FIFTH ORDER KP-1I EQUATION ON THE UPPER HALF-PLANE
M. B. ERDOGAN, T. B. GUREL, AND N. TZIRAKIS

ABSTRACT. In this paper we study the fifth order Kadomtsev-Petviashvilli-II (KP-II)
equation on the upper half-plane U = {(z,y) € R? : y > 0}. In particular we obtain
low regularity local well-posedness using the restricted norm method of Bourgain and
the Fourier—Laplace method of solving initial and boundary value problem. Moreover we

prove that the nonlinear part of the solution is in a smoother space than the initial data.

1. INTRODUCTION

In this paper we study the following initial-boundary value problem for the fifth order
KP-II equation

) {8m(ut—8§u+uux)+uyy20 r€eR, y>0,1t>0,

u(x,y,O) = g(x,y) € HS(U)> u(x707t) = h(l’,t),

where U = {(z,y) € R* : y > 0} is the upper half-plane. For the boundary data h the
suitable space turns out to be an L? based Sobolev space, H3 4, see (2). In addition, for s > %
we have the compatibility condition for the L? traces: g|i—o = hl—o. The compatibility
condition is necessary since the solutions we are interested in have continuous L? traces for
s> 3.

Recently, there has been a lot of work dedicated to the fifth order KP-II equation when
the domain is R?, the two dimensional torus T? or cylinders of the form R x T. We refer the
reader to the papers [23], [6], and the references therein. The two dimensional model occurs

naturally in the modeling of certain long dispersive waves. In [20], Kawahara derived the

equation

uy + 05u + adPu + uu, =0
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to model solitary waves with an oscillatory structure propagating in one direction, which

can not be obtained from the classical KdV equation
uy + OPu + uu, = 0.

Taking into account weak transverse effects in the y direction leads to the fifth order

Kadomtsev—Petviashvili equation, [17]
Oy (ut - 32u + oz(?i’u + uuw) + ouy, =0,

where 0 = —1 corresponds to the KP-I type equation while 0 = 1 corresponds to the KP-II
type equation. Thus the fifth order KP equation can be thought as the mixing of the KP
equation with a Kawahara term. Solitary waves for these equations were studied in [18, 19].

For the classical KP-I equation
Oy (ut + @i’u + uuw) — Uyy =0

local and global and global well-posedness results are harder to obtain. This can be seen
by using the dispersive symbol of the equation. In the case of KP—I, there is half derivative
smoothing in the z direction, while for KP-II one can gain a full derivative. Since in our
paper we concentrate on KP—II we refer the reader to [23] for recent results on KP-I. The

low regularity well-posedness theory of the KP-II equation on the plane,
Oy (ut + 3§u + uum) + Uy, = 0,

started with the seminal paper of Bourgain in [5]. Bourgain obtained local well-posedness
(LWP) and global well-posedness (GWP) for solutions with initial data g € L?(R?). GWP
follows easily from the locally well-posed solutions since the flow conserves the L? norm.
There are more recent results on anisotropic spaces of the form H*®' x H®2. Note that the
solution remains invariant under the appropriate scaling of the initial data if s; +2s9 = —%.
In addition, the restriction s, > 0 is natural due to the Galilean invariance of the equation
[2]. Takaoka and Tzvetkov, [26], proved LWP for any s; > —3 and s, > 0. Takaoka, [25],
further improved this result going down to s; > —% and s > 0. However, Takaoka’s result

requires an additional low frequency assumption. This assumption was later removed by

Hadac in [14]. Finally, the critical regularity (s; = —3, s2 = 0) was reached in [15] with

the additional assumption of small initial data.
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For the fifth order KP—II the scaling relation is s +3s, = —2. Saut and Tzvetkov in [24]
proved LWP in anisotropic Sobolev spaces when s; > —}1 and s, > 0. They also proved
GWP for initial data in L*(R?). Their result was improved by Isaza et al. in [16] where
LWP was established for s; > —% and ss > 0. The authors also employed the almost
conservation machinery of the “I—method” to obtain GWP for s; > —‘—; and sy > 0. Later
in [14], Hadac obtained the same LWP result in a more general context. The most recent
improvement is for data at the —% regularity, see [21].

The only work we are aware of on the initial-boundary value problems involving KP type
equations is [22]. They considered the classical KP-IT equation on a strip and obtained local
weak solutions in certain weighted Sobolev spaces. In this paper, we study the fifth order
KP-II equation on the half plane with initial and boundary data in L? based Sobolev spaces
and obtain low regularity strong solutions. We also impose a nonhomogenous boundary
constrain at y = 0.

Wellposedness of (1) means local existence, uniqueness and continuity with respect to the
initial data of distributional solutions. For the definition of the usual Sobolev spaces and
their adapted generalization for the fifth order KP-II we refer the reader to the Notation

subsection below. More precisely we have the following definition:

Definition 1.1. Fiz s € (0,2). We say (1) is locally wellposed in H*(U), if
i) for any g € H*(U) and h € H; ,(U), with the compatibility condition g(x,0) = h(z,0)

a.e. for s> %, the equation has a distributional solution

uwe CYHS (10,T] x UynCyHS (R x R x [0,T7),

where T = T(||g| H;,t(U));
i) if gn — g in H*(U) and hy, — h in H; (U), then u, — u in the space above.

ms(U), |||

Our first theorem establishes local wellposedness.

Theorem 1.2. Fiz s € (0,3)\ {3}. Then the equation (1) is locally wellposed in H*(U)

in the sense of Definition 1.1.
In addition we obtain the following smoothing estimate:

Theorem 1.3. Fiz s € (0,2) \ {3} and a < min(35,%,3 — 3%). Then for any g € H*(U)

and h € H; (U), with the additional compatibility condition g(x,0) = h(z,0) a.e. when
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s > 1, the solution u of (1) satisfies
u(@, t) — Wylg, h)(x) € CYH;™([0,T] x U),

where T is the local existence time, and Wt(g, h) is the solution of the corresponding linear

equation.

Remark 1.4. We should note that the proof of Theorem 1.3 yields the analogous smoothing

result for the problem on the full plane R? which appears to be new.

To study the half-plane problem we utilize the restricted norm method of Bourgain [3, 4].
This continues our work initiated in [10] and [11] of establishing the regularity properties
of nonlinear dispersive partial differential equations (PDE) on a half line using the tools
that are available in the case of the whole line. We thus extend the data to the whole plane
and use Laplace transform methods to set up an equivalent integral equation (on R? x R)
of the solution, see (6) below. We then analyze the integral equation using the restricted
norm method as in [7, 10, 11] and multilinear L? convolution estimates. Our result is the
first well-posedness result on the half-plane for a KP type dispersive equation. Concerning
uniqueness, the solution we obtain for the integral equation (6) is unique. However, we
cannot obtain a unique strong solution of the original PDE since our solution is a fixed
point of (6) that depends on the particular extension we use. We should also note that our
method does not immediately apply to the initial boundary value problem for the classical
KP-II equation with the third order dispersion. We hope to address these two problems
(uniqueness of solutions and well-posedness theory for KP-II) in our future work. Another
interesting problem is that of GWP for the fifth order KP-II. Unfortunately this is not
as easy as in the full plane case since the presence of the boundary terms prevent certain
energy identities to hold. Subsequently it is hard to obtain a priori bounds for our solutions
in the Sobolev type norms we use in our local result.

We now discuss briefly the organization of the paper. In Section 2, we introduce the
appropriate function spaces, especially the X*® norm. We also construct the solutions of
the linear problem and set up the Duhamel formula for the full equation. The Duhamel
formula incorporates the extension of the data on R? and the evaluation of certain operators
at the zero boundary. In Section 3, we obtain the a priori linear estimates that we need in

order to put our solutions to the right function spaces. In Section 4, we prove the nonlinear
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estimates which is the main part of this paper. This section also provides the tools needed
for the proof of Theorem 1.3. In Section 5, we briefly outline the well known process of
establishing LWP and smoothing using the linear and nonlinear estimates of Sections 3 and
4. The last section, Section 6, is an Appendix where we state two calculus lemmas that we

use throughout the paper. We finish the introduction with a notation subsection.
1.1. Notation. Recall that for s > 0, H*(R?) is defined as a subspace of L? via the norm

- 1/2
e = e = ([ @17 ORac) "

where (¢) := (1 + [¢|?)"/? and

~

flo =70 = [ f@eis
is the Fourier transform of f. We also set the notation
1@ = Fit (@) = [ flaye =5,
R

for the Fourier transform in the jth space coordinate. The Laplace transform is defined as

usual by
FO) =L :/ f(t)eMdt, RA>0
0

and in case of several variables we will write f ()Tj) to represent the Laplace transform in a
particular variable.

