA)m/2, based on (3.23) and Lemma 4.1. Put
together, this product has an operator norm less than Cn,A,r r

m, where

Cn,A,r = (r−1CnCA)
3R
d(r) .

The χ(−xn) term has nearly identical estimates, by duality. The ad-
joint of any directed resolvent R+

Φ(λ2) is precisely R−
Φ̃

(λ2), with Φ̃ being
the antipodal image of Φ. Because the order of multiplication is reversed,
one applies the geometric argument above (modulo the antipodal map) to
a product of the form

(m/2∏
k=1

(LR−ik(λ2))
)
χ(−xn),

which is an operator on Xλ. The estimates (4.9), (3.23), and (4.6) are used
in the same manner as in deriving the main bound (4.10).

According to Lemma 4.7 there are at most δ1−n(Cn)m directed products
of length m. To prove (4.8), it therefore suffices to let r = 1

2Cn
, and δ = 1

20m
so that the sum of the operator norms of all directed products is bounded
by 20n−1Cn,Am

n−12−m. This can be made smaller than c
2 by choosing m

sufficiently large. �

As for the undirected products, recall that their defining feature is the
presence of adjacent resolvents R+

i (λ2) oriented in distinct directions. The
resulting oscillatory integral has no region of stationary phase, and therefore
exhibits improved bounds at high energy provided the potential A(x) is
smooth.

Lemma 4.9. Let Φ1 and Φ2 be chosen from a partition of unity of Sn−1

so that their supports are separated by a distance greater than 10δ. Suppose
A ∈ C∞(Rn) with compact support. Then for each j ≥ 0, and any N ≥ 1,

(4.11)
∥∥R+

d,Φ2
(λ2)(LR+

d (λ2))jLR+
d,Φ1

(λ2)
∥∥
Xλ→X∗λ

= O(λ−N )

as λ→∞ and similarly for R−(λ2).
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Proof. In view of (3.1) and (3.2) we can write

R+
0 (λ2)(|x|)ηd(|x|)Φ(x/|x|)

= λn−2R0(1)(λ|x|)ηd(|x|)Φ(x/|x|)

= λ
n−3

2
eiλ|x|

|x|
n−1

2

[
a(λ|x|) +

e−iλ|x|b(λ|x|)
|λx|

n−3
2

]
ηλd(λ|x|)Φ(x/|x|)

= λ
n−3

2
eiλ|x|

|x|
n−1

2

aλd(λ|x|)Φ(x/|x|)

where for arbitrary d̃ = λd > 0

a
d̃
(r) =

[
a(r) +

e−irb(r)

r
n−3

2

]
η
d̃
(r)

is supported on {r ≥ d} and satisfies the bounds, for all ` ≥ 0 and r > d,

|∂`rad̃(r)| ≤ C` d̃
−n−3

2 r−` ≤ C` d−
n−3

2 r−`

uniformly in λ ≥ 1. The kernel of the operator of (4.11) with j = 0 equals

Kd,λ(x, y) := λn−3

∫
Rn

eiλ|x−u|

|x− u|
n−1

2

Φ1

( x− u
|x− u|

)
aλd(λ|x− u|)(∇uA(u)+

+A(u)∇u)
eiλ|u−y|

|u− y|
n−1

2

aλd(λ|u− y|)Φ2

( u− y
|u− y|

)
du(4.12)

By our assumption on A we can integrate by parts any number of times in
the u variable since∣∣∂u[|x− u|+ |u− y|]

∣∣ =
∣∣∣ x− u|x− u|

− u− y
|u− y|

∣∣∣ > δ

by the angular separation hypothesis between supp Φ1 and supp Φ2. In
conclusion, for arbitrary N ,

|Kd,λ(x, y)| ≤ CN (A, d, δ, n)λ−N 〈y〉−
n−1

2 〈x〉−
n−1

2

Here we also used the compact support assumption on A which restricts the
size of u in (4.12). This kernel takes B → B∗ with norm . λ−N . In the
same way one bounds the kernel Dα

x,yKd,λ(x, y) for any α which concludes
the argument for j = 0.