For a space time function f, we set the notation

DOf(mat) = f(l’, O7t)'

Throughout the paper we have s € (0,32), s # 3. We define H*(U) norm as

9] sy == inf {||g]|rsr2) : G(z,y) = g(z,y), y > 0}.

We say g is an H*(R?) extension of g € H*(U) if g(x,y) = g(x,y) for y > 0 and |||
2|lg]

is in C) L2, and hence g(x,0) is well defined as an L* function.

The following Sobolev type space will be the natural choice for the boundary data we

Hs(R2) S

msy- Note that, if g € H*(U) for some s > %, then by trace lemma any H® extension

impose

(2) H®=H:,(R?) = {so RS R+ 206+ L) € Lg,n}

Ui
§
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1
: €6 — &0
1
NE
for s € R. We define H*(U), where U is the upper half plane, analogously.
Finally, we use (z,y) to denote ((z,y)) = /14 22 + 32, and we reserve the symbol u

for a smooth compactly supported function of time which is equal to 1 on [—1,1].

:{@:RQ—HR: <§2—|—|§B—€6|> P&, B8) GL?,B}’

2. NOTION OF A SOLUTION

In order to construct the solutions of (1), we first consider the linear problem with
g € H*(U) and xssoh(z,t) € Hj

3) {8m(ut—8§u)—|—uyy:0 r€e€R, y>0,1t>0,

u(z,y,0) =g(z,y), u(x,0,t)=h(z,1).

We denote by g. an H*(R?) extension of g € H*(U) with ||g.|

notation the unique solution of (3) for 0 <t <1 is the restriction of
u(t) = Wg(g, h) = Wgz(t)ge + W0t(0> h—p)
to U, where the first summand is the free fifth order KP-II propagator

5

g (6 )] (2, )

. . . 2
= [ esmeme 0 € myagan,
R

Wz (t)ge(z, y) = e H2g,(z,y) = F '@

where Ky = —92 + 0, '95. In addition, we have

p(x,t) = p(t) Do(Wrage) = p(t)Wez(t)ge(z, y)l,—0 ,

with u(t) being a smooth function that is compactly supported and equals 1 on [—1,1].
Calculation of WE(0,h) follows from taking the Fourier transform in z and Laplace

transform in ¢ of the linear fifth order KP-II problem (3) with ¢ =0

O2u(€,y, N) + (1A +Eu(8,y,0) =0, y>0,
w(€,0,0) = h(E,N), u(€, 00,\) =0.

The solution of this is obtained as

W&y, A) = TP PIRE X)) R(—iAE — €5)V2 < 0 and RA > 0.
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Setting (€, \) 1= (—iX¢ — €5)V/2 with R(—iX¢ — €6)1/2 < 0, and X\ = v+ 48 with v > 0, we
analyze the suitable branches of square root and find
—|BE =12, BE—¢€°>0
lim (€, A) = il = €012, BE—¢8<0and € >0
Y
—i|Bg — €12, pE— € <O0and € <.

Using this and letting v — 07, we obtain the solution (3) with g = 0 by
U(.CL’, Y, t) = fflﬁil[u(U Y, )](Iv t)

We remark that in the resulting integrals we perform algebraic manipulations including
changes of variables of the type S¢ — £ = 4n? and pass from Laplace to Fourier transform
in time and end up with the following solution

i€atiny (65— )t 27— 2
W) Wi mg) = [[ e e, € — e

R—xR—URtT xR+
+ / / R = T (RS
/) 15\

=: Wih(z,y,t) + Wah(x,y,1t).

Note that W; is now well defined for every z,y and ¢t in R. We extend W5 to all y by
multiplying by a smooth function p supported on (—2,00) that is equal to 1 on (0, 00), i.e.,

zgz ny i(g® t277 5 g_
(5) Wah(z,y,1) / / plog) 5O G668 + ) ndg

R R+

o ity 2
= / / fly)etteel @) |gh><t>o<€ & + L)dnde.

R R+
Here f(y) = p(y)eV is a Schwartz function. In order for the solution (4) above to make

sense we require ;soh € H;, where

W=, R = {¢ R R+ 10 € £ D) e L2,

1€8 —&°1 §6|
€2

for s € R. In the next section we will prove a Kato smoothing estimate, see Proposition 3.1,

15
3

o R oR: (€5 ) P B) € Lis},

that implies that the space H*(U) is the natural choice for the boundary data.
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We now establish embedding and extension properties of these spaces.

Lemma 2.1. For s > 1, the space H; , embeds continuously into C’gt. Moreover, for s > %,

2

=, and wn particular

we have the trace lemma; the space Hj , embeds continuously into CYL

sup, [[¢llzz < el ,-

Proof. For the first claim, it suffices to prove that given ¢ € H; ,, |@]|o1 w2y S ||@lln:,- By

Cauchy Schwarz inequality this follows from

1§ 1
dédB = ——d&d
/RQ €1 e —eolles s o / @ty Bl <o

since s > 1. In the first equality we used the change of variable p? = €8 — £%] in the 3

integral.
Similarly, for the second claim it suffice to prove that ||@]| 121} S [l . By Cauchy

Schwarz inequality in the  integral and the same change of variable this follows from

q I
dpg = ——  _dp<1
Sgp/R<€2+!§6—§6|>8|§5—56!5 ’ Sﬁp4<€2+p2>s S

since s > % O

Lemma 2.2. For —% <s< %, we have

I xes00(z,1)] H5 ,(R?) S HSDHHS(U)-

5

5, we have the same bound provided that the trace p(x,0) is zero.

Moreover, for % <s<

Proof. Since F(xi=0¢) (&, 8) = HP(E, B), where H is essentially the Hilbert transform in
the £ variable:

Hf(& B) = Fi(xe=of (1)) (B),

1
It suffices to prove that Tn(g7 ﬂ) = <§2—|— |§B—§6|>s % is an A2 Welght in 6 uniformly in 5
for —3 < s < 1, see[12]. We first note that w(8) = (8)*|8]2 is an Ay weight for —3<s< L.
Recalling that the A constant is invariant under dilations, translations and scaling, we can
replace m with (€2 + |8])*|8|2. Noting that for [¢| < 1, we can further simplify m to w,
the statement follows in this case. For |¢| > 1, we can consider (€2 + |8])*|3|2, which once

again boils down to w by scaling and dilating.
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we @) = [T (Xes0) |
multiplier operator with the multiplier 1 + &2 + |£8 — £8]. Furthermore

For the second part, we note that ||x;>o¢| HI (B2 where T is the

||T(Xt>0‘:0)|

w2y < T (xs00) g2 ey + 172 (xes0) g 2 oy,

where T} and T, are multiplier operators with multipliers 1 + £2 and £3 — &9, respectively.
Since ¢ has trace zero, 0; (Xt>o<P) = Xt>00: in the sense of distributions. Therefore, we

have Tj (Xt>0gp) = Xe>01j¢, j = 1,2. Also using the first part for s — 2, we obtain

||T(Xt>080>| H 2 (R2) ~S < 1 The H2(U) + [ T2 H2(U) ~ H;(U)-
O
We now consider the integral equation
(6) u(t) = ut)Wo(g, h) + p(t) /Ot Weea(t — ) F(u) dt’ — u(t)W5 (0, ) (1),
where
F(u) = —pu(t/T)uu, and q(t DO / Wr(t —t) )dt’).

In what follows we will prove that the integral equation (6) has a unique solution in the
X*b space (7) on R? x R for some T' < 1. The a priori linear estimates in Section 3 will
guarantee that the solution also belongs to CYH; ([0, T] x U)NCyH; ,(RT xR x [0, T1), and
that it depends continuously on data in these spaces, see Section 5. Using the definition of
the boundary operator, it is clear that the restriction of u to U x [0, T] satisfies (1) in the
distributional sense. Also note that the smooth solutions of (6) satisfy (1) in the classical
sense.

The Bourgain spaces, X**(R? x R) (see [3, 4]), will be defined as the closure of compactly

supported smooth functions under the norm

xew = (T =€+ L + 0"V AE )2

En’

(7) [l

We recall the embedding X** C C’tOH;y for b > % and the following inequalities from
(3, 13, 9].

For any s,b we have

(8) [7(t) Wzg]




10 ERDOGAN, GUREL, TZIRAKIS

ForanysER,OSbl<%,and0§b2§1—b1,wehave

) [ / Wt = 1))

Moreover, for T' < 1, and —= < b1 < by < =, we have

Xs,—by -

Sl

(10) In(t/T)F |l xsm S T F|l oo
3. A PRIORI LINEAR ESTIMATES

In this section we provide a priori estimates for the linear terms in (6). We start with the
following Kato smoothing type statement involving the H* norm for the linear group. This

estimate and the Proposition 3.3 below justify the choice of H?® space in Definition 1.1.
Proposition 3.1. For s >0, and g € H*(R?), we have u(t)Wgag € C)H3 ,, and we have
[@OWe2gllLgns , S N9l

Proof. For short, set W (x,y,t) = u(t)Wg2g(x,y,t). Taking the Fourier transform in = we
get

W(Epnt) = [ n(oe' D egic. )09
R
Now the Fourier transform in ¢ gives

W y.7) = / A — € + )e™g(€, 0)do

By dominated convergence theorem, the statement follows from the claim:

P [ e S [ A ate 0)d6) ande 5 Lol

Hs-

Applying the Cauchy-Schwarz inequality to the f-integral we get
0242 2 2402 0242\
([ e ola)” < [aees)] [ e orao.
6

and using the fact that for any M > 0

A~ 922 1
TS e
(=5)

/ /°° gl2dp el
L~ <02ﬁ:77 >M ~ /s p1/2<pif>M ~ <%>1/2’

where we used the change of variable p = |£| and then Lemma 6.1 with M > 1.

we have the estimate

H Gzir]
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We now combine these estimates to bound the integral I as follows

1
rs [ @y ‘;Zﬂi'> (6, 0)Pdndode.

It suffices to consider only |6? — n?| case of |#* & 7?| in the denominator and show that

7= (@ r e < e
R (=¢%)
We consider two cases to prove the desired bound for J.
Case 1: |n| < 10
In this region we have

J< 2 92 s |77|d77 2 02 s |p|dp < 2 92 s’
’”/<§+ >\§|(+|02n|) /R<§+ >( pM”<€+ )

for M > 1, where p? = |n2\£|02|'
CASE 2: |n| > 2/0|

By [0? — n?| 2 n* and again p? —Hwehave

3

pldp &+ [¢|p?)® \pldp
S G o aea = <l
~ ~ /2 2 M/2
l>2-12 (14 p%) l>20L (1+p%) r (1+0%)
1 2s s 2s
< sup + [€]%° + [€]°] o]

o (LM
lp1>2rg

for M > max(1,2s). O

S0 + 1€ < (€ +6%)°,

Next, we establish a priori estimates for the boundary operator in H*® spaces:

Proposition 3.2. Fiz s > 0. We have u(t)W1h(x,y,t) and p(t)Wah(z,y,t) € CyHs, for
Xesoh(w,t) € Hasc,t‘

Proof. Both follow from the proof of Proposition 3.1. We just note

o 2 2577_2
- [+

2
S | [ ey L |aetEd)
IR

and that 1/J(£ n) = ‘§|Xt>0h(£; n) which yields ¢ € H”.

Continuity in ¥ is a consequence of the dominated convergence theorem and f € L'. O

2

|sWah(y) |3, dnde

/R+ A(ZEEL) £ (0y) (€, 0)do

|B(=EEL) (€, 0)2dOdnde,

1
L9
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Proposition 3.3. Fiz s > 0. We have pu(t)Wih(z,y,t) and u(t)Wsh(x,y,t) € CPH;, for
Xesoh(z,t) € H ;.

Proof. Note that
~ -2y 2N, 5 2
Wﬂi(f, nat> =€ ¢ ?hXt>0<€7£ ¢ )X£n>0-
Therefore, the claims immediately follows from the definition of H® norm and the dominated
convergence theorem.
For W5, we first consider the case s = 0. Note that by Plancherel in the x variable, we

have

IWahllZ; , < H /f(ny)‘g@(&&s + %)‘dn‘ l < H /f(ny)g(n)dn

2
)
Ly

where g(1) = | Z7xi=0(6, € + )| Noting that [lgllz> S [xesoh(z, 1) s, the statement

follows from the L? boundedness of the operator

Tg(y) := / f(ny)g(n)dn,

which was proved in Lemma 3.2 of [10]. The statement for s > 0 follows from this and

interpolation as described in Lemma 3.2 of [10]. O

Since we will run the fixed point argument in Bourgain spaces we now obtain estimates
for the boundary operator in X*°. First recall that p(t)Wg2ge(z,y,t) € X*b for every
beRand s >0, see e.g. [9]. Upon this, with

2

~ M —— s N
- _h t> ) - )
(€, m) ¢ X (&, € 6)

we easily see that

|£W1h|

xoo < || pWr2tp|

xoo S 9]

s S |[Xes0h] HE
which entails pWih(z,y,t) € X
Proposition 3.4. Let b < 5 and s > 0. Then for h satifying xioh € M3, (R?), we have

[ @)Wahl|xs0 S [[xis0h]

H;, . (R?)
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Proof. From (5), we compute

~

f0/n)+ 5 2
h d

It is enough to prove the statement for b = % and s = 0, for s > 0 interpolation yields the

(0.7 =2 [ i =€ — %)

desired result. Now

2,1 Oo,\ 2 ’\0 -
1 Wahl| oy = H<r—§5+ %>2/0 a(r =& — %)f(n/n)@b(&n)dn]

2 I

7,6,¢

where §(&,1) = Bhxiso(€, € + %) € L. Using
(T—&+ %) S (r—& - Ty

and the Schwarz decay of i, we obtain

()3 |(9/n)

vt < | [

T - §5 - ?)2 7' 9 5'

We recall that

1~ 1 - 1]

JOm| s o =

‘ 1 u n?+0°
and thereby reach the bound

92 1
2l

= 1.

|aWahl| oy <H/ 7—65 TP ol AL

We estimate the integral I on the right hand side in two regions separately.
CASE 1: n* + 6% < |¢].

In this case we find

I< ”/ [ ( é U |Xn2+02<|£| |

2

7‘05

<H/ vi&m) 2+|02X”

upon evaluating L? norm. Define the kernel

i
K:0,n) .=
f( ’n) n2+92X772+92<|§\a

and therefore the operator T on L? by

(Ted)(0 L/’ Ke(0,m)D(Em)dn.
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Now we have I < ||T§QZHL35. We apply Lemma 6.2 with ¢(n) = |n|~¢ and p(6) = |0]|¢, for
suitable € > 0. With this we observe that

Ke(0,m) , </ 2|77| : dn _ _lpldp
0 In]° o MFH0%nlc T |9| 1+ p2)ple ™~ 10]¢
and that
* Ke(O.m) 4o / <L
oo O |n| 1+p T+ p2)ple ™ nle

provided € < 1. Consequently we arrive at ||T§¢|| S ||1/)|| rz uniformly in . And hence,
1Tz, S 1911z, < oo
CASE 2: n? + 6% > [¢].

In this region the integral I is bounded as

= H/ wa . ;X : +:2;Igl |§|%<n|2n|+ ! .