If j ≥ 1, then write

R+
0 (λ2)(|x|)[1− ηd(|x|)]

= λn−2R0(1)(λ|x|)[1− ηd(|x|)]

= λ
n−3

2
eiλ|x|

|x|
n−1

2

[
a(λ|x|) +

e−iλ|x|b(λ|x|)
|λx|

n−3
2

]
[1− ηλd(λ|x|)]

= λ
n−3

2
eiλ|x|

|x|
n−1

2

bλd(λ|x|)



STRICHARTZ ESTIMATES FOR ALMOST CRITICAL MAGNETIC POTENTIALS 23

where for arbitrary d̃ = λd > 0

b
d̃
(r) =

[
a(r) +

e−irb(r)

r
n−3

2

]
[1− η

d̃
(r)]

satisfies the bounds |∂`rbd̃(r)| ≤ C` d̃
n−3

2 r−
n−3

2
−` for all ` ≥ 0 and r > 0. In

particular, ∣∣D`
x[bλd(λ|x|)]

∣∣ ≤ C`dn−3
2 |x|

n−3
2
−`

uniformly in λ ≥ 1. The kernel of the operator of (4.11) with j > 0 now
equals

Kj,d,λ(x, y) := λ(n−3)(j+2)/2

∫
R

(j+1)n

eiλ|x−u0|

|x− u0|
n−1

2

Φ1

( x− u0

|x− u0|

)
aλd(λ|x− u0|)

j−1∏
i=0

(∇uiA(ui) +A(ui)∇ui)
eiλ|ui−ui+1|

|ui − ui+1|
n−1

2

bλd(λ|ui − ui+1|)

(∇ujA(uj) +A(uj)∇uj )
eiλ|uj−y|

|uj − y|
n−1

2

aλd(λ|uj − y|)Φ2

( uj − y
|uj − y|

)
du

We change variables

wi =
1
2

(ui − ui+1), 0 ≤ i ≤ j − 1, wj =
1
2

(u0 + uj)

so that u0 =
∑j

i=0wi, uj = wj−
∑j−1

i=0 wi, and u1 = u0−2w0, u2 = u1−2w1

etc. After this substitution we obtain

Kj,d,λ(x, y) := cλ(n−3)(j+2)/2

∫
R

(j+1)n

eiλ|x−u0|

|x− u0|
n−1

2

Φ1

( x− u0

|x− u0|

)
aλd(λ|x− u0|)

j−1∏
i=0

(∇uiA(ui) +A(ui)∇ui)
e2iλ|wi|

|wi|
n−1

2

bλd(2λ|wi|)

(∇ujA(uj) +A(uj)∇uj )
eiλ|uj−y|

|uj − y|
n−1

2

aλd(λ|uj − y|)Φ2

( uj − y
|uj − y|

)
dw

where it is understood that u0 = u0(w) and uj = uj(w). Of particular
interest, the phase functions involving x, y contain the variable wj , viz.

λ|x− u0| = λ
∣∣x− wj − j−1∑

i=0

wi
∣∣, λ|y − uj | = λ

∣∣y − wj +
j−1∑
i=0

wi
∣∣

whereas none of the short range free resolvent kernels contains wj . Thus,
since ∣∣∣ x− u0

|x− u0|
− uj − y
|uj − y|

∣∣∣ > δ

integration by parts in wj yields as before

|Dα
x,yKj,d,λ(x, y)| ≤ CN,α(A, d, δ, n, j)λ−N 〈y〉−

n−1
2 〈x〉−

n−1
2
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for any α,N and we are done. �

Remark 4.10. One should be careful that the integrand above is locally
integrable. Each short range resolvent contains a singularity on the order of
|wi|2−n which becomes more severe with repeated differentiation.

Fortunately, in the full change of coordinates ∇ui = 1
2(∇wi −∇wi−1) for

each i = 1, 2, . . . , j, while ∇u0 = 1
2(∇w0 + ∇wj ). Therefore the dangerous

piece bλd(2λ|wi|)
|wi|(n−1)/2 experiences the ∇ui immediately preceding it, but no other

derivatives, creating local singularities no worse than |wi|1−n.

Note that under the conditions of Lemma 4.9 each undirected product
in (4.7) satisfies the bound

(4.13)
∥∥∥∥ m∏
k=1

(
Rik(λ2)L

)∥∥∥∥
X∗λ→X

∗
λ

= O(λ−N )

for any N ≥ 1. We now show by approximation that vanishing still holds
for merely continuous A, but without any control over the rate.

Lemma 4.11. Let Φ1 and Φ2 be chosen as in Lemma 4.9. Suppose A is
a continuous function with A ∈ Y . Then each undirected product in (4.7)
satisfies the limiting bound

(4.14) lim
λ→∞

∥∥∥∥ m∏
k=1

(
Rik(λ2)L

)∥∥∥∥
X∗λ→X

∗
λ

= 0.

for any λ ≥ 1.

Proof. For any small γ > 0, there exists a smooth approximation Aγ ∈
C∞(Rn) of compact support so that ‖A− Aγ‖Y < γ and ‖Aγ‖Y < 2‖A‖Y .
Define the operator Lγ accordingly. By Lemma 4.1 and Corollary 3.6∥∥∥∥ m∏

k=1

(
Rik(λ2)L

)
−

m∏
k=1

(
Rik(λ2)Lγ

)∥∥∥∥
X∗λ→X

∗
λ

. γ(2‖A‖Y )m−1

uniformly in λ ≥ 1. Thus, by (4.13),

lim sup
λ→∞

∥∥∥∥ m∏
k=1

(
Rik(λ2)L

)∥∥∥∥
X∗λ→X

∗
λ

. γ(2‖A‖Y )m−1

Sending γ → 0 finishes the proof. �

Proof of Lemma 4.2. Lemma 4.8 provides a recipe for selecting a value of
m, together with a partition of unity {Φi} and a short-range threshold d,
so that the sum over all directed products in (4.7) will be an operator of
norm less than c

2 , or Crmn−1rm. We may choose m so that 2m > Crm
n−1.

This fixes the number of undirected products as approximately δm(1−n) =
(20m)m(n−1). For each of these, Lemma 4.11 asserts that its operator norm
tends to zero as λ → ∞. The same is true for the finite sum over all
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undirected products of length m. In particular it is less than the directed
product estimate provided λ > λ1(m) is sufficiently large. �

5. Small energies

The remaining task is to verify that for sufficiently small λ0 (and following
our convention regarding λ2 ± i0 from before)

sup
0<λ<λ0

‖Z0RL(λ2)Z∗0‖2→2 <∞,(5.1)

where Z0 = 〈x〉−σ|∇|
1
2 for some σ > 1

2 . As in the high energy case (and
implicitly for intermediate energies), we need to impose an invertibility con-
dition which allows the resolvent RL(λ2) to be bounded between suitable
spaces. More precisely, by the resolvent identity,

RL(λ2 + i0) = (1 +R0(λ2 + i0)L)−1R0(λ2 + i0)

provided the inverse on the right-hand side exists. We have

‖Z0RL(λ2)Z∗0‖2→2

= ‖Z0(1 +R0(λ2)L)−1Z−1
0 Z0R0(λ2)Z∗0‖2→2

≤ ‖Z0(1 +R0(λ2)L)−1Z−1
0 ‖2→2 ‖Z0R0(λ2)Z∗0‖2→2

By the smoothing properties of Z0 relative to H0,

sup
λ
‖Z0R0(λ2)Z∗0‖2→2 <∞

Thus, it will suffice to verify that

(5.2) sup
|λ|<λ0

‖Z0(1 +R0(λ2)L)−1Z−1
0 ‖2→2 <∞

Let G = R0(0), and Bλ = R0(λ2) − G. We will prove that under suitable
conditions

Z0(I +GL)−1Z−1
0 = (I + Z0GLZ

−1
0 )−1 : L2 → L2(5.3)

‖Z0BλLZ
−1
0 ‖2→2 → 0 as λ→ 0(5.4)

This implies (5.2) by summing the Neumann series directly. The proof of
(5.3) is a standard Fredholm alternative argument, while (5.4) will follow
from properties of the kernel of Bλ.

Lemma 5.1. Let n > β > 0, β ≥ α. Then

〈∇〉α|∇|−β : L2,σ1 → L2,−σ2

for all pairs σ1, σ2 > β− n
2 satisfying σ1 +σ2 > β, and is a compact operator

whenever the strict inequality β > α holds.
The same result holds when β ≤ 0 and β ≥ α, under the conditions

σ1, σ2 > β − n
2 and σ1 + σ2 ≥ 0. Compactness in this case requires strict

inequalities for both β > α and σ1 + σ2 > 0.
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Proof. Note that 〈x〉−ε〈∇〉−δ is compact on L2 for any choice of ε, δ > 0.
Therefore, it suffices to establish the boundedness of 〈x〉−σ′2〈∇〉β |∇|−β〈x〉−σ1

on L2 for any value σ′2 < σ2. Strict inequalities are necessary to ensure that
σ′2 can also be chosen to satisfy the hypotheses of the lemma. Let

K(x, y) = 〈x〉−σ′2 [〈ξ〉β|ξ|−β]∨(x− y)〈y〉−σ1

Then

|I −K(x, y)| .
{
〈x〉−σ2 |x− y|2−n〈y〉−σ1 |x− y| ≤ 1
〈x〉−σ2 |x− y|β−n〈y〉−σ1 |x− y| > 1

based on the fact that 1− 〈ξ〉β |ξ|−β ∼ |ξ|−2 for all |ξ| ≥ 1.
Define Kij(x, y) = [I −K(x, y)]χi(x)χj(y) where χi(x) = 1[|x|≤1] if i = 0

and χi(x) = 1[2i−1<|x|≤2i] if i ≥ 1. Then

|Kij(x, y)| . 2−iσ
′
2−jσ12−max(i,j)(n−β)