3(E )
<[/ e P

2
7,0,§

1
dn’
(n* + 02) Ll

< H/ [0 m) IInI dn]
(1 — Z)2¢)
We set n? = [£p| and 7/ = 7 — €7 to find

]<H/ (¢ !€p €] de .

|P| £

and then apply Young’s inequality to the L?, norm and reinstate the 5 variable. This brings
the following bound

ISH(/OOHIWS\/\&_/)W))

Sz,

&m

The following is a Kato smoothing type estimate for the nonlinear Duhamel term:
Proposition 3.5. For any compactly supported smooth function u, we have

t
t) /0 Wee(t — t')F(z,y,t")dt’ € CYH3,
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with the norm bound

Jute) [ Waalt — )P, )

S IF]

Xs—b,

x,t

for 0 < sﬁ% and b < % For s > % we have the bound

SIF

() Hmle%w—ﬂwuwﬂ>

Xomb + ||F||X%+,§——1f,—bp

x,t

1 _ 3 s
where b < 5, by =5 — 3, and

I g g = |[(€ 02T IEETH A=+ £) ™ F(£,0,0)] 2

£,0,\

Proof. We first note that continuity in y follows from the dominated convergence theorem.
Secondly, it is enough to show the assertion for
t t
(£)Ds / Wealt — ) F (g £)dt’ = (1) / Wealt — )P .y, )|
0 0 y=0

by translation invariance of X*® norms in space variable. Now this quantity explicitly is

Do/ Wee (t — ') F(z,y,t / / 0 S (e )t dedn,
R2
where
FERY) = [ ™ Pl Nax
R
Using this we evaluate the resulting ¢ integral and find

’02

t SOV (Sl LN
Do/ Wge(t — t')F(x,y, t")dt’ :/ : — e F(€,m, N)d\dEdn.
0 B i(A— &+ L)

We utilize a smooth cut-off function ¢ for [—1, 1] and its complement ¢¢ =1 — ¢ to break

the above integral into three pieces

t
(t)Ds / Waa(t — ) F(a, y, ')t
0

oM _ei(£5*%)t " ; Y, ~

=t GG — &+ PYF(Em. NdAded

MyéwQ_é+%) B\ — € + L) F(€ 1, \jdNdedy
ei)\t

zfz c 5 n
*M”Aga_g__j 6= € + £ )F(E 1, \adedy

ity
e 3 . 2~
—lt) [ e (0 - €+ )R (e NNy
O [ £)Big,m,0)
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=: Gi(x,t) + Ga(x,t) + Gs(z, t).

By Taylor series expansion, we calculate

2
et _ ei(£5—%)t

T
eI M R

k>1

and substitute this series in G; to obtain

1z, t) =ip(t /
R

We now pass to the Fourier side in both x and ¢ variables

LGN — & + )M (¢, n, AdAdedy.

P e>1

-1

(A — 55 N -~
Gi(&,7) /RZZ O 0= 4 £1087( — NP N,

k>1

Note that
[TMOEE(T)| = [OM () (T)] < 110} ()| < Cogl kM,

where M > 1 is fixed. Therefore

IGillne, = €+ o6 = D),
Lé,n
KM AR L) o n[ e fs+%<
= - | +iZ [ i P&, 0. N )]dAds)| |
k=1 ' R2 <§ =+ _>\> Le

X
|>\—§5+—|<1 ~
U € |F(¢,0,)\)|dAd0

———— =1.
€ Jur (EREyu o

o [GEUE

We set (€, 0, \) = (£2 4+ 02)%/2(\ — €5 + £)PF(£,0,)) € L2, (here and throughout this
proof) and define the kernel

n 1
5(92i77 )MXM &5+ g|<1

K¢(n, (0, ) =

(€ +1°)2
(€2 +6%)3

and consequently arrive at the inequality [; < ||7 1{5 | 12 where
i

D€)== /R KL, (0, N)D(E, 6, N)dbdA.

Note that the (A — &5 + > multiplier in K} is ignored as it is ~ 1 on the support of ¢.
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We will prove [Ti01l52 < (19122

£,0,1

/ KL, (0. \)dy <1 and / KL, (6, 0)[d0dA < 1
R R2

uniformly in ¢ using Lemma 6.2. We do this in two regions.
CaAse 1: |n| < 10
In this region (£2+7?%) < (€2 +6?) is valid. Using this and the change of variable p = 176_2

[ oo ans [ o1

02
r (7 £p)
ml<le| ¢

For the other integral, we have

R
Iél ® (p+ L)WM

by showing

we get

61 0211 |y s s ¢
where now p = 9;
CASE 2: |n| > |6].
In this case we observe <@> R (§> Then implement the change of variable p = 775—2

and hence obtain

KL, (0, 3)dn < /

[n>0] |p|>>%

(€ +ep)3 dp _ /<§>S+<5>S<p>%
(@ +6%5 (7~ Ja

We handle the other integral by considering the cases [{| < 1 and [£]| > 1 seperately. In
the latter case, we have (for 0 < s < 1)

1 (€ )% | _do
< Laal
w [ [istmesmaes [ G BE
101<|n] 101<|n]
[ s el
= | G el S gagm 5
lol<18

In the former case, we have (for 0 < s < 1)

2
*In| do Gl
(13 | [k eaaws [ <8<
R (0)° I¢] ()M (M
101<In| 61 ¢
This proves ||Gill3;, < H?ﬂHLg“ = [|F||xs-». A similar argument extends this to s > 1

provided that we choose M suitably large.
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We now pass to proving |[|Gallss, S [|F[|xs-». From above we have

62(6,77) ~ /R2 A(U()\ /\)65 (g (9)>\)¢c()\ 55 92)d)\d(9,

and using |\ — & + | > 1 on the support of ¢¢(\ — £° + ) we deduce
F
Gale |< !un Wl €9A)!d/\de_
A-&+E£)
To prove the assertion we write
Gl < (€2 + %)% e, € + )
2 Hzt ~Y 77 |§| 2 Y g Lg,n
2 2\ 3 F(e 0
< HInI(S 1) / P& 6, ] aaol|
S I 2L S b VA

where we used the usual bound for zi. We now concentrate on the case 0 < s < % Defining

1 as above, we have

(€4 m)5 | (A =&+ ) B
M N H (€24 62)3 |¢(§,9,)\)|d)\d9HLgm = Iy,

G|
|G| q <£5i’7——)\>

We therefore work with the kernel

77| </\ 55 >b 1
€] @+ —)\>M

Kg(n’ (‘97 A)) =

as above.
CAsE 1: |n| S 0] or [n] < (€)-

We apply Lemma 6.2 with ¢(n) = 1 and p(6,\) = (A — & + 95—2>b*1 in this region. By
(€2 +n%) < (€2 4 6%) we have

N — &5+
/|K52(77’(9=)\))|dn§ / In| A =&+

Il 5i——AM
Inl<10) InSle| (4% )

)\—§5_|_f b—1 2
S / <<55ip—3iM dp S (A =€+ %) =p(6,)),

>b1

where p = ’2—2 We also have
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’17‘ <)\ 55 >2b 2
R €] (@2 £\

=
R|§|<03§n >2—2b </0:F >2 26 ™

d\do

(K20 0. ) Ip(0. Nt S /

N ‘

101zl

where p = % and provided that b < %
CASE 2: |n| > |0] and |n| > (&).
For this region ¢(n) = |n|™* and p(6,\) = (A — & + 92>b 12 4+ 6%)72 are the suitable

functions for Lemma 6.2. Upon this setting we get

w1 A—E+ e

KZ(n, (0, \ dn S — d
2O i S [ FeT g
Inl>6] n[>10]
M-+ dp (p-g+ )
<), I R L Fa )

where we implemented the change of variable p = % For the (A, #) integral we obtain

>2b 2

1+s ()N — 5
//]KQH,HA\pH)\d)\d0<// 212 |77| Aot d\df
(& +6%)° [¢] (£5j:?—>\>M

|61<In| |61<In|

</ 1 |1+ do il / 1 [t do
SRR R IR E N S S RN S

101<In| 101<n|
Sl =aqn).

The last inequality follows by considering the cases |£| < 1 and |[£| > 1 as in (12) and (13)
provided that 0 < s < % and 2 — 2b > 1.
For s > %, the proof is the same for case 1. It remains to consider the case when || > |0

and |n| > (£), which will contribute the second summand on the right hand side of (11).