provided |i− j| > 1. Hence, K1 :=
∑
|i−j|>1Kij defines a bounded operator

(in fact, compact operator) on L2 since its Hilbert-Schmid norm is controlled
by

‖K1‖2HS .
∑
|i−j|>1

2−2(iσ′2+jσ1)2−2 max(i,j)(n−β)2(i+j)n <∞

For fixed i, the sum over j = i+ 2, i+ 3, . . . is only finite if σ1 > β − n
2 , and

its value is then comparable to 2−2i(σ1+σ′2−β). Finite summation over i then
requires that σ1 +σ′2 > β. Similar conditions are noted, with the roles of σ1

and σ′2 reversed, when considering the summation over all j > i+ 1.
By almost orthogonality, K0 =

∑
|i−j|≤1Kij satisfies

‖K0‖2→2 . max
|i−j|≤1

‖Kij‖2→2

By Schur’s test,
‖Kij‖2→2 . 2−i(σ1+σ′2)2imax(β,0)

when |i− j| ≤ 1, which is uniformly bounded provided σ1 +σ′2 ≥ max(β, 0).
We are done evaluating the three components of the decomposition K =
I −K0 −K1. �

Remark 5.2. To be precise, the above proof did not capture the points β = 0,
σ1 + σ2 = 0, but this can be shown trivially as a special case.

Next, we apply this result to prove compactness of the zero energy oper-
ators.

Lemma 5.3. Assume that L is as in (1.2), (1.3), and Z0 = 〈x〉−
1
2
−|∇|

1
2 .

Then Z0GLZ
−1
0 is a compact operator on L2.

Proof. We shall use the decomposition

L = Y ∗1 Z1 + Y ∗2 Z2 + V
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where

Y1 := i∇|∇|−
1
2 ·Aw−1, Z1 := |∇|

1
2w, Y2 := Z1, Z2 := Y1

As before, w = 〈x〉−τ for some τ ∈ (1
2 ,

1
2 + ε′). For convenience we will

take τ = 1
2(1 + ε′) in the calculations below. Our goal is to prove that the

operators

O1 = 〈x〉−σ|∇|
1
2GV |∇|−

1
2 〈x〉σ

O2 = 〈x〉−σ|∇|
1
2GY ∗1 Z1|∇|−

1
2 〈x〉σ

O3 = 〈x〉−σ|∇|
1
2GY ∗2 Z2|∇|−

1
2 〈x〉σ

are compact in L2 for some σ > 1
2 . In what follows, we will use the commu-

tator bounds of the appendix without further mention. The same applies to
the fact that |∇|

1
2A〈x〉1+|∇|−

1
2 (and therefore its adjoint) are bounded on

L2, see Lemma 2.2 above.
For O1, it suffices to observe that

〈x〉−σ|∇|
1
2GV |∇|−

1
2 〈x〉σ =

(
〈x〉−σ|∇|−

3
2 〈x〉−1

)(
〈x〉V |∇|−

1
2 〈x〉σ

)
is compact by Lemma 5.1 provided σ ∈ (1

2 ,
1
2 + ε).

Denote the bounded and compact operators on L2 by B and C, respec-
tively. Then,

O2 = 〈x〉−σ|∇|−
3
2Aw−1∇|∇|−

1
2
(
|∇|

1
2w|∇|−

1
2 〈x〉σ

)
∈ 〈x〉−σ|∇|−

3
2w|∇|

1
2
(
|∇|−

1
2Aw−2|∇|

1
2
)
∇|∇|−1B

⊂
(
〈x〉−σ|∇|−1〈x〉−

1
2
)(
〈x〉

1
2 |∇|−

1
2w|∇|

1
2
)
B ⊂ C.

requires σ ∈ (1
2 , τ). Finally, under the same conditions,

O3 = 〈x〉−σ|∇|−
3
2w|∇|

1
2 (∇|∇|−1)

(
|∇|

1
2Aw−2|∇|−

1
2
)(
|∇|

1
2w|∇|−

1
2 〈x〉σ

)
∈ 〈x〉−σ|∇|−

3
2w|∇|

1
2B

⊂
(
〈x〉−σ|∇|−1〈x〉−

1
2
)(
〈x〉

1
2 |∇|−

1
2w|∇|

1
2
)
B ⊂ C

and we are done. �

As an immediate consequence we arrive at the following.

Corollary 5.4. Let Z0 = 〈x〉−σ|∇|
1
2 with σ ∈ (1

2 ,
1
2 + ε′). Assume that

ker(I +Z0GLZ
−1
0 ) = {0} as an operator on L2(Rn). Then I +Z0GLZ

−1
0 is

invertible on L2.

Proof. The statement follows from Fredholm’s alternative. Note that

(I + Z0GLZ
−1
0 )−1 = Z0(I +GL)−1Z−1

0

where GL on the right-hand side is an operator on Z−1
0 (L2(Rn)). �

Now, we verify the vanishing norm condition (5.4).
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Lemma 5.5. For any L = i(A · ∇ + ∇ · A) + V satisfying conditions
(1.2), (1.3), one has

lim
λ→0+

‖〈x〉−σ|∇|
1
2BλL|∇|−

1
2 〈x〉σ‖2→2 = 0

Proof. By the commutator identities, the assumptions on A and V , and
fractional integration, the claim above is a consequence of the bound

(5.5) lim
λ→0+

‖〈x〉−σ∇Bλ〈x〉−σ‖2→2 = 0

To be precise, the reduction proceeds as follows. Recall that Bλ is defined
as a function of −∆, and therefore commutes with all derivatives. First,

〈x〉−σ|∇|
1
2BλV |∇|−

1
2 〈x〉σ =

n∑
i=1

(
〈x〉−σ∂iBλ〈x〉−σ

)(
〈x〉σ∂i|∇|−

3
2V |∇|−

1
2 〈x〉σ

)
=
∑
i

(
〈x〉−σ∂iBλ〈x〉−σ

)
Si1

where each Si1 is bounded on L2 by the fractional integration estimates in
Lemma 5.1. For the gradient term ∇ ·A we have

〈x〉−σ|∇|−
1
2Bλ∇ ·A|∇|−

1
2 〈x〉σ =

(
〈x〉−σ∇Bλ〈x〉−σ

)
· S2

where the operator

S2 =
(
〈x〉σ|∇|

1
2w|∇|−

1
2
)(
|∇|

1
2Aw−2|∇|−

1
2
)(
|∇|

1
2w|∇|−

1
2 〈x〉σ

)
is bounded on L2 by Lemma 2.2 and the commutator estimates in Lemma 6.2.
The second gradient term, A · ∇, requires a slightly more intricate decom-
position.

〈x〉−σ|∇|−
1
2BλA · ∇|∇|−

1
2 〈x〉σ =

n∑
i,j=1

(
〈x〉−σ∂iBλ〈x〉−σ

)
Si,j3

where each Si,j3 has the structure

Si,j =
(
〈x〉σ∂i|∇|−1〈x〉−σ

)(
〈x〉σ|∇|−

1
2w|∇|

1
2
)

×
(
|∇|−

1
2Ajw

−2|∇|
1
2
)(
|∇|−

1
2w|∇|

1
2 〈x〉σ

)(
〈x〉−σ∂j |∇|−1〈x〉σ

)
The central term is bounded on L2 by Lemma 2.2; it is flanked by a pair
of commutators as in Lemma 6.2. The boundedness of the outer operators
simply reflects the boundedness of the Riesz transforms on the weighted
space 〈x〉±σL2.

Now it remains to verify (5.5). With the notation of Section 3, we have

Bλ(x, y) =
b(λ|x− y|)
|x− y|n−2

− b(0)
|x− y|n−2

+ λ
n−3

2 eiλ|x−y|
a(λ|x− y|)
|x− y|

n−1
2
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We write ∇Bλ = Tλ,0 + Tλ,1, where

|Tλ,0(x, y)| . λ

|x− y|n−2

Tλ,1(x, y) = λ
n−3

2

(
λ+

1
|x− y|

)
eiλ|x−y|

ã(λ|x− y|)
|x− y|

n−1
2

where ã is a modified symbol with the same properties as a. The support
of Tλ,0 is restricted to the set {λ|x− y| . 1}, so the point-wise estimate

|Tλ,0(x, y)| . λσ−
1
2

|x− y|n−
1
2
−σ

is also valid. Thanks to the positive power of λ in the numerator, Tλ,0
satisfies (5.5) by fractional integration. Tλ,1 requires more care. Let χ be
a smooth cut-off for the region {x : |x| ∼ 1}. It suffices to prove that for
R2 & R1 > 1 and R2 & 1/λ (since ã(λ|x− y|) = 0 for |x− y| < 1/λ),

‖χ(x/R1)Tλ,1(x, y)χ(y/R2)‖2→2 . λ
εR

1
2
1 R

1
2

+ε

2

This, however, is an almost immediate corollary of Lemma 3.4. We can chop
Tλ,1 into finitely many conical pieces with δ ∼ 1. A properly scaled version
of (3.9) states that

‖χ(x/R1)Tλ,1(x, y)χ(y/R2)‖2→2 .
√
R1R2 ≤ λεR

1
2
1 R

1
2

+ε

2

for each piece, because λR2 > 1. �

We now relate the condition in Corollary 5.4 to the notion of resonance
and/or eigenvalue at zero.