We estimate the contribution of this region to ||Gs|

1+s ﬁ
’ Gl / \ Hfi,e,k)l 2 de |
€] Sorem (A — & + B+ L — WM L2,

It suffices to prove that the operator with the kernel

Hs, by

|1+s

~ . n Xjo|<In|
KE(TL (97 )\)) T |§ 543 <02 + 52) <>\ 55 92>1 bj<<25 + 77 _ )\>M
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is bounded from L to Lj , uniformly in &. Let q(n) = |n|~* and
1
[E1EH(02 + e (A -+ )1

It is easy to see that [ I?g(n, (0,))q(n)dn < p(6,\) by change of variable p = % We also

p(0,\) =

have

e / K2(n, (6, 2)p(0, X)dOdX
In|* >

R e R Y

142s 2\ s42b;—3
< g s ()
|§|s+ 92+§2 (%)2—21:1 5

provided that b; < % -3
For G5 we note that

— °+ 0, \ )
G3(€777)=/RQ &y Z<§_£5) (;) )qbc(/\—§5+%)d/\d9,

and hence as in G5 we obtain

AZER)IF(E,0,0)] A€+ 5" 1|¢<£0A>|
G 5j:17— < d\df < d\deb.
Gale. € £ L) < / Ty = T e )
We then establish
D) g A€ -
IGslles, S || [ Ejz H OS], = Tl
e &n

where T3 is an operator on L? with the kernel

(€ 4+ ) | A= &+ F)
Kg(n, 0,))) = T2 02>% a <92i172>§/[

Case 1: |n| < 10
We use Lemma 6.2 with the functions ¢(n) = 1 and p(6,\) = (A — & + %V’_l in this
region. By (&2 +n?) < (€2 + 6?) we have

</\ _ 55 + f>b71
[ e s [
Inl<10) nl</6) €
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<)‘_§5+£>b71 2
< 3 < U\ £5 . 02\b—1 _
</ S =€+ D =0,

where p = 775—2 We also have

A 5 20—2
/ /|Kg(n, (0, 2))[p(6, \)dAd < / ||’£7||< (iin >M> dAd6
- T

1012
B s [ 51
x [E1(EZE T~ [y (o B

101zl

where p = % and provided that b < %

CASE 2: |n| > 6.
For this region q(n) = (€2 + 1?)~2 and p(6,\) = (A — £ + 92>b HE? + 6?)72 are the

suitable Schur functions. Upon this setting we get

W1 A-ere

K32 (n, (0, ) dn < — s 312
| 5(77 (0, \)la(n)dn / €] (€2 + 62)2 <9T77>M

dn

i o) i o)
<>\_§5 2>b 1 dp <A—€5 2>b 1
< < _
N/R <52+92>% <pi%>M ~ <§2+92>% p(@, >‘)a

where we implemented the change of variable p = % For the (A, #) integral we obtain

(& + )k o] A= €+ )
//|K§77,9/\ |p0>\d)\d0</ EEy <9“,§"> dAd6

|61 <|n|

|01 <|n|

(4?2 n|  db 2, o\ (E+n*)%n| db

< 20 < 3 Ll

~ / <€2 +02>s ’5‘ <92:F772>M ~ <§ T > / (52 +02>s ‘5’ <ﬁ>M
61| ¢ 101<In] ¢

S(E+n") 2 =q(n).

~Y

The last inequality follows by considering the cases [¢| < 1 and [¢] > 1 as in (12) and (13)

provided that 0 < s and M is sufficiently large. O

4. NONLINEAR ESTIMATES

We now establish estimates for the nonlinear term in (6).
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Theorem 4.1. Fiz s > 0 and a < min(%, %) Ifb < % is sufficiently close to %, then

1ol xeras < Mlullies-

Proof. By duality, see e.g. [10], it suffices to prove that

€[(€,0)° | f (o) fi(o1) fa(o — a1)]
(14) /RG (€1,01)%(€ — &1,0 — 61)5(1)°(11)b(T2)

where 0 = (£,0,)), do = dédfd), similarly for oy and doy. Moreover 7 := \ — £° + %,

similarly for 7, and 7, = A — A} — (£ = &)° + (96_—9611)2‘

We have the identity

cdodoy S || fllz |l fill2 |l f2ll 22,

7—71—72:€f+(€—£1)5—£5+0—2—9—%—<0_01)2

& & §—&
_ - > oy (06 —0,8)?
= =586 (§ — &1)(& — &6+ &7) EAGTAR

Noting that both summands have the same sign, we have

T (e
7= =l RICGE = QI+ &)+t ey = M

We will prove the inequality (14) by considering various regions for the parameters involved.
In the integral signs we will omit the domain of integration since it will be clear from the
context.

We first consider the nonresonant region |£ — & |, |&1| 2 1. By symmetry, it suffices to
consider the following cases: (1) 2 (M) and (r1) = (M).

Case 1. (1) =2 (M). By Cauchy-Schwarz inequality and the convolution structure it
suffices to obtain the bound below, see e.g. [10]
/ £(6,0) 2 dgydo, .

(€1,01)%(€ — &1, 0 — 01)> (M)~ (i) = ()1 = ™
Evaluating the \; integral using Lemma 6.1, we have

I < s €2(€,0)2+2d¢, df,

5,9,,\/ (€1,01)2(€ = &,0 — 00> (M) (A =& — (£ — &)° + z_? * (0510511)2>1_

I :=sup
§0,A

In the 60, integral, we let

_ 0 (0-01)% 92 _ (06-0:16)*
= 51 * =& & 5511(5—151) ’
_ o l€61-616] _ Inl2 €12
1 = 2|£1(£7£1)|d91 N 2\§1|%|E—§1|%d01,

M = |n| + |£6(§ — &)I(E + £7)
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to obtain the integral

/ 1€]2 (€, 0)2%2|¢, |3 ]€ — & |2 d€idn
(€0,00)25(6 = &.,0 — 0= (M) ||z (A + £ 47— & — (€= &)7)-

where 6, 9? + W

In the case 0] < (£), we bound this by (using Lemma 6.1 twice)

/ 1€]7(€)2+22 ¢, |7|€ — &2 d€rdn
(€)2(€ = &) (M) Inl2 A+ &+ — & — (6= &)%)~
- / [€134€)> 2 &2 |¢ — &i]3d&
~ ) G- ) EaE - )(E@+ N
</ |€|%+<§>2s+2ad€1
T () E — g (lg + 1)

which is bounded in £ provided that a < min(1, s + %)

In the case |0] > (£), by symmetry we can assume that |# — 60| 2 |6|, and hence we have
the bound

/ €13 101%11121€ — &2 d€dn
£ B S+ - € — (- &)

When W < 1, by integrating in the 7 variable and using a < min(s, %) we bound the

last integral by

(€6 — &)+
When W > 1 we bound the same integral by

</ €210 1€ = ]
s

/ |§||9|2a|€1||5 - fl\d&dﬁ
(%8 BRI (- BEEET 4 2 4y — g — (6 — €)1
/ |§||9|2a|§1||§ &1ld&
|2 (1 (€ — &) (€2 + €)1~

Notice that in both cases the integrals are estimated by

149 1 g 1
/|€| Mh2at|g | ma et e — g e dg S

provided that 0 < a < min(s, 3).
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Case 2. (11) 2 (M). In this case the needed bound boils down to

- £2<§,9>25+2ad£d9d)\ <
" gfiéi%l/ (G0 B (E — 0,6 — Buy (M) (1) ()=~

Evaluating the A integral, we have

< s / €2(¢,0)2+20dgdf 2
Taon S (€, 00)2(6 — 6,0 = 0)2 (M) (M — &+ (- &)+ F - G-
In the 6 integral, we let

+ (0-01)> 02 _ (06-01)°

= o ¢ gEa)
16 d 2\591 519|d9_ In[2 &2 do,
(16) 1= el = Pl

= |n| + [€& (€ — &)+ &)

and obtain the integral

/ [€]2 (€, 0)%720|¢, |3 ]€ — & |2dedn
(€1,01)25(€ — €1,0 — 0)2 (ML 3 (A1 — €5 + (€ — £2)5 + & — 1=

where § = %€ 4 /In€E=&)]
& 131

In the region |0| < (£), we bound the integral by

/ €13 €)1 |2 1€ — & 2d¢
(E)2(6 —&)» (G (E - &)@+ N (M -+ (E-&)5 + >W

Ifl* (€)* 3+ de
< .
”/!51|<A1—£5 +(E-&)+ )3

In the region || < |&;], this is bounded provided that a < 3. The same claim holds also in
the region || > |&] by letting p = £€° — (€ — &)°, and noting that

dp =~ |&||€Pde ~ |p|3 )& |3 dE.