Lemma 5.6. Suppose that zero is neither an eigenvalue nor a resonance of
H. Then

ker(I + Z0GLZ
−1
0 ) = {0} on L2(Rn)

for Z0 = 〈x〉−σ|∇|
1
2 , with σ ∈ (1

2 ,
1
2 + ε′) In particular, (5.1) holds for

sufficiently small λ0.

Proof. Suppose f ∈ L2(Rn) satisfies

f + Z0GLZ
−1
0 f = 0

We proved in Lemma 5.3 that Z0GLZ
−1
0 : L2 → L2. By a simple modifica-

tion of the proof, we can obtain Z0GLZ
−1
0 : L2,ρ → L2,ρ+ε for ρ ∈ [0, n2 − 1)

and for some fixed ε > 0 which depends on the decay rates of A and V .
This is done by commuting 〈x〉ρ through each of the expressions O1, O2,
O3. Two representative examples from the study of O2 are presented below.

〈x〉ρ
(
〈x〉

1
2 |∇|−

1
2w|∇|

1
2
)
〈x〉−ρ

=
(
〈x〉ρ+ 1

2 |∇|−
1
2 〈x〉−ρ+εw|∇|

1
2
)(
|∇|−

1
2 〈x〉−ρ−ε|∇|

1
2 〈x〉−ρ

)
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The constraints in Lemma 6.2 require that ρ + 1
2 < n−1

2 , hence the upper
bound ρ < n

2 − 1. The second example involves the non-smooth function A,
however it does not pose any difficulties.

〈x〉ρ
(
|∇|

1
2Aw−2|∇|−

1
2
)
〈x〉−ρ =(

〈x〉ρ|∇|
1
2 〈x〉−ρ−ε|∇|−

1
2
)(
|∇|

1
2Aw−2〈x〉2ε|∇|−

1
2
)(
|∇|

1
2 〈x〉ρ−ε|∇|−

1
2 〈x〉−ρ

)
These examples also demonstrate the flexibility to adjust the weights up or
down by a factor of 〈x〉ε. In this manner it is possible to accommodate a
weight of 〈x〉ρ+ε on one side and 〈x〉−ρ on the other.

By iterating the relation f = −Z0GLZ
−1
0 f a sufficient number of times,

it follows that f ∈ L2,(n−2)/2. Set h := Z−1
0 f . Then h = −GLh. We have

h ∈ ∩τ>n−4
2
L2,τ (Rn) since Z−1

0 : L2,ρ → L2,ρ−1−. It follows, see [12], that

Hh = 0 in the distributional sense. If n ≥ 5, we see that h is a true L2

eigenfunction ofH. In dimensions n = 3, 4 we can only conclude that h exists
in polynomially weighted L2, making it indicative of a resonance. However,
by our assumption on zero energy it follows that h = 0 and therefore f = 0
as desired. �

6. Appendix: Hörmander’s Plancherel theorem, a commutator

bound, and the fractional Leibniz rule.

The following is a version of Hörmander’s variable coefficient Plancherel
theorem, see Theorem 1.1 in [10].

Proposition 6.1. Let a = a(u, v),Ψ = Ψ(u, v) ∈ C∞(Rn × Rm) with
supp (a) ⊂ Bn(0, 1) × Bm(0, 1) and Ψ real-valued. Write u = (u′, u′′),
v = (v′, v′′) and assume that u′, v′ ∈ Rn1 where 1 ≤ n1 ≤ min(n,m). Assume
that on the support of a, for some finite constants µ > 0, and M > 1,

|∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)| ≥ µ|v′ − w′|
sup

|α|≤n1+1
|Dα

u′ [∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)]| ≤Mµ|v′ − w′|

sup
|α|≤n1+1

‖∂αu′ a‖∞ ≤M

Then the operator

(Tλf)(u) :=
∫
eiλΨ(u,v)a(u, v)f(v) dv

satisfies the estimate

‖Tλf‖L2(Rm) ≤ C(n,m,M)〈λµ〉−
n1
2 ‖f‖L2(Rn)

for all λ > 0. The constant C depends only on the dimensions n,m and M .

Proof. Define

T
(u′′,v′′)
λ f(u′) =

∫
R
n1

eiλΨ(u′,u′′,v′,v′′)a(u′, u′′, v′, v′′)f(v′) dv′
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where (u′′, v′′) are fixed parameters. We have

((T (u′′,v′′)
λ )∗T (u′′,v′′)

λ f)(w′) =
∫
K(u′′,v′′)(w′, v′)f(v′) dv′

K(u′′,v′′)(w′, v′) =
∫
eiλ[Ψ(u,v)−Ψ(u,w)] ā(u,w)a(u, v) du′

Introduce the differential operator

L = −iλ−1 ∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)
|∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)|2

· ∇u′

Note that for any |β| ≤ n1 + 1,

Leiλ[Ψ(u′,u′′,v′,v′′)−Ψ(u′,u′′,w′,w′′)] = eiλ[Ψ(u′,u′′,v′,v′′)−Ψ(u′,u′′,w′,w′′)]∣∣∣Dβ
u′

[ ∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)
|∇u′Ψ(u′, u′′, v′, v′′)−∇u′Ψ(u′, u′′, w′, w′′)|2

]∣∣∣ . (µ|v′ − w′|)−1

Hence, for any N ,

K(u′′,v′′)(w′, v′) =
∫
eiλ[Ψ(u,v)−Ψ(u,w)] (L∗)N

[
ā(u,w)a(u, v)

]
du′

so that by our assumptions,

|K(u′′,v′′)(w′, v′)| ≤ C(n,m,M)〈λµ|v′ − w′|〉−n1−1

The lemma now follows by Schur’s test. In fact there is the stronger estimate

‖Tλf‖L∞
u′′L

2
u′
≤ C(n,m,M)〈µλ〉−

n1
2 ‖f‖L1

v′′L
2
v′

for all λ > 0. �

Next, we present three commutator bounds. The first one is from Hörmander [9],
and the second two are variants which are most likely standard.

Lemma 6.2. Suppose σ, τ ∈ R. Then

〈∇〉τw−1
σ 〈∇〉−τwσ

is L2 bounded on Rn. Further, let σ1 > σ2 with σ1 > −n and n−1
2 > σ2.

Then

|∇|
1
2wσ1 |∇|−

1
2w−1

σ2

is also L2 bounded on Rn. The reversed commutator

|∇|−
1
2wσ1 |∇|

1
2w−1

σ2

is L2 bounded on Rn, n > 1 provided σ1 > σ2 with σ1 > −n and n+1
2 > σ2.

In all these expressions, wσ(x) := 〈x〉−σ.
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Proof. The first statement is from [9], see Definition 30.2.2, as well as The-
orem 18.1.13. For the second we write, with 1 = χ[|ξ|>1] + χ[|ξ|≤1] a smooth
partition of unity,

|∇|
1
2wσ1 |∇|−

1
2w−1

σ2

= |∇|
1
2χ[|∇|>1]wσ1 |∇|−

1
2χ[|∇|>1]w

−1
σ2

+ |∇|
1
2χ[|∇|>1]wσ1 |∇|−

1
2χ[|∇|<1]w

−1
σ2

+ |∇|
1
2χ[|∇|<1]wσ1 |∇|−

1
2χ[|∇|>1]w

−1
σ2

+ |∇|
1
2χ[|∇|<1]wσ1 |∇|−

1
2χ[|∇|<1]w

−1
σ2

We denote the terms on the right-hand side, in this order, as high-high, high-
low, low-high, and low-low, respectively. By the first commutator bound it
will suffice to deal with the low-low and high-low cases. We shall do this
by means of standard Littlewood-Paley projections Pjf = φj ∗ f where Pj
denotes a projection onto frequencies 2j . We start with the low-low case.
With wj = wσj it is of the form

∑
j,k≥0

2−
j
2

+ k
2P−j

(
w1P−k(w−1

2 f)
)
(x) =

∑
j,k≥0

2−
j
2

+ k
2φ−j ∗

(
w1[φ−k ∗

f

w2
])(x)

=
∑
j,k≥0

2−
j
2

+ k
2φ−j ∗

(
w1[φ−k ∗

f

w2
])(x)

=
∑
j,k≥0

2−
j
2

+ k
2

∫
χ[|v|∼2−j ]Gk,f (v)e−ivx dv

where Gk,f (v) =
∫
w1(y)φ−k(y − z)eivy dy

f(z)
w2(z)

dz

=
∫
P−k(w1e

iv·)(z)
f(z)
w2(z)

dz

Since |ŵ1(ξ)| . |ξ|−(n−σ1), it follows that, provided |j − k| � 1,

sup
|v|∼2−j

‖P−k(w1e
iv·)‖L2,σ2 . 2kσ22−

kn
2 (2−j + 2−k)−(n−σ1)

sup
|v|∼2−j

|Gk,f (v)| . 2kσ22−
kn
2 (2−j + 2−k)−(n−σ1)‖f‖2

‖P−j
(
w1P−k(w−1

2 f)
)
‖2 . 2−j

n
2 2kσ22−

kn
2 (2−j + 2−k)−(n−σ1)‖f‖2,

whereas by Schur’s lemma, for the case |j − k| . 1,

‖P−j
(
w1P−k(w−1

2 f)
)
‖2 . 2−j(min(σ1,n)−max(σ2,−n))
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In conclusion,∑
j,k≥0