In the region |0 > (£), by symmetry we can assume that |0 — 6] = |0], and hence we

have the bound
€328 & | /IS0 26 | =3 | — & |2dedn
/ (01)*(M >17\77|%<)\1 &+ E-&)°+ z—f — )
When [£| < |&], for a < min(s, 5), we bound this by

/ epas
ElarE— &~
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When [¢] > [&], for @ < min(s, ), we have the bound

/ €[ dedn
Gl Tl O — &+ (E— &)F + & — )i

- / €[+ dg |
T el n -8+ (€ - )P+ By

Once again, by letting p = £® — (£ — &;)® as above, we bound this by

d
/ 3, 3a a p 51
G5 ol 5 (0 — p+ Hie

provided that a < %
We now consider the case || < 1, [{] > 1. By Cauchy-Schwarz inequality, the convolu-

tion structure, and by performing the A;, A integrals, it suffice to prove
£2(€,9)%st20
su e < 1
p//1|<1 81 f 0 — 01>23<M>1_ §1d0; N

(0& — 01€)?
&

where
M~ NG| +n°, andn® =

Note that
1681 — 0:¢|

il ~ e

L a9, & [l |2 d6.

Therefore, we write the integral as

2 25+2a|¢ |5
// 5 <£7 6) ’fll T _dfldn,
jel<1 (61)%(€, 0 — 01)(|n| + £2[&]2)?

where 6; = 9% + 7|6 2.
In the case |0| < |£], we estimate this by

£2+2)¢, |3
d&dn,
//l|<1 (nl&r]2)2(|n] + €2]&:|7)2- o

Since the integral decreases in s we can assume that s < % We bound the integral by

52—}-2&’5 ’7 B 2a—4s+
> T é" < 6 < 1
/£1|<1 (€3]] 2)1+2s- g

provided that a < 2s. For s > %, we use the bound above for s = %— with a < 1.
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In the case 0| > |£| and |0] > |01, we have

£2|9Par&|%
déydn,
//| (% l&a| )2 (|l + 2161 |2)> o

For s < % we use the bound

2109|2a 5—58 242a l_ ¢ @
/] L dans [ S
&)<t |9I£1|2 £ |2 () 1-2s+2a(£2|€, |3 ) 142520~ el<1 (£2]€|2) 12520

provided that a < 2. For s > we use the bound above for s = =— with a < =

It remains to conmder the case |0] > |¢| and |0] < [604]. When s < 3, wWe have

219)201¢, |2 2|¢ [2—s+ta
// § |9| IS 1 dgldng/ § |§1| e, < 1.
jerl<1 |0(1 in\&\ 25(Inl + €2[&[2)*~ eal<1 (€2]&,]7) 12520

provided that a < s. Once again, for s > % we use the bound for s = %— with a < %

The remaining case |£|, |£1] < 1 is treated similarly but easier. O

We now consider nonlinear estimates involving the norm

1N g gy = [[(€ 02T IEETF (A= + £) M F(E,0, 0|,

£.0, z
where b, = Z — 2. Recall that this norm appears only when the Sobolev index, s + a, is at
least 2 5 Therefore for a we have the lower bound = — 5. Together with the upper bound

for a we see that the relevant range for s is {5 < s < 2

Theorem 4.2. Fm—<s<—and——s<a<m1n(%, %—%)andletbl %—H—“.]f

1
37 2

b < = 15 sufficiently close to = then

Nl gsge gy S Nl

Proof. Using the notation of the previous proof it suffices to prove that

/ €[S (e, 0) (r) 2 dEydbyd g
(§1,00)%(6 — &1,0 — 01)%(m)t(m2) 1™

Below, we only consider the case || > 1; the case |¢| < 1 is easier and will be omitted.

(17) sup
€0

We first consider the case 5 <s+a < 2, Since a < 3 , we can assume that s > 1. We

consider two cases 1) (71) and (75) < M and ii) (m1) or (1) 2 max(M, (7)), where

M = |¢6(E = &)I(E + &) + Il
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)251(5 51)
§—&1 & 3

_ 07 (0-61)2 92 _ [(0-00&—0:1(E=E)]® _ (00, _
=gt = aea = (e

Case i) (r1) and (12) < M. In this case we have |7| =~ M. Integrating in A;, we estimate

the integral in (17) by

/ ‘5’s+a+% <£7 9>1+ <M>S+a_%dfld91
(6,006 = 0,0 — 0= (A+ £ =& — (€ - &) +n)

We consider several subcases when [£] > 1.

Subcase 1) |&;] < €]} In this case we have

€ =&l = el M=glal+nl, Inl~(E - g)*lal

Therefore, it is reasonable to consider the following regions:
Region 1: |n| < (€1£) and |0,] < |&]€2,

Region 2: [n| < (£%&1), [61] 2 [6:]€7, and |0 — 641 2 [¢F,
Region 3: || 2 (£%1) and [01] 2 |néi|* 2 [&11€>

Region 4: || 2 (£1€1), 61| < [n&i |2 and |6 — 6] 2 S92 > |¢f3.

€112
In Region 1, letting p = —& — (£ — &)° + 1 in the & integral, we note that

\»—A

(18) ol & €] > Inl, dp = \ =56+ 56— )" - @ + (e |da 2 €.

Therefore we can estimate the integral by

/ ’€‘s+a7%+’€‘4s+4a—6<£’9>1+dpd91
<91>s—a+% (€0 — g1>25<)\ + % _ p>17<P>0+

< / [EP* g, 0) by < |epBr < 1,
TG0 — 0y)

provided that s —a + 2 > 1 and 3s + 5a — 2 < 0. We thus need a < min(s + 3,2 — %)

In Region 2, we estimate the integral by (using 2s > 2, |01] 2 |£1|€2, and |0 — 01] 2 |€]? )

/|§|s+a+ |€’4s+4a 6|§ ‘s+a—g<5 9>1+d51d91
|§11€2(01) €] 73(€, 0 — 01) 1+

which is bounded provided that a < g.

T _5 _
< [gfrsi L _Jare s s e
1<

In Region 3, passing to n variable in ¢; integral (using (15)), we have the bound

IThe case |€ — &1] < |€] is similar by symmetry.
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/ |f|s+a+§|§1|%|n|s+“—3d&dn
(&) 3l (A + © - — (€= &) +n)
< / - |f|—8+“+3*;|§1|%d51dn _
& "5 i e (A + £ — € — (€ — €)% +n)

Integrating in n using || = (£%¢;), we have

5 1
ARl ISTEL S 9 _
</ L = SiPdEs st & e < 1
& l<e) ( &1 |< €|

§ET) 2 TGP
provided that a < 5 -3
1
In Region 4, noting that |6] > |61] and using |0] ~ [0—6;| = El12 > €3 and || > €4|¢],

€112
we have

/I&\”‘”s\n!m 2dgdfy _ /|£|S+“+ &Pt dedo,
fl 91 2s 2s—1— 51 91 25‘77|1 a

e WS
61 28 1545 |]_ a |§| ~ )

provided that a < min(£ + 3,5 — 1).

Subcase 2) [£1] &~ |€ — &| > [€]. In this case we have

M~ &lel+ Il Inl~ (E2 - 2) %
This leads to the following regions?:
Region 1: [5] < €4]€], and |64, 0 — 61] < [€]€%
Region 2: [5] < €4]¢], and |64, 0 — 01] 2 [€]€2,
Region 3: || 2 £}l¢, and 01] 2 |n€|= 2 [€1&7.
Region 4: [n] 2 &{[¢], 16:] < [n€]2, and 6 — 6] 2 |n€]> Z [€]¢7.
In Region 1, we bound the integral by
/ [€[25+20 (¢, 9) 1+ ¢, [45+a6 e o,

€142 0014, 0 — 0T (A + £ =& — (€ - ) +n)

Letting p = —& — (£ — &1)° + 1 in the & integral, we note that

p| = &€l > Inl,

dp = | = 564+ 5(¢ — €)' = & + 0 de 2 J6llglg 2 €'y,

2Region 1 and 2 suffice to cover the case || < £€| by chosing the implicit constants carefully.
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Therefore we can estimate the integral by (for a < 1)

/ |§|2s+2a|€|4a—8+<§’0>1+dpd91 < |€|2s+6a—8+ <1
(€.00)1(E.0— 0) (A + L+ ) [plor "

provided that a < min(1, 3 — ).

In Region 2, we estimate the integral by

/ £ 20 |&y [t e8¢, 0) 1 dE,db,
(J61€7) 2727 (&, 01)1F (€, 0 — 1)1+

< / ’5‘2725+2a+|€1‘745+4a72+d51 < ’5‘176s+6a+ <1
~ ~ Y
&[> [¢]

~Y

provided that —4s +4a —2 < —1 and 1 — 6s 4+ 6a < 0. We thus need a < s — %.

In Region 3, passing to n variable in 6; integral, we have the bound

/ €53 (€, 0) 6y | nl* T2 dey i
In€ls (1,6 —

L _ 2s 1 1=
% | [RGB A+ £ — g — (- &)+ )

€]*+3 16 |2 (€, ) deydn

/<51,e—%i PRGN pa-a(y + £ — &5 — (€ - &1)> + 1)~

Noting that

1(6—=&1)\ 25 —a s—1— 3 _a— 1L —1—
(61,0 — %8+ | [BEIEEI2E e > | peoim (e g1t o] b

Z ‘51‘23+474a7|£|27¢17 <£’ 0>1+’77‘0+7

2a—1+
/ ‘5| 2 d§1 51’
el €2t

provided that a < min($ + 2, + 3).
In Region 4, noting that [] > |6;| and using 6] > €]z and 5] > £4/¢], we have the
bound

/|§|S+a+3|n18+a 2dgydf; _ / €l dgyde, / €[ttt e,
(€1,01)%5(0)% 1= (€1, 01)2% |n|t—o~ sl 16

we estimate the integral by

<1
|25—dat3 ~

provided that a < min(1, § + ¢).
Subcase 3) [£1] = |€ — & | = |£]. In this case we have

M~ |67 +[nl,  Inl =~ (F¢- — 2)%I¢l.
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In this subcase, it suffices to consider 3 regions:
Region 1: [n| < [¢]?,
Region 2: || 2 [¢[° and [61]  [n€]2 2 |¢F,
Region 3: || 2 [€]7, 161] << [n€]2 and |6 — 61] 2 |n€|> 2 [¢]*

In Region 1, using

(€,01)%°(€,0 — 00) 2 (&, 0) e[,
and passing to n variable in #; integral, we have the bound
(19) / 1 |€|25+6a—%+d€1dn < / |£|2s+6a—g+d§1
e(A+ % - —(E—&)+n) " e (12 g (e —g))2T

lolr—l

By Holder,

< |£|25+6a—%|§|0+|: ‘5_2€1|d€1 - };
~ 2 + :
D+ E—g— (-6
Letting p = & + (£ — &)° in the & integral and noting that

ol = €, dp = |5 — 5(§ — &)*[d&r 2 €P°]€ — 261 d&,

we estimate the integral by |¢[*70¢=6" <1 provided that @ <1 — 2.
Regions 2 and 3 are identical to Regions 3 and 4 of Subcase 2, respectively.
Case ii) By symmetry, assume that (7) 2 max(M, (7)). Integrating in A;, we estimate

the integral in (17) by

/ [€]5+at3 (€, 0)'*d€, db,
(1,01)%(¢ = &1,0 — 91>25(M>%737a7
In the case |&], [€ — &| 2 1, using |M] = [€]2|&1]]€ — & 2 |€]*, we have the bound
€[OIt (€, 6) 1 d6 do
(1,01)%(€ = &1,0 — 01)%
NOting that maX(<£17 91>7 <£ - 517 0 — 01))) z <£7 9>7 we have
|§|5S+5a+%_10+’£|_2s+1+d§1d91 < ‘5’3s+5a7%+
min((&1, 01), (€ — &1,0 — 01)) ™~

which is bounded for [¢| > 1 provided that a < 3 —2%. In the last inequality we used s > 1

Y

to integrate in &; and 6.
When |¢;] < 1, we have |M| > £%¢;], which leads to

5$+5a+7—10+ 1+
// |§| . <§2 9) dildael < ’6‘55+5a+5710+<5 9>1 25+ < ‘5’35+5afﬁ+
ex<1 (01)25(€,0 — 01)25¢1]3
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which is bounded for || > 1 provided that a < % — ?’f The case |§ — & | < 1 is similar by
symmetry.
Now, we consider the case % <s+a< % We first consider the resonance case |§;| < 1.

The case | — & < 1 is similar. It suffices to bound

// |§|s+a+ <£ 9>1+d£1d¢91
£1|<1 91 25 5 0 — 91>2S< 778 a<)‘+ 3 _51 - (f _51)5 + >1_

// !£|s+“+ (€,0)'"d&,db
<t (1)?(€, 0 — 00)% (M)~

If s > 3 or |£] Z |6, noting that M > &*[&;], we bound the second integral by

stat+3 —min(2s,4s—
. / |[prats (g)1-min(2s4s— D)+ ge, < [g|rrem dmin@sds ) <
jea]<1 IS STk

provided that a < % — s+ min(2s,4s — 1). We bound the first integral by

< / / |€[5+at3 (£)1-25+ g, d,
) D (M)250(N + E-g-(E-a)y+ m'

Passing to n variable

// |€!s+"+§< >1_25+!£1I%d£1d77
<t (€16) 3 nlE (A + & — € — (€ — 1) + )

< / [EPerE ()G |2 d6
I
Letting p = & + (£ — &)° we have

STa 3 —48
< / |€| * +2<§>1 2 +dp < |§‘a—s+%—4min(%,%—s—a)+
|p—€5|<et |§|4min(% 35— a)<)\_|_ 92 —P> Tes
by Holder. This is bounded if a <1 —sorifl —s<a < ——35—5.

If s < 1 and |0] > |¢], without loss of generality (£,6 — 61) 2 (£, ), and hence we can

/ / If\”““’ (0)' =2+ € db,
IE1]<1 1 2 <M>g_s_a .

// [ Fer 362 (0) > déydo
lal<t (01)25(£4& | _|_02>7—a_5_

bound both integrals by

Passing to o = /7|
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where 6; = % +o —lgl(i—'&)l. We rewrite this as
// [EJ=Hets|€y]22(0) > dEydo
<1 |g €1l 3 o)2—4s+ (g4 1—ats—
625 £ oM (o)t (gtal)

3
</ ‘€’S+a+ ’5'1 2$+’£1’0 dfl < |€|5a 58+ +
~ Jia<

e g5
which is bounded provided that a < s — 10

In the nonresonance cases, i.e. |&|,|& — & | > 1, we consider two cases i) (11) and
(12) < M and ii) (m1) or (12) 2 max(M, ()).

Case i) (1) and (m») < M. In this case we have |7| &~ M. Integrating in \;, we estimate
the integral in (17) by
/ g°e (g, 6)' " dgidby

(€1,01)%( = &,0 — 91>28<M>%_S_a<)\ + % &8 —(E-&)+ 7)>1_
Subcase 1) 1 < |&| < [€].? In this case we have

€ =&l =g, M~elal+nl Inl=(E

(20)

&l

Therefore, it is reasonable to consider the following regions:
Region 1: [n] < &'&] and [6h] < |&]€2,
Region 2: [n] < €161, 162] 2 61162, and [0 — 6] 2 ¢,
Region 3: |n] 2 €161
In Region 1, we first note that |6 — 0| < ||, and hence 0] < |£[*. Using the change of
variable in (18), we bound (20) by

/ ‘€|s+a+% <€’ 9>1+|€|45+4a—6d’0d91 < |€‘5s+5a—1—27+<€ 9)1—min(2$,4s—1)+
2 1— ~ ) .
orl<lel (01)2°(E, 0 — 01)%(\ + % —p) €] p0t

This is acceptable by considering the cases s > 1 and }l < 5 < 1 separately and using

2 2
6] < [€]°.