2−
j
2

+ k
2 ‖P−j

(
w1P−k(w−1

2 f)
)
‖2

.
∑
j≥k≥0

2−(j−k)(n+1)/22−k(min(σ1,n)−max(σ2,−n))‖f‖2

+
∑
k>j≥0

2−(k−j)((n−1)/2−σ2)2−j(min(σ1,n)−max(σ2,−n))‖f‖2

. ‖f‖2
Next, consider the high-low case. It takes the form∑
j,k≥0

2
j
2

+ k
2Pj
(
w1P−k(w−1

2 f)
)
(x) =

∑
j,k≥0

2
j
2

+ k
2

∫
χ[|v|∼2j ]Gk,f (v)e−ivx dv

with Gk,v as above. To be precise, the marginal cases |j|+|k| ≤ 1 are already
part of the previous estimate. Since |ŵ1(ξ)| . |ξ|−N for |ξ| > 1,

sup
[|v|∼2j ]

‖P−k(w1e
iv·)‖L2,σ2 . 2−k

n
2 2−jN2kσ2

sup
[|v|∼2j ]

|Gk,f (v)| . 2−k
n
2 2−jN2kσ2‖f‖2

‖P−j
(
w1P−k(w−1

2 f)
)
‖2 . 2(j−k)n

2
−jN+kσ2‖f‖2

and thus, finally,∑
j,k≥0

2
j
2

+ k
2 ‖Pj

(
w1P−k(w−1

2 f)
)
‖2

.
∑
j,k≥0

2−j(N−(n+1)/2)2−k((n−1)/2−σ2)‖f‖2 . ‖f‖2

and we are done with the second statement. The third statement is veri-
fied using the same Littlewood-Paley decomposition and many of the same
estimates. The high-high term is again dominated by the corresponding
piece of the first commutator bound. The low-low and high-low terms fol-
low the analysis above since they are concerned with the same operators
P±j

(
w1P−k(w−1

2 f)
)
. Thus we can quickly sum∑

j,k≥0

2
j
2
− k

2 ‖P−j
(
w1P−k(w−1

2 f)
)
‖2

.
∑
j≥k≥0

2−(j−k)(n−1)/22−k(min(σ1,n)−max(σ2,−n))‖f‖2

+
∑
k>j≥0

2−(k−j)((n+1)/2−σ2)2−j(min(σ1,n)−max(σ2,−n))‖f‖2

. ‖f‖2
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for the low-low term, and∑
j,k≥0

2−
j
2
− k

2 ‖Pj
(
w1P−k(w−1

2 f)
)
‖2

.
∑
j,k≥0

2−j(N−(n−1)/2)2−k((n+1)/2−σ2)‖f‖2 . ‖f‖2

for the high-low term. Finally, the low-high term is also a concern. Similar
to the high-low case it takes the form∑
j,k≥0

2
j
2

+ k
2P−j

(
w1Pk(w−1

2 f)
)
(x) =

∑
j,k≥0

2
j
2

+ k
2

∫
χ[|v|∼2−j ]G−k,f (v)e−ivx dv

where G−k,f is the inverse Fourier transform of w1[φ−k ∗ (w−1
2 f)] as before.

Using the fact that ŵ1(ξ) decays rapidly when |ξ| ≥ 1, we can conclude that

sup
[|v|∼2−j ]

‖Pk(w1e
iv·)‖L2,σ2 . 2k

n
2 2−kN

sup
[|v|∼2−j ]

|G−k,f (v)| . 2k
n
2 2−kN‖f‖2

‖P−j
(
w1Pk(w−1

2 f)
)
‖2 . 2(k−j)n

2
−kN‖f‖2

leading to the summation∑
j,k≥0

2
j
2

+ k
2 ‖P−j

(
w1Pk(w−1

2 f)
)
‖2

.
∑
j,k≥0

2−j((n−1)/2)2−k(N−(n+1)/2)‖f‖2 . ‖f‖2

�

Finally, we state a fractional Leibniz rule which is used in the proof of
Lemma 2.2

Lemma 6.3. For any α ≥ 0, 1 < p <∞, and arbitrarily small γ > 0,

‖ |∇|α(fg)‖p ≤ C1

[
‖ |∇|αf‖p1‖g‖q1 + ‖ |∇|αg‖p2‖f‖q2

]
provided 1

p = 1
p1

+ 1
q1

= 1
p2

+ 1
q2

, p ≤ p1, p2 < ∞, p < q1, q2 ≤ ∞. The
constant C1 depends on n, α, p, p1, p2, q1, q2.

Proof. This is standard para-differential calculus. See for example [22], page
105. �
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