Region 2: In this region we have |6;] ~ |%\ which also implies 0| ~ |0 — 6,| = [£]>.
Therefore, we bound (20) by

/MW%314ﬁm%MﬂMHWMW@¢ﬂ
Gl + E - - - &) +n)’

3The case 1 < |€ — &| < |€] is similar by symmetry.
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Passing to n in 6, integral

5 R S
[€[sFat3 () 1-dst|g|ds a6 g | =Fa=G | |25 g, dyy
G A+ & — g — (€ &) +n)

5 / |§|7s+5a+%—6<0>1—45+|§1|—s+a—1d§1 5 |§|7s+5a+%—6+3—125+ 5 1,

provided that a < s + 13—0.
Region 3 is |n| = &*|¢;|. Without loss of generality |§ — 6;] = |0]. Passing to the n

variable, we bound the integral by

(21) / [t (€, )1 =2 | |2 dadn
(&, 00> oA+ § =& — (€= &) + )

where 0 = % +4/ |W| When [0] < |£] or s > 1, after integrating in 1 we bound this
by

3 _ 1_
/ |€|S+a+2|§|1 2S+|§1|2 2Sd§1 5 |£|3s+5a—%+ 5 1
INNISIN]

(SIS
provided that a < s+ % and a < % — 3—; The second restriction is acceptable since for
1 3 1 11 3s 1
§<s<§—§,wehavem—3>§.

When § < s < 1 and |0| > |£], using
1< [n&| =~ [260 -6,

we have

(€00 &l Z (€0, %)™ Z L& |01 (€],

Using this, we bound (21) by

/ ’f|38+a+%‘9|1_4s+|51\%75d51d77
P2 e A+ 8 =& — (€= &) +n)

</ [Pt g At g < |¢[Bstat |g|i-tst|¢| o tstat -
~ IRSIE (§4|§1|)2_23_“— ~ (54)2—23_a_ ~

provided that a < 1 — 435.

Subcase 2) [&1] = |€ — &| 2 |€]. In this case we have

2
M~ €el+1nl, Inl = (% — 8)°8
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Also assuming that [0 — 61| = |6| without loss of generality and then passing to the n

variable, we bound the integral by

/ [€J"Fera (€, 0)! 2 dg,dby
(€002 AN+ 2 — & — (€ - &) +n)

(22) < / [€[5HerL(E, 0) 125 &y |déydn
T ol (A E -G - g )

where 6, = 9% +4/ |M| When |0] < |£] or s > 1, after integrating in 1 we bound this
by

/ €23 & [ H4a—5dg, < pepereeriosi <
A+ E g -ay)
provided that a < 1 — . In the second to last inequality we used the p trick as in the
estimate of (19) above.

When s < 3 and 0] > ||, noting that

il 120 -0,
e~

we obtain
(€1,600)% (n)°[€2E7H° Z (&1, B0 Z 16> 017
Using this, we bound (22) by

/ €] oL 0] -t () €3€ 1 €[5 €] dEa
€af2elegtF o nlE (A + £ = — (€ — &) + )

’S/ |£|33+2af%’5‘174s+’51’4s+4a75d£1 5 ‘5’35+6a7% S/ 1,
€112 1]
provided that a < % -3

Case ii) (11) 2 max(M, (7). The case (72) is larger is identical. In the case s > %, we

estimate the integral in (17) by (assuming (£ —&;,0 —6,) 2 (&, ) without loss of generality
and integrating in A; and then in #; and &)

/ €+, )2 dadty  apargan <
(&1,01)*|83&(E — &) ™ ~

provided that a < g —s.
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Similarly, when 1 < s < 1 and || < [¢], we estimate (17) by

/ gl dendty < |efreri—tt <
(01)25(0 — 0,)%1836(E = &) ™ ~

provided that a + s < %

1

35

It remains to consider the case 1 < s < 3 and [0] > |¢]. Instead of (17), it suffices to

prove

< Q.

. 3
/ [€]°F240) 1 ()"~ 2dgdg
sup
> 1000 Jjapslel (§1501)%5(6 — &1, 0 — 01)25 ()1~ (7)1~
Evaluating the A integral and assuming that |§ — 6;| 2 |0, we consider

’§‘s+a+% (9)1_25+dfd9

/ (1, 00)2 (M) = (M + (E—61)° — & + 02 9& 0511) y3ma=s—

Passing to the n variable, we have

1— 2+
‘5’s+a+2‘5 5’ ‘91£:|: ’7755 51 ’ 8

/ 112 1ml2 (€1, 01)22(E361 (€ — €)1 (M + 5_1 + (£ = 51) — € e
|§|*S+a+|01|172s+d§dn

</ 2-2s— L 2s 07 5 5 3—a—s—
S22 = &al2 T nl 2 (61, 00)* M+ g + (€ —&)° — & + )2

o =+ dedn
[€12=5F[€ — &alomInl (€0, )2 O + & + (§ — )P — @ 42"
Since a, s < %, we can integrate in 7 to obtain
< / |£|—s+a+d€
637271 — &l (M + 4 (§— &)P — P)mamem
. / jglematg
[T = &l (M + % +(§—&)P— &)

We consider two regions 1 < |£;] < [¢] and [&1] 2 |£]. In the second region we estimate

the integrals by |&[5t2+ + |&;[*25~2+ which suffices. In the first region by letting p =

& — (€ — &)°, and noting that

€l ~ plla]d,  dp~ |&IEPde ~ |olfe R de,

we have

a_s_ T

</ |p|1‘1‘§+dp +/ |p|1‘1‘§+dp
~ —s+a— 62 —sta—
T T

O+ 5—1 —p)?
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provided that a < 13—0 + 2.

5. LOCAL WELLPOSEDNESS AND SMOOTHING

The assertion of Theorem 1.2 follows from the a priori linear estimates established in
Section 3 and the nonlinear estimates in Section 4. The proof follows along the lines of the
proof of Theorem 1.3 in Section 5 of [11] (also see the proof of Theorem 2.4 in Section 4 of
[10]). In particular, the fix point argument for equation (6) in the X*° space for the linear
solution follows from Proposition 3.4, the discussion preceeding it, and the Kato smoothing
bound Proposition 3.1. For the nonlinear terms we use Theorem 4.1, Theorem 4.2, and
the Proposition 3.5. We also use the properties (8), (9), (10) of X*® spaces. Similarly,
the solution belongs to CY H; ([0, T] x U) N CYH; (R x R x [0, T]) using Proposition 3.1,
Proposition 3.2, Proposition 3.3, and Proposition 3.5. These a priori estimates also imply
continuous dependence on initial data, see Section 5 of [11]. Note that the solution is
unique once we fix an extension of the initial data, however it is not clear whether the
restriction of the solution to the half plane is independent of the extension.

Finally, the smoothing bound in Theorem 1.3 follows from the same estimates as in the

proof of Theorem 1.1 in Section 5 of [10]. O

6. APPENDIX

We close this section by presenting two elementary lemmas that will be used repeatedly.
For the proof of the first lemma see the Appendix of [8]. The second lemma is the well-

known Schur’s test.

Lemma 6.1. If 3>~ >0 and +~ > 1, then

/R (T — k1>51<7 — k2>7d7 S (k1= k) dp(ky — ka),

where
X 1, 6>1,
dp(k) = ) Gpp ™) ls(L+ k), B=1,
In|<[k| (k)17 B < 1.

The statement remains valid when (T — kq) is replaced with |T — k| provided that v < 1.
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Lemma 6.2. Let T' be an integral operator with kernel K(0,n), 0 € R™, n € R". Assume

that for some positive functions p(6), q(n), and some constants A, B we have

/ K (0, n)\p(0)d0 < Aq(n), for a.e. n,

/ K(0, m)la(n)dn < Bp(6), for a.c. 0,

then ||T||L2—>L2 S vV AB.
